|
1
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109.
1982.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Johnson ML and Rajamannan N: Diseases of
Wnt signaling. Rev Endocr Metab Disord. 7:41–49. 2006.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Janda CY, Dang LT, You C, Chang J, de Lau
W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, et al: Surrogate Wnt
agonists that phenocopy canonical Wnt and β-catenin signalling.
Nature. 545:234–237. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
van Kappel EC and Maurice MM: Molecular
regulation and pharmacological targeting of the β-catenin
destruction complex. Br J Pharmacol. 174:4575–4588. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Huang P, Yan R, Zhang X, Wang L, Ke X and
Qu Y: Activating Wnt/β-catenin signaling pathway for disease
therapy: Challenges and opportunities. Pharmacol Ther. 196:79–90.
2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wang D, Zhang Q, Li F, Wang C and Yang C:
β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates
hepatocellular carcinoma cell proliferation. Cancer Cell Int.
19(298)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Lin CH, Ji T, Chen CF and Hoang BH: Wnt
signaling in osteosarcoma. Adv Exp Med Biol. 804:33–45.
2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kohn AD and Moon RT: Wnt and calcium
signaling: Beta-catenin-independent pathways. Cell Calcium.
38:439–446. 2005.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Topol L, Jiang X, Choi H, Garrett-Beal L,
Carolan PJ and Yang Y: Wnt-5a inhibits the canonical Wnt pathway by
promoting GSK-3-independent beta-catenin degradation. J Cell Biol.
162:899–908. 2003.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Krishnamurthy N and Kurzrock R: Targeting
the Wnt/beta-catenin pathway in cancer: Update on effectors and
inhibitors. Cancer Treat Rev. 62:50–60. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Lemjabbar-Alaoui H, Dasari V, Sidhu SS,
Mengistab A, Finkbeiner W, Gallup M and Basbaum C: Wnt and Hedgehog
are critical mediators of cigarette smoke-induced lung cancer. PLoS
One. 1(e93)2006.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Pacheco-Pinedo EC, Durham AC, Stewart KM,
Goss AM, Lu MM, Demayo FJ and Morrisey EE: Wnt/β-catenin signaling
accelerates mouse lung tumorigenesis by imposing an embryonic
distal progenitor phenotype on lung epithelium. J Clin Invest.
121:1935–1945. 2011.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kren L, Hermanová M, Goncharuk VN, Kaur P,
Ross JS, Pavlovský Z and Dvorák K: Downregulation of plasma
membrane expression/cytoplasmic accumulation of beta-catenin
predicts shortened survival in non-small cell lung cancer. A
clinicopathologic study of 100 cases. Cesk Patol. 39:17–20.
2003.PubMed/NCBI
|
|
14
|
Huang CL, Liu D, Ishikawa S, Nakashima T,
Nakashima N, Yokomise H, Kadota K and Ueno M: Wnt1 overexpression
promotes tumour progression in non-small cell lung cancer. Eur J
Cancer. 44:2680–2688. 2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wang Y, Lei L, Zheng YW, Zhang L, Li ZH,
Shen HY, Jiang GY, Zhang XP, Wang EH and Xu HT: Odd-skipped related
1 inhibits lung cancer proliferation and invasion by reducing Wnt
signaling through the suppression of SOX9 and β-catenin. Cancer
Sci. 109:1799–1810. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nakashima N, Huang CL, Liu D, Ueno M and
Yokomise H: Intratumoral Wnt1 expression affects survivin gene
expression in non-small cell lung cancer. Int J Oncol. 37:687–694.
2010.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Winn RA, Marek L, Han SY, Rodriguez K,
Rodriguez N, Hammond M, Van Scoyk M, Acosta H, Mirus J, Barry N, et
al: Restoration of Wnt-7a expression reverses non-small cell lung
cancer cellular transformation through frizzled-9-mediated growth
inhibition and promotion of cell differentiation. J Biol Chem.
280:19625–19634. 2005.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wei Q, Zhao Y, Yang ZQ, Dong QZ, Dong XJ,
Han Y, Zhao C and Wang EH: Dishevelled family proteins are
expressed in non-small cell lung cancer and function differentially
on tumor progression. Lung Cancer. 62:181–192. 2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Liu Y, Dong QZ, Wang S, Fang CQ, Miao Y,
Wang L, Li MZ and Wang EH: Abnormal expression of Pygopus 2
correlates with a malignant phenotype in human lung cancer. BMC
Cancer. 13(346)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Khalaf AM, Fuentes D, Morshid AI, Burke
MR, Kaseb AO, Hassan M, Hazle JD and Elsayes KM: Role of
Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis,
and clinical significance. J Hepatocell Carcinoma. 5:61–73.
2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Flanagan DJ and Vincan E: Wnt signaling in
cancer: Not a binary On:Off switch. Cancer Res. 79:5901–5906.
2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Christie M, Jorissen RN, Mouradov D,
Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones
IT, et al: Different APC genotypes in proximal and distal sporadic
colorectal cancers suggest distinct WNT/β-catenin signalling
thresholds for tumourigenesis. Oncogene. 32:4675–4682.
2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Russell JO and Monga SP: Wnt/β-catenin
signaling in liver development, homeostasis, and pathobiology. Annu
Rev Pathol. 13:351–378. 2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Molaei F, Forghanifard MM, Fahim Y and
Abbaszadegan MR: Molecular signaling in tumorigenesis of gastric
cancer. Iran Biomed J. 22:217–230. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Toyama T, Lee HC, Koga H, Wands JR and Kim
M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell
proliferation and migration. Mol Cancer Res. 8:254–265.
2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Yuzugullu H, Benhaj K, Ozturk N, Senturk
S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, et
al: Canonical Wnt signaling is antagonized by noncanonical Wnt5a in
hepatocellular carcinoma cells. Mol Cancer. 8(90)2009.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cheng XX, Wang ZC, Chen XY, Sun Y, Kong
QY, Liu J and Li H: Correlation of Wnt-2 expression and
beta-catenin intracellular accumulation in Chinese gastric cancers:
relevance with tumour dissemination. Cancer Lett. 223:339–347.
2005.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Bhattacharya I, Barman N, Maiti M and
Sarkar R: Assessment of beta-catenin expression by
immunohistochemistry in colorectal neoplasms and its role as an
additional prognostic marker in colorectal adenocarcinoma. Med
Pharm Rep. 92:246–252. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kirikoshi H, Sekihara H and Katoh M:
Up-regulation of WNT10A by tumor necrosis factor alpha and
Helicobacter pylori in gastric cancer. Int J Oncol. 19:533–536.
2001.PubMed/NCBI
|
|
30
|
Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y,
Wang X, Gu C, Wang Y, Ye L, et al: RUNX1 promotes tumour metastasis
by activating the Wnt/β-catenin signalling pathway and EMT in
colorectal cancer. J Exp Clin Cancer Res. 38(334)2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Xu X, Zhang M, Xu F and Jiang S: Wnt
signaling in breast cancer: Biological mechanisms, challenges and
opportunities. Mol Cancer. 19(165)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wu R, Zhai Y, Fearon ER and Cho KR:
Diverse mechanisms of beta-catenin deregulation in ovarian
endometrioid adenocarcinomas. Cancer Res. 61:8247–8255.
2001.PubMed/NCBI
|
|
33
|
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan
YC, Deng X, Chen L, Kim CCH, Lau S, et al: FZD7 has a critical role
in cell proliferation in triple negative breast cancer. Oncogene.
30:4437–4446. 2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Yoshioka S, King ML, Ran S, Okuda H,
MacLean JA II, McAsey ME, Sugino N, Brard L, Watabe K and Hayashi
K: WNT7A regulates tumor growth and progression in ovarian cancer
through the WNT/β-catenin pathway. Mol Cancer Res. 10:469–482.
2012.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Badiglian Filho L, Oshima CT, De Oliveira
Lima F, De Oliveira Costa H, De Sousa Damião R, Gomes TS and
Gonçalves WJ: Canonical and noncanonical Wnt pathway: A comparison
among normal ovary, benign ovarian tumor and ovarian cancer. Oncol
Rep. 21:313–320. 2009.PubMed/NCBI
|
|
36
|
Ahmed N, Abubaker K and Findlay JK:
Ovarian cancer stem cells: Molecular concepts and relevance as
therapeutic targets. Mol Aspects Med. 39:110–125. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mao J, Fan S, Ma W, Fan P, Wang B, Zhang
J, Wang H, Tang B, Zhang Q, Yu X, et al: Roles of Wnt/β-catenin
signaling in the gastric cancer stem cells proliferation and
salinomycin treatment. Cell Death Dis. 5(e1039)2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Whissell G, Montagni E, Martinelli P,
Hernando-Momblona X, Sevillano M, Jung P, Cortina C, Calon A, Abuli
A, Castells A, et al: The transcription factor GATA6 enables
self-renewal of colon adenoma stem cells by repressing BMP gene
expression. Nat Cell Biol. 16:695–707. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhu L, Pan R, Zhou D, Ye G and Tan W:
BCL11A enhances stemness and promotes progression by activating
Wnt/β-catenin signaling in breast cancer. Cancer Manag Res.
11:2997–3007. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Chaudhary S, Islam Z, Mishra V, Rawat S,
Ashraf GM and Kolatkar PR: Sox2: A regulatory factor in
tumorigenesis and metastasis. Curr Protein Pept Sci. 20:495–504.
2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lin S, Zhen Y, Guan Y and Yi H: Roles of
Wnt/β-catenin signaling pathway regulatory long non-coding RNAs in
the pathogenesis of non-small cell lung cancer. Cancer Manag Res.
12:4181–4191. 2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Teng Y, Wang X, Wang Y and Ma D:
Wnt/beta-catenin signaling regulates cancer stem cells in lung
cancer A549 cells. Biochem Biophys Res Commun. 392:373–379.
2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Jung DH, Bae YJ, Kim JH, Shin YK and Jeung
HC: HER2 regulates cancer stem cell activities via the Wnt
signaling pathway in gastric cancer cells. Oncology. 97:311–318.
2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Akrami H, Mehdizadeh K, Moradi B,
Borzabadi Farahani D, Mansouri K and Ghalib Ibraheem Alnajar S:
PlGF knockdown induced apoptosis through Wnt signaling pathway in
gastric cancer stem cells. J Cell Biochem. 120:3268–3276.
2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gao Y, Cai A, Xi H, Li J, Xu W, Zhang Y,
Zhang K, Cui J, Wu X, Wei B and Chen L: Ring finger protein 43
associates with gastric cancer progression and attenuates the
stemness of gastric cancer stem-like cells via the Wnt-β/catenin
signaling pathway. Stem Cell Res Ther. 8(98)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Song H, Shi L, Xu Y, Xu T, Fan R, Cao M,
Xu W and Song J: BRD4 promotes the stemness of gastric cancer cells
via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin
signaling. Eur J Pharmacol. 852:189–197. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhao H, Han R, Wang Z, Xian J and Bai X:
Colorectal cancer stem cells and targeted agents. Pharmaceutics.
15(2763)2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
D'Antonio L, Fieni C, Ciummo SL, Vespa S,
Lotti L, Sorrentino C and Di Carlo E: Inactivation of
interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome
editing inhibits their oncogenicity and improves host survival. J
Immunother Cancer. 11(e006056)2023.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q,
Chen N, Zhao M, Zhang G, Xiao X, Zhou G, et al: Targeting cancer
stem cells and signalling pathways through phytochemicals: A
promising approach against colorectal cancer. Phytomedicine.
108(154524)2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Hatano Y, Fukuda S, Hisamatsu K, Hirata A,
Hara A and Tomita H: Multifaceted interpretation of colon cancer
stem cells. Int J Mol Sci. 18(1446)2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Singh S, Arcaroli J, Chen Y, Thompson DC,
Messersmith W, Jimeno A and Vasiliou V: ALDH1B1 is crucial for
colon tumorigenesis by modulating Wnt/β-catenin, notch and PI3K/Akt
signaling pathways. PLoS One. 10(e0121648)2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Hirata A, Utikal J, Yamashita S, Aoki H,
Watanabe A, Yamamoto T, Okano H, Bardeesy N, Kunisada T, Ushijima
T, et al: Dose-dependent roles for canonical Wnt signalling in de
novo crypt formation and cell cycle properties of the colonic
epithelium. Development. 140:66–75. 2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ordóñez-Morán P, Dafflon C, Imajo M,
Nishida E and Huelsken J: HOXA5 counteracts stem cell traits by
inhibiting wnt signaling in colorectal cancer. Cancer Cell.
28:815–829. 2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Khaled WT, Choon Lee S, Stingl J, Chen X,
Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, et al: BCL11A
is a triple-negative breast cancer gene with critical functions in
stem and progenitor cells. Nat Commun. 6(5987)2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li
J, Sun P, Xue X, Qi J, Yang Z, et al: LGR4 modulates breast cancer
initiation, metastasis, and cancer stem cells. FASEB J.
32:2422–2437. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Satriyo PB, Bamodu OA, Chen JH, Aryandono
T, Haryana SM, Yeh CT and Chao TY: Cadherin 11 inhibition
downregulates β-catenin, deactivates the canonical WNT signalling
pathway and suppresses the cancer stem cell-like phenotype of
triple negative breast cancer. J Clin Med. 8(148)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Nguyen VHL, Hough R, Bernaudo S and Peng
C: Wnt/β-catenin signalling in ovarian cancer: Insights into its
hyperactivation and function in tumorigenesis. J Ovarian Res.
12(122)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Condello S, Morgan CA, Nagdas S, Cao L,
Turek J, Hurley TD and Matei D: β-Catenin-regulated ALDH1A1 is a
target in ovarian cancer spheroids. Oncogene. 34:2297–2308.
2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wu G, Liu A, Zhu J, Lei F, Wu S, Zhang X,
Ye L, Cao L and He S: MiR-1207 overexpression promotes cancer stem
cell-like traits in ovarian cancer by activating the Wnt/β-catenin
signaling pathway. Oncotarget. 6:28882–28894. 2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Rapp J, Jaromi L, Kvell K, Miskei G and
Pongracz JE: WNT signaling-lung cancer is no exception. Respir Res.
18(167)2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Yang S, Liu Y, Li MY, Ng CSH, Yang SL,
Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor
growth and metastasis by activating Wnt/β-catenin signaling pathway
and EMT in non-small cell lung cancer. Mol Cancer.
16(124)2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Pan J, Fang S, Tian H, Zhou C, Zhao X,
Tian H, He J, Shen W, Meng X, Jin X and Gong Z: lncRNA
JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis
of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer.
19(9)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Li Y, Chen F, Shen W, Li B, Xiang R, Qu L,
Zhang C, Li G, Xie H, Katanaev VL and Jia L: WDR74 induces nuclear
β-catenin accumulation and activates Wnt-responsive genes to
promote lung cancer growth and metastasis. Cancer Lett.
471:103–115. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Qi H, Wang S, Wu J, Yang S, Gray S, Ng
CSH, Du J, Underwood MJ, Li MY and Chen GG: EGFR-AS1/HIF2A
regulates the expression of FOXP3 to impact the cancer stemness of
smoking-related non-small cell lung cancer. Ther Adv Med Oncol.
11(1758835919855228)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Tian S, Peng P, Li J, Deng H, Zhan N, Zeng
Z and Dong W: SERPINH1 regulates EMT and gastric cancer metastasis
via the Wnt/β-catenin signaling pathway. Aging (Albany NY).
12:3574–3593. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wang H, Wu M, Lu Y, He K, Cai X, Yu X, Lu
J and Teng L: LncRNA MIR4435-2HG targets desmoplakin and promotes
growth and metastasis of gastric cancer by activating Wnt/β-catenin
signaling. Aging (Albany NY). 11:6657–6673. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Luo Y, Tan W, Jia W, Liu Z, Ye P, Fu Z, Lu
F, Xiang W, Tang L, Yao L, et al: The long non-coding RNA LINC01606
contributes to the metastasis and invasion of human gastric cancer
and is associated with Wnt/β-catenin signaling. Int J Biochem Cell
Biol. 103:125–134. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Gao J, Zhao C, Liu Q, Hou X, Li S, Xing X,
Yang C and Luo Y: Cyclin G2 suppresses Wnt/β-catenin signaling and
inhibits gastric cancer cell growth and migration through Dapper1.
J Exp Clin Cancer Res. 37(317)2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ge Q, Hu Y, He J, Chen F, Wu L, Tu X, Qi
Y, Zhang Z, Xue M, Chen S, et al: Zic1 suppresses gastric cancer
metastasis by regulating Wnt/β-catenin signaling and
epithelial-mesenchymal transition. FASEB J. 34:2161–2172.
2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Chung MT, Lai HC, Sytwu HK, Yan MD, Shih
YL, Chang CC, Yu MH, Liu HS, Chu DW and Lin YW: SFRP1 and SFRP2
suppress the transformation and invasion abilities of cervical
cancer cells through Wnt signal pathway. Gynecol Oncol.
112:646–653. 2009.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zhang LZ, Huang LY, Huang AL, Liu JX and
Yang F: CRIP1 promotes cell migration, invasion and
epithelial-mesenchymal transition of cervical cancer by activating
the Wnt/β-catenin signaling pathway. Life Sci. 207:420–427.
2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Harper KL, Sosa MS, Entenberg D, Hosseini
H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis
RJ, et al: Mechanism of early dissemination and metastasis in
Her2+ mammary cancer. Nature. 540:588–592.
2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kenny HA and Lengyel E: MMP-2 functions as
an early response protein in ovarian cancer metastasis. Cell Cycle.
8:683–688. 2009.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Vasan N, Baselga J and Hyman DM: A view on
drug resistance in cancer. Nature. 575:299–309. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Stewart DJ: Wnt signaling pathway in
non-small cell lung cancer. J Natl Cancer Inst.
106(djt356)2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zhong Z and Virshup DM: Wnt signaling and
drug resistance in cancer. Mol Pharmacol. 97:72–89. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Geng P, Zhao J, Li Q, Wang X, Qin W, Wang
T, Shi X, Liu X, Chen J, Qiu H and Xu G: Z-Ligustilide combined
with cisplatin reduces PLPP1-mediated phospholipid synthesis to
impair cisplatin resistance in lung cancer. Int J Mol Sci.
24(17046)2023.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Gao Y, Liu Z, Zhang X, He J, Pan Y, Hao F,
Xie L, Li Q, Qiu X and Wang E: Inhibition of cytoplasmic GSK-3β
increases cisplatin resistance through activation of Wnt/β-catenin
signaling in A549/DDP cells. Cancer Lett. 336:231–239.
2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Xie C, Pan Y, Hao F, Gao Y, Liu Z, Zhang
X, Xie L, Jiang G, Li Q and Wang E: C-Myc participates in
β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma
cells. APMIS. 122:1251–1258. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fang X, Gu P, Zhou C, Liang A, Ren S, Liu
F, Zeng Y, Wu Y, Zhao Y, Huang B, et al: β-Catenin overexpression
is associated with gefitinib resistance in non-small cell lung
cancer cells. Pulm Pharmacol Ther. 28:41–48. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lee SB, Gong YD, Park YI and Dong MS:
2,3,6-Trisubstituted quinoxaline derivative, a small molecule
inhibitor of the Wnt/beta-catenin signaling pathway, suppresses
cell proliferation and enhances radiosensitivity in A549/Wnt2
cells. Biochem Biophys Res Commun. 431:746–752. 2013.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Wang HQ, Xu ML, Ma J, Zhang Y and Xie CH:
Frizzled-8 as a putative therapeutic target in human lung cancer.
Biochem Biophys Res Commun. 417:62–66. 2012.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang X, Lu B, Dai C, Fu Y, Hao K, Zhao B,
Chen Z and Fu L: Caveolin-1 promotes chemoresistance of gastric
cancer cells to cisplatin by activating WNT/β-catenin pathway.
Front Oncol. 10(46)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Chi HC, Tsai CY, Wang CS, Yang HY, Lo CH,
Wang WJ, Lee KF, Lai LY, Hong JH, Chang YF, et al: DOCK6 promotes
chemo- and radioresistance of gastric cancer by modulating
WNT/β-catenin signaling and cancer stem cell traits. Oncogene.
39:5933–5949. 2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Liu Y, Chen H, Zheng P, Zheng Y, Luo Q,
Xie G, Ma Y and Shen L: ICG-001 suppresses growth of gastric cancer
cells and reduces chemoresistance of cancer stem cell-like
population. J Exp Clin Cancer Res. 36(125)2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Cheng C, Qin Y, Zhi Q, Wang J and Qin C:
Knockdown of long non-coding RNA HOTAIR inhibits cisplatin
resistance of gastric cancer cells through inhibiting the PI3K/Akt
and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int
J Biol Macromol. 107:2620–2629. 2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Wang B, Guan G and Zhao D: Silence of
FAM83H-AS1 promotes chemosensitivity of gastric cancer through
Wnt/β-catenin signaling pathway. Biomed Pharmacother.
125(109961)2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yang W, Wu B, Ma N, Wang Y, Guo J, Zhu J
and Zhao S: BATF2 reverses multidrug resistance of human gastric
cancer cells by suppressing Wnt/β-catenin signaling. In Vitro Cell
Dev Biol Anim. 55:445–452. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Zhang ZM, Wu JF, Luo QC, Liu QF, Wu QW, Ye
GD, She HQ and Li BA: Pygo2 activates MDR1 expression and mediates
chemoresistance in breast cancer via the Wnt/β-catenin pathway.
Oncogene. 35:4787–4797. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Wang Z, Wang N, Li W, Liu P, Chen Q, Situ
H, Zhong S, Guo L, Lin Y, Shen J and Chen J: Caveolin-1 mediates
chemoresistance in breast cancer stem cells via β-catenin/ABCG2
signaling pathway. Carcinogenesis. 35:2346–2356. 2014.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Loh YN, Hedditch EL, Baker LA, Jary E,
Ward RL and Ford CE: The Wnt signalling pathway is upregulated in
an in vitro model of acquired tamoxifen resistant breast cancer.
BMC Cancer. 13(174)2013.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Cheng S, Huang Y, Lou C, He Y, Zhang Y and
Zhang Q: FSTL1 enhances chemoresistance and maintains stemness in
breast cancer cells via integrin β3/Wnt signaling under miR-137
regulation. Cancer Biol Ther. 20:328–337. 2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong
H, Hu Q, Zhang W, Li C, Tan Y, et al: Nanoparticles (NPs)-meditated
LncRNA AFAP1-AS1 silencing to block Wnt/β-catenin signaling pathway
for synergistic reversal of radioresistance and effective cancer
radiotherapy. Adv Sci (Weinh). 7(2000915)2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Chau WK, Ip CK, Mak ASC, Lai HC and Wong
AST: c-Kit mediates chemoresistance and tumor-initiating capacity
of ovarian cancer cells through activation of
Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene.
32:2767–2781. 2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Nagaraj AB, Joseph P, Kovalenko O, Singh
S, Armstrong A, Redline R, Resnick K, Zanotti K, Waggoner S and
DiFeo A: Critical role of Wnt/β-catenin signaling in driving
epithelial ovarian cancer platinum resistance. Oncotarget.
6:23720–23734. 2015.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Chiu WT, Huang YF, Tsai HY, Chen CC, Chang
CH, Huang SC, Hsu KF and Chou CY: FOXM1 confers to
epithelial-mesenchymal transition, stemness and chemoresistance in
epithelial ovarian carcinoma cells. Oncotarget. 6:2349–2365.
2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Mariya T, Hirohashi Y, Torigoe T, Tabuchi
Y, Asano T, Saijo H, Kuroda T, Yasuda K, Mizuuchi M, Saito T and
Sato N: Matrix metalloproteinase-10 regulates stemness of ovarian
cancer stem-like cells by activation of canonical Wnt signaling and
can be a target of chemotherapy-resistant ovarian cancer.
Oncotarget. 7:26806–26822. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zhang Y, Liu B, Zhao Q, Hou T and Huang X:
Nuclear localizaiton of β-catenin is associated with poor survival
and chemo-/radioresistance in human cervical squamous cell cancer.
Int J Clin Exp Pathol. 7:3908–3917. 2014.PubMed/NCBI
|
|
100
|
Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R and
Wang YY: FTO regulates the chemo-radiotherapy resistance of
cervical squamous cell carcinoma (CSCC) by targeting β-catenin
through mRNA demethylation. Mol Carcinog. 57:590–597.
2018.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Xu H, Wang Z, Xu L, Mo G, Duan G, Wang Y,
Sun Z and Chen H: Targeting the eIF4E/β-catenin axis sensitizes
cervical carcinoma squamous cells to chemotherapy. Am J Transl Res.
9:1203–1212. 2017.PubMed/NCBI
|
|
102
|
Cao HZ, Liu XF, Yang WT, Chen Q and Zheng
PS: LGR5 promotes cancer stem cell traits and chemoresistance in
cervical cancer. Cell Death Dis. 8(e3039)2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Joyce JA and Fearon DT: T cell exclusion,
immune privilege, and the tumor microenvironment. Science.
348:74–80. 2015.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Chen DS and Mellman I: Oncology meets
immunology: The cancer-immunity cycle. Immunity. 39:1–10.
2013.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Pai SG, Carneiro BA, Mota JM, Costa R,
Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ:
Wnt/beta-catenin pathway: Modulating anticancer immune response. J
Hematol Oncol. 10(101)2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Ganesh S, Shui X, Craig KP, Park J, Wang
W, Brown BD and Abrams MT: RNAi-mediated β-catenin inhibition
promotes T cell infiltration and antitumor activity in combination
with immune checkpoint blockade. Mol Ther. 26:2567–2579.
2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Luke JJ, Bao R, Sweis RF, Spranger S and
Gajewski TF: WNT/β-catenin pathway activation correlates with
immune exclusion across human cancers. Clin Cancer Res.
25:3074–3083. 2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Kerdidani D, Chouvardas P, Arjo AR,
Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K,
Stathopoulos GT, et al: Wnt1 silences chemokine genes in dendritic
cells and induces adaptive immune resistance in lung
adenocarcinoma. Nat Commun. 10(1405)2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Bergenfelz C, Janols H, Wullt M, Jirström
K, Bredberg A and Leandersson K: Wnt5a inhibits human
monocyte-derived myeloid dendritic cell generation. Scand J
Immunol. 78:194–204. 2013.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Diamond MS, Kinder M, Matsushita H,
Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM,
Kalinke U, et al: Type I interferon is selectively required by
dendritic cells for immune rejection of tumors. J Exp Med.
208:1989–2003. 2011.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Sharma P, Hu-Lieskovan S, Wargo JA and
Ribas A: Primary, adaptive, and acquired resistance to cancer
immunotherapy. Cell. 168:707–723. 2017.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Gattinoni L, Ji Y and Restifo NP:
Wnt/beta-catenin signaling in T-cell immunity and cancer
immunotherapy. Clin Cancer Res. 16:4695–4701. 2010.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Schinzari V, Timperi E, Pecora G, Palmucci
F, Gallerano D, Grimaldi A, Covino DA, Guglielmo N, Melandro F,
Manzi E, et al: Wnt3a/β-catenin signaling conditions
differentiation of partially exhausted T-effector cells in human
cancers. Cancer Immunol Res. 6:941–952. 2018.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wang B, Tian T, Kalland KH, Ke X and Qu Y:
Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends
Pharmacol Sci. 39:648–658. 2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Sun X, Liu S, Wang D, Zhang Y, Li W, Guo
Y, Zhang H and Suo J: Colorectal cancer cells suppress CD4+ T cells
immunity through canonical Wnt signaling. Oncotarget.
8:15168–15181. 2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Lengfeld JE, Lutz SE, Smith JR, Diaconu C,
Scott C, Kofman SB, Choi C, Walsh CM, Raine CS, Agalliu I and
Agalliu D: Endothelial Wnt/β-catenin signaling reduces immune cell
infiltration in multiple sclerosis. Proc Natl Acad Sci USA.
114:E1168–E1177. 2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M,
Ren S, Yang D, Ma X and Xie W: Sulfation of chondroitin and bile
acids converges to antagonize Wnt/β-catenin signaling and inhibit
APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B.
14:1241–1256. 2024.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Hussain T, Alafnan A, Almazni IA, Helmi N,
Moin A, Baeissa HM, Awadelkareem AM, Elkhalifa AO, Bakhsh T,
Alzahrani A, et al: Aloe-emodin exhibits growth-suppressive effects
on androgen-independent human prostate cancer DU145 cells via
inhibiting the Wnt/β-catenin signaling pathway: An in vitro and in
silico study. Front Pharmacol. 14(1325184)2024.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Suryawanshi A, Hussein MS, Prasad PD and
Manicassamy S: Wnt signaling cascade in dendritic cells and
regulation of anti-tumor immunity. Front Immunol.
11(122)2020.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Haseeb M, Pirzada RH, Ain QU and Choi S:
Wnt signaling in the regulation of immune cell and cancer
therapeutics. Cells. 8(1380)2019.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017.PubMed/NCBI View Article : Google Scholar
|
|
122
|
He B, You L, Uematsu K, Xu Z, Lee AY,
Matsangou M, McCormick F and Jablons DM: A monoclonal antibody
against Wnt-1 induces apoptosis in human cancer cells. Neoplasia.
6:7–14. 2004.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Bravo DT, Yang YL, Kuchenbecker K, Hung
MS, Xu Z, Jablons DM and You L: Frizzled-8 receptor is activated by
the Wnt-2 ligand in non-small cell lung cancer. BMC Cancer.
13(316)2013.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Huang Y, Liu G, Zhang B, Xu G, Xiong W and
Yang H: Wnt-5a regulates proliferation in lung cancer cells. Oncol
Rep. 23:177–181. 2010.PubMed/NCBI
|
|
125
|
Dotan E, Cardin DB, Lenz HJ, Messersmith
W, O'Neil B, Cohen SJ, Denlinger CS, Shahda S, Astsaturov I, Kapoun
AM, et al: Phase Ib study of Wnt inhibitor ipafricept with
gemcitabine and nab-paclitaxel in patients with previously
untreated stage IV pancreatic cancer. Clin Cancer Res.
26:5348–5357. 2020.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Le PN, McDermott JD and Jimeno A:
Targeting the Wnt pathway in human cancers: Therapeutic targeting
with a focus on OMP-54F28. Pharmacol Ther. 146:1–11.
2015.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Taciak B, Pruszynska I, Kiraga L, Bialasek
M and Krol M: Wnt signaling pathway in development and cancer. J
Physiol Pharmacol. 69:185–196. 2018.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Suryawanshi A, Tadagavadi RK, Swafford D
and Manicassamy S: Modulation of inflammatory responses by
Wnt/β-catenin signaling in dendritic cells: A novel immunotherapy
target for autoimmunity and cancer. Front Immunol.
7(460)2016.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang
T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting
Wnt-driven cancer through the inhibition of Porcupine by LGK974.
Proc Natl Acad Sci USA. 110:20224–20229. 2013.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Jimeno A, Gordon M, Chugh R, Messersmith
W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S,
et al: A first-in-human phase I study of the anticancer stem cell
agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in
patients with advanced solid tumors. Clin Cancer Res. 23:7490–7497.
2017.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Bhamra I, Armer R, Bingham M, Eagle C,
Cook A, Phillips C and Woodcock S: Abstract 3764: Porcupine
inhibitor RXC004 enhances immune response in pre-clinical models of
cancer. Cancer Res. 78 (Suppl 13)(S3764)2018.
|
|
132
|
Tabernero J, Van Cutsem E, Garralda E, Tai
D, De Braud F, Geva R, van Bussel MTJ, Fiorella Dotti K, Elez E, de
Miguel MJ, et al: A phase Ib/II study of WNT974 + encorafenib +
cetuximab in patients with BRAF V600E-mutant KRAS wild-type
metastatic colorectal cancer. Oncologist. 28:230–238.
2023.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Goswami VG and Patel BD: Recent updates on
Wnt signaling modulators: A patent review (2014-2020). Expert Opin
Ther Pat. 31:1009–1043. 2021.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Shah K, Panchal S and Patel B: Porcupine
inhibitors: Novel and emerging anti-cancer therapeutics targeting
the Wnt signaling pathway. Pharmacol Res.
167(105532)2021.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Jiang X, Hao HX, Growney JD, Woolfenden S,
Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al:
Inactivating mutations of RNF43 confer Wnt dependency in pancreatic
ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654.
2013.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Li C, Zheng X, Han Y, Lv Y, Lan F and Zhao
J: XAV939 inhibits the proliferation and migration of lung
adenocarcinoma A549 cells through the WNT pathway. Oncol Lett.
15:8973–8982. 2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Pan F, Shen F, Yang L, Zhang L, Guo W and
Tian J: Inhibitory effects of XAV939 on the proliferation of
small-cell lung cancer H446 cells and Wnt/β-catenin signaling
pathway in vitro. Oncol Lett. 16:1953–1958. 2018.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Shetti D, Zhang B, Fan C, Mo C and Lee BH:
Low dose of paclitaxel combined with XAV939 attenuates metastasis,
angiogenesis and growth in breast cancer by suppressing Wnt
signaling. Cells. 8(892)2019.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Arqués O, Chicote I, Puig I, Tenbaum SP,
Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J,
Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin
pathway and reverts resistance to PI3K and AKT inhibitors in the
treatment of colorectal cancer. Clin Cancer Res. 22:644–656.
2016.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Waaler J, Mygland L, Tveita A, Strand MF,
Solberg NT, Olsen PA, Aizenshtadt A, Fauskanger M, Lund K, Brinch
SA, et al: Tankyrase inhibition sensitizes melanoma to PD-1 immune
checkpoint blockade in syngeneic mouse models. Commun Biol.
3(196)2020.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Zhang X, Wang L and Qu Y: Targeting the
β-catenin signaling for cancer therapy. Pharmacol Res.
160(104794)2020.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Doghman M, Cazareth J and Lalli E: The T
cell factor/beta-catenin antagonist PKF115-584 inhibits
proliferation of adrenocortical carcinoma cells. J Clin Endocrinol
Metab. 93:3222–3225. 2008.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Gandhirajan RK, Staib PA, Minke K, Gehrke
I, Plickert G, Schlösser A, Schmitt EK, Hallek M and Kreuzer KA:
Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling
induces apoptosis in chronic lymphocytic leukemia cells in vitro
and in vivo. Neoplasia. 12:326–335. 2010.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Wei W, Chua MS, Grepper S and So S: Small
molecule antagonists of Tcf4/beta-catenin complex inhibit the
growth of HCC cells in vitro and in vivo. Int J Cancer.
126:2426–2436. 2010.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Rodon J, Argilés G, Connolly RM,
Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC,
Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent
WNT974, a first-in-class Porcupine inhibitor, in patients with
advanced solid tumours. Br J Cancer. 125:28–37. 2021.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Phillips C, Bhamra I, Eagle C, Flanagan E,
Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson
B and Woodcock SA: The Wnt pathway inhibitor RXC004 blocks tumor
growth and reverses immune evasion in Wnt ligand-dependent cancer
models. Cancer Res Commun. 2:914–928. 2022.PubMed/NCBI View Article : Google Scholar
|