|
1
|
Salama AK and Moschos SJ: Next steps in
immuno-oncology: Enhancing antitumor effects through appropriate
patient selection and rationally designed combination strategies.
Ann Oncol. 28:57–74. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Sharon E: Can an immune checkpoint
inhibitor (Sometimes) make things worse? Clin Cancer Res.
23:1879–1881. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Hwang I, Park I, Yoon SK and Lee JL:
Hyperprogressive disease in patients with urothelial carcinoma or
renal cell carcinoma treated with PD-1/PD-L1 inhibitors. Clin
Genitourin Cancer. 18:e122–e133. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Kim CG, Kim KH, Pyo KH, Xin CF, Hong MH,
Ahn BC, Kim Y, Choi SJ, Yoon HI, Lee JG, et al: Hyperprogressive
disease during PD-1/PD-L1 blockade in patients with non-small-cell
lung cancer. Ann Oncol. 30:1104–1113. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Petrioli R, Mazzei MA, Giorgi S, Cesqui E,
Gentili F, Francini G, Volterrani L and Francini E:
Hyperprogressive disease in advanced cancer patients treated with
nivolumab: A case series study. Anticancer Drugs. 31:190–195.
2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Chubachi S, Yasuda H, Irie H, Fukunaga K,
Naoki K, Soejima K and Betsuyaku T: A case of non-small cell lung
cancer with possible ‘disease flare’ on nivolumab treatment. Case
Rep Oncol Med. 2016(1075641)2016.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Lahmar J, Mezquita L, Koscielny S,
Facchinetti F, Bluthgen MV, Adam J, Gazzah A, Remon J, Planchard D,
Soria JC, et al: Immune checkpoint inhibitors (ICI) induce
paradoxical progression in a subset of non-small cell lung cancer
(NSCLC). Ann Oncol. 27 (Suppl 6)(VI423)2016.
|
|
8
|
Champiat S, Dercle L, Ammari S, Massard C,
Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A,
Soria JC and Ferté C: Hyperprogressive disease is a new pattern of
progression in cancer patients treated by Anti-PD-1/PD-L1. Clin
Cancer Res. 23:1920–1928. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Kato S, Goodman A, Walavalkar V,
Barkauskas DA, Sharabi A and Kurzrock R: Hyperprogressors after
immunotherapy: Analysis of genomic alterations associated with
accelerated growth rate. Clin Cancer Res. 23:4242–4250.
2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Park HJ, Kim KW, Won SE, Yoon S, Chae YK,
Tirumani SH and Ramaiya NH: Definition, incidence, and challenges
for assessment of hyperprogressive disease during cancer treatment
with immune checkpoint inhibitors: A systematic review and
meta-analysis. JAMA Netw Open. 4(e211136)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ferrara R, Mezquita L, Texier M, Lahmar J,
Audigier-Valette C, Tessonnier L, Mazieres J, Zalcman G, Brosseau
S, Le Moulec S, et al: Hyperprogressive disease in patients with
advanced non-small cell lung cancer treated With PD-1/PD-L1
inhibitors or with single-agent chemotherapy. JAMA Oncol.
4:1543–1552. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Di Giacomo AM, Danielli R, Guidoboni M,
Calabrò L, Carlucci D, Miracco C, Volterrani L, Mazzei MA, Biagioli
M, Altomonte M and Maio M: Therapeutic efficacy of ipilimumab, an
anti-CTLA-4 monoclonal antibody, in patients with metastatic
melanoma unresponsive to prior systemic treatments: Clinical and
immunological evidence from three patient cases. Cancer Immunol
Immunother. 58:1297–1306. 2009.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wolchok JD, Hoos A, O'Day S, Weber JS,
Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G, et al:
Guidelines for the evaluation of immune therapy activity in solid
tumors: Immune-related response criteria. Clin Cancer Res.
15:7412–7420. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Weber JS, D'Angelo SP, Minor D, Hodi FS,
Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD,
et al: Nivolumab versus chemotherapy in patients with advanced
melanoma who progressed after anti-CTLA-4 treatment (CheckMate
037): A randomised, controlled, open-label, phase 3 trial. Lancet
Oncol. 16:375–384. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Long GV, Weber JS, Larkin J, Atkinson V,
Grob JJ, Schadendorf D, Dummer R, Robert C, Márquez-Rodas I, McNeil
C, et al: Nivolumab for patients with advanced melanoma treated
beyond progression: Analysis of 2 phase 3 clinical trials. JAMA
Oncol. 3:1511–1519. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nishino M, Giobbie-Hurder A, Manos MP,
Bailey N, Buchbinder EI, Ott PA, Ramaiya NH and Hodi FS:
Immune-Related tumor response dynamics in melanoma patients treated
with pembrolizumab: Identifying markers for clinical outcome and
treatment decisions. Clin Cancer Res. 23:4671–4679. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Motzer RJ, Rini BI, McDermott DF, Redman
BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S,
Logan TF, et al: Nivolumab for metastatic renal cell carcinoma:
Results of a randomized phase II trial. J Clin Oncol. 33:1430–1437.
2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Nishino M, Ramaiya NH, Chambers ES, Adeni
AE, Hatabu H, Jänne PA, Hodi FS and Awad MM: Immune-related
response assessment during PD-1 inhibitor therapy in advanced
non-small-cell lung cancer patients. J Immunother Cancer.
4(84)2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus docetaxel in advanced
squamous-cell non-small-cell lung cancer. N Engl J Med.
373:123–135. 2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Haddad R, Concha-Benavente F, Blumenschein
G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Kasper S, Vokes
EE, Worden F, et al: Nivolumab treatment beyond RECIST-defined
progression in recurrent or metastatic squamous cell carcinoma of
the head and neck in CheckMate 141: A subgroup analysis of a
randomized phase 3 clinical trial. Cancer. 125:3208–3218.
2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Aquino D, Gioppo A, Finocchiaro G,
Bruzzone MG and Cuccarini V: MRI in glioma immunotherapy: Evidence,
pitfalls, and perspectives. J Immunol Res.
2017(5813951)2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Elias R, Kapur P, Pedrosa I and Brugarolas
J: Renal cell carcinoma pseudoprogression with clinical
deterioration: To hospice and back. Clin Genitourin Cancer.
16:485–488. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wagner MJ, Ricciotti RW, Mantilla J,
Loggers ET, Pollack SM and Cranmer LD: Response to PD1 inhibition
in conventional chondrosarcoma. J Immunother Cancer.
6(94)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Michalarea V, Fontana E, Garces AI,
Williams A, Smyth EC, Picchia S, Rao S, Chau I, Cunningham D and
Bali MA: Pseudoprogression on treatment with immune-checkpoint
inhibitors in patients with gastrointestinal malignancies: Case
series and short literature review. Curr Probl Cancer. 43:487–494.
2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mamdani H, Wu H, O'Neil BH and Sehdev A:
Excellent response to Anti-PD-1 therapy in a patient with
hepatocellular carcinoma: Case report and review of literature.
Discov Med. 23:331–336. 2017.PubMed/NCBI
|
|
26
|
Basler L, Gabryś HS, Hogan SA, Pavic M,
Bogowicz M, Vuong D, Tanadini-Lang S, Förster R, Kudura K, Huellner
MW, et al: Radiomics, tumor volume, and blood biomarkers for early
prediction of pseudoprogression in patients with metastatic
melanoma treated with immune checkpoint inhibition. Clin Cancer
Res. 26:4414–4425. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Solana R, Tarazona R, Gayoso I, Lesur O,
Dupuis G and Fulop T: Innate immunosenescence: Effect of aging on
cells and receptors of the innate immune system in humans. Semin
Immunol. 24:331–341. 2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Goronzy JJ and Weyand CM: Understanding
immunosenescence to improve responses to vaccines. Nat Immunol.
14:428–436. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
29
|
Kanjanapan Y, Day D, Wang L, Al-Sawaihey
H, Abbas E, Namini A, Siu LL, Hansen A, Razak AA, Spreafico A, et
al: Hyperprogressive disease in early-phase immunotherapy trials:
Clinical predictors and association with immune-related toxicities.
Cancer. 125:1341–1349. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Conforti F, Pala L, Bagnardi V, De Pas T,
Martinetti M, Viale G, Gelber RD and Goldhirsch A: Cancer
immunotherapy efficacy and patients' sex: A systematic review and
meta-analysis. Lancet Oncol. 19:737–746. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Conforti F, Pala L and Goldhirsch A:
Different effectiveness of anticancer immunotherapy in men and
women relies on sex-dimorphism of the immune system. Oncotarget.
9:31167–31168. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Polanczyk MJ, Hopke C, Vandenbark AA and
Offner H: Treg suppressive activity involves estrogen-dependent
expression of programmed death-1 (PD-1). Int Immunol. 19:337–343.
2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Saâda-Bouzid E, Defaucheux C, Karabajakian
A, Coloma VP, Servois V, Paoletti X, Even C, Fayette J, Guigay J,
Loirat D, et al: Hyperprogression during anti-PD-1/PD-L1 therapy in
patients with recurrent and/or metastatic head and neck squamous
cell carcinoma. Ann Oncol. 28:1605–1611. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Yoshida T, Furuta H and Hida T: Risk of
tumor flare after nivolumab treatment in patients with irradiated
field recurrence. Med Oncol. 34(34)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ogata T, Satake H, Ogata M, Hatachi Y and
Yasui H: Hyperprogressive Disease in the irradiation field after a
single dose of nivolumab for gastric cancer: A case report. Case
Rep Oncol. 11:143–150. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sasaki A, Nakamura Y, Mishima S, Kawazoe
A, Kuboki Y, Bando H, Kojima T, Doi T, Ohtsu A, Yoshino T, et al:
Predictive factors for hyperprogressive disease during nivolumab as
anti-PD1 treatment in patients with advanced gastric cancer.
Gastric Cancer. 22:793–802. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Wang S, Zhao Y, Aguilar A, Bernard D and
Yang CY: Targeting the MDM2-p53 protein-protein interaction for new
cancer therapy: Progress and challenges. Cold Spring Harb Perspect
Med. 7(a026245)2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Peng W, Liu C, Xu C, Lou Y, Chen J, Yang
Y, Yagita H, Overwijk WW, Lizée G, Radvanyi L and Hwu P: PD-1
blockade enhances T-cell migration to tumors by elevating IFN-γ
inducible chemokines. Cancer Res. 72:5209–5218. 2012.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sakai S, Kauffman KD, Sallin MA, Sharpe
AH, Young HA, Ganusov VV and Barber DL: CD4 T Cell-Derived IFN-γ
plays a minimal role in control of pulmonary mycobacterium
tuberculosis infection and must be actively repressed by PD-1 to
prevent lethal disease. PLoS Pathog. 12(e1005667)2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Singavi AK, Menon S, Kilari D, Alqwasmi A,
Ritch PS, Thomas JP, Martin AL, Oxencis C, Ali SM and George B:
1140PDPredictive biomarkers for hyper-progression (HP) in response
to immune checkpoint inhibitors (ICI)-analysis of somatic
alterations (SAs). Ann Oncol. 28 (Suppl 5):2017.
|
|
41
|
Giusti R, Mazzotta M, Filetti M, Marinelli
D, Di Napoli A, Scarpino S, Scafetta G, Mei M, Vecchione A, Ruco L
and Marchetti P: CDKN2A/B gene loss and MDM2 alteration as a
potential molecular signature for hyperprogressive disease in
advanced NSCLC: A next-generation-sequencing approach. J Clin
Oncol. 37(e20628)2019.
|
|
42
|
Kamada T, Togashi Y, Tay C, Ha D, Sasaki
A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, et al: PD-1(+)
regulatory T cells amplified by PD-1 blockade promote
hyperprogression of cancer. Proc Natl Acad Sci USA. 116:9999–10008.
2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li L, Zhang J, Jiang X and Li Q: Promising
clinical application of ctDNA in evaluating immunotherapy efficacy.
Am J Cancer Res. 8:1947–1956. 2018.PubMed/NCBI
|
|
44
|
McClelland SE: Role of chromosomal
instability in cancer progression. Endocr Relat Cancer. 24:T23–T31.
2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Han XJ, Alu A, Xiao YN, Wei YQ and Wei XW:
Hyperprogression: A novel response pattern under immunotherapy.
Clin Transl Med. 10(e167)2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Boussiotis VA: Molecular and biochemical
aspects of the PD-1 checkpoint pathway. N Engl J Med.
375:1767–1778. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Rosenberg SA, Spiess P and Lafreniere R: A
new approach to the adoptive immunotherapy of cancer with
tumor-infiltrating lymphocytes. Science. 233:1318–1321.
1986.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Adeegbe DO and Nishikawa H: Natural and
induced T regulatory cells in cancer. Front Immunol.
4(190)2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Wen L, Lu H, Li Q, Wen S, Wang D, Wang X,
Fang J, Cui J, Cheng B and Wang Z: Contributions of T cell
dysfunction to the resistance against anti-PD-1 therapy in oral
carcinogenesis. J Exp Clin Cancer Res. 38(299)2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Oweida A, Hararah MK, Phan A, Binder D,
Bhatia S, Lennon S, Bukkapatnam S, Van Court B, Uyanga N, Darragh
L, et al: Resistance to Radiotherapy and PD-L1 Blockade Is Mediated
by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin
Cancer Res. 24:5368–5380. 2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Di Pilato M, Kim EY, Cadilha BL, Prüßmann
JN, Nasrallah MN, Seruggia D, Usmani SM, Misale S, Zappulli V,
Carrizosa E, et al: Targeting the CBM complex causes T(reg) cells
to prime tumours for immune checkpoint therapy. Nature.
570:112–116. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Jacquelot N, Yamazaki T, Roberti MP, Duong
CPM, Andrews MC, Verlingue L, Ferrere G, Becharef S, Vétizou M,
Daillère R, et al: Sustained type I interferon signaling as a
mechanism of resistance to PD-1 blockade. Cell Res. 29:846–861.
2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kumagai S, Togashi Y, Kamada T, Sugiyama
E, Nishinakamura H, Takeuchi Y, Vitaly K, Itahashi K, Maeda Y,
Matsui S, et al: The PD-1 expression balance between effector and
regulatory T cells predicts the clinical efficacy of PD-1 blockade
therapies. Nat Immunol. 21:1346–1358. 2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lo Russo G, Moro M, Sommariva M, Cancila
V, Boeri M, Centonze G, Ferro S, Ganzinelli M, Gasparini P, Huber
V, et al: Antibody-Fc/FcR interaction on macrophages as a mechanism
for hyperprogressive disease in non-small cell lung cancer
subsequent to PD-1/PD-L1 blockade. Clin Cancer Res. 25:989–999.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Movahedi K, Laoui D, Gysemans C, Baeten M,
Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De
Baetselier P and Van Ginderachter JA: Different tumor
microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer Res.
70:5728–5739. 2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Henze AT and Mazzone M: The impact of
hypoxia on tumor-associated macrophages. J Clin Invest.
126:3672–3679. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang C, Yu Q, Song T, Wang Z, Song L, Yang
Y, Shao J, Li J, Ni Y, Chao N, et al: The heterogeneous immune
landscape between lung adenocarcinoma and squamous carcinoma
revealed by single-cell RNA sequencing. Signal Transduct Target
Ther. 7(289)2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Patten DA and Shetty S: The role of
stabilin-1 in lymphocyte trafficking and macrophage scavenging in
the liver microenvironment. Biomolecules. 9(283)2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Liu Y, Zhang L, Ju X, Wang S and Qie J:
Single-Cell transcriptomic analysis reveals macrophage-tumor
crosstalk in hepatocellular carcinoma. Front Immunol.
13(955390)2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Xu Z, Chang CC, Li M, Zhang QY, Vasilescu
EM, D'Agati V, Floratos A, Vlad G and Suciu-Foca N: ILT3.Fc-CD166
interaction induces inactivation of p70 S6 kinase and inhibits
tumor cell growth. J Immunol. 200:1207–1219. 2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Willoughby JE, Kerr JP, Rogel A, Taraban
VY, Buchan SL, Johnson PW and Al-Shamkhani A: Differential impact
of CD27 and 4-1BB costimulation on effector and memory CD8 T cell
generation following peptide immunization. J Immunol. 193:244–251.
2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chen L, Xu Z, Chang C, Ho S, Liu Z, Vlad
G, Cortesini R, Clynes RA, Luo Y and Suciu-Foca N: Allospecific CD8
T suppressor cells induced by multiple MLC stimulation or priming
in the presence of ILT3.Fc have similar gene expression profiles.
Hum Immunol. 75:190–196. 2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Vlad G and Suciu-Foca N: Induction of
antigen-specific human T suppressor cells by membrane and soluble
ILT3. Exp Mol Pathol. 93:294–301. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Braza MKE, Gazmen JDN, Yu ET and Nellas
RB: Ligand-Induced conformational dynamics of a tyramine receptor
from sitophilus oryzae. Sci Rep. 9(16275)2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mukherjee A, Acharya S, Purkait K,
Chakraborty K, Bhattacharjee A and Mukherjee A: Effect of N,N
Coordination and Ru(II) Halide Bond in Enhancing Selective Toxicity
of a Tyramine-Based Ru(II) (p-Cymene) Complex. Inorg Chem.
59:6581–6594. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen HM, van der Touw W, Wang YS, Kang K,
Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B,
et al: Blocking immunoinhibitory receptor LILRB2 reprograms
tumor-associated myeloid cells and promotes antitumor immunity. J
Clin Invest. 128:5647–5662. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Li G, Choi JE, Kryczek I, Sun Y, Liao P,
Li S, Wei S, Grove S, Vatan L, Nelson R, et al: Intersection of
immune and oncometabolic pathways drives cancer hyperprogression
during immunotherapy. Cancer Cell. 41:304–322.e7. 2023.PubMed/NCBI View Article : Google Scholar
|