|
1
|
Di Croce L, Raker VA, Corsaro M, Fazi F,
Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, et
al: Methyltransferase recruitment and DNA hypermethylation of
target promoters by an oncogenic transcription factor. Science.
295:1079–1082. 2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Turcan S, Rohle D, Goenka A, Walsh LA,
Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1
mutation is sufficient to establish the glioma hypermethylator
phenotype. Nature. 483:479–483. 2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan
S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, et
al: IDH mutation impairs histone demethylation and results in a
block to cell differentiation. Nature. 483:474–478. 2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ostrom QT, Price M, Neff C, Cioffi G,
Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical
report: primary brain and other central nervous system tumors
diagnosed in the United States in 2016-2020. Neuro Oncol. 25 (12
Suppl 2):iv1–iv99. 2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Alnahhas I, Alsawas M, Rayi A, Palmer JD,
Raval R, Ong S, Giglio P, Murad MH and Puduvalli V: Characterizing
benefit from temozolomide in MGMT promoter unmethylated and
methylated glioblastoma: A systematic review and meta-analysis.
Neurooncol Adv. 2(vdaa082)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Szklener K, Mazurek M, Wieteska M,
Wacławska M, Bilski M and Mańdziuk S: New directions in the therapy
of glioblastoma. Cancers (Basel). 14(5377)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Handy DE, Castro R and Loscalzo J:
Epigenetic modifications: Basic mechanisms and role in
cardiovascular disease. Circulation. 123:2145–2156. 2011.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ivanova E, Canovas S, Garcia-Martínez S,
Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews
S, Perez-Sanz F, et al: DNA methylation changes during
preimplantation development reveal inter-species differences and
reprogramming events at imprinted genes. Clin Epigenetics.
12(64)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Duncan CG, Grimm SA, Morgan DL, Bushel PR
and Bennett BD: NISC Comparative Sequencing Program. Roberts JD,
Tyson FL, Merrick BA and Wade PA: Dosage compensation and DNA
methylation landscape of the X chromosome in mouse liver. Sci Rep.
8(10138)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Brabson JP, Leesang T, Mohammad S and
Cimmino L: Epigenetic regulation of genomic stability by vitamin C.
Front Genet. 12(675780)2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Dhar GA, Saha S, Mitra P and Nag Chaudhuri
R: DNA methylation and regulation of gene expression: Guardian of
our health. Nucleus (Calcutta). 64:259–270. 2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Compere SJ and Palmiter RD: DNA
methylation controls the inducibility of the mouse
metallothionein-I gene lymphoid cells. Cell. 25:233–240.
1981.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38.
2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Mortusewicz O, Schermelleh L, Walter J,
Cardoso MC and Leonhardt H: Recruitment of DNA methyltransferase I
to DNA repair sites. Proc Natl Acad Sci USA. 102:8905–8909.
2005.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kaneda M, Okano M, Hata K, Sado T,
Tsujimoto N, Li E and Sasaki H: Essential role for de novo DNA
methyltransferase Dnmt3a in paternal and maternal imprinting.
Nature. 429:900–903. 2004.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Aapola U, Kawasaki K, Scott HS, Ollila J,
Vihinen M, Heino M, Shintani A, Kawasaki K, Minoshima S, Krohn K,
et al: Isolation and initial characterization of a novel zinc
finger gene, DNMT3L, on 21q22.3, related to the
cytosine-5-methyltransferase 3 gene family. Genomics. 65:293–298.
2000.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Jin B, Li Y and Robertson KD: DNA
methylation: Superior or subordinate in the epigenetic hierarchy?
Genes Cancer. 2:607–617. 2011.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Rideout WM III, Coetzee GA, Olumi AF and
Jones PA: 5-Methylcytosine as an endogenous mutagen in the human
LDL receptor and p53 genes. Science. 249:1288–1290. 1990.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ramirez-Carrozzi VR, Braas D, Bhatt DM,
Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M and Smale
ST: A unifying model for the selective regulation of inducible
transcription by CpG islands and nucleosome remodeling. Cell.
138:114–128. 2009.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Mikkelsen TS, Ku M, Jaffe DB, Issac B,
Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP,
et al: Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature. 448:553–560. 2007.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Brenet F, Moh M, Funk P, Feierstein E,
Viale AJ, Socci ND and Scandura JM: DNA methylation of the first
exon is tightly linked to transcriptional silencing. PLoS One.
6(e14524)2011.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Hellman A and Chess A: Gene body-specific
methylation on the active X chromosome. Science. 315:1141–1143.
2007.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Bogdanović O and Veenstra GJ: DNA
methylation and methyl-CpG binding proteins: Developmental
requirements and function. Chromosoma. 118:549–565. 2009.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Li Y, Zheng H, Wang Q, Zhou C, Wei L, Liu
X, Zhang W, Zhang Y, Du Z, Wang X and Xie W: Genome-wide analyses
reveal a role of polycomb in promoting hypomethylation of DNA
methylation valleys. Genome Biol. 19(18)2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mohn F, Weber M, Rebhan M, Roloff TC,
Richter J, Stadler MB, Bibel M and Schübeler D: Lineage-specific
polycomb targets and de novo DNA methylation define restriction and
potential of neuronal progenitors. Mol Cell. 30:755–766.
2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ghadiri Moghaddam F, Farajnia S,
Karbalaei-Mahdi M and Monir L: Epigenetic insights in the
diagnosis, prognosis, and treatment selection in CRC, an updated
review. Mol Biol Rep. 49:10013–10022. 2022.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Collings CK and Anderson JN: Links between
DNA methylation and nucleosome occupancy in the human genome.
Epigenetics Chromatin. 10(18)2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Huang KK, Ramnarayanan K, Zhu F,
Srivastava S, Xu C, Tan ALK, Lee M, Tay S, Das K, Xing M, et al:
Genomic and epigenomic profiling of high-risk intestinal metaplasia
reveals molecular determinants of progression to gastric cancer.
Cancer Cell. 33:137–150.e5. 2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang
B and Chen Y: Gene body methylation in cancer: Molecular mechanisms
and clinical applications. Clin Epigenetics. 14(154)2022.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Santini V and Ossenkoppele GJ:
Hypomethylating agents in the treatment of acute myeloid leukemia:
A guide to optimal use. Crit Rev Oncol Hematol. 140:1–7.
2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Holliday R and Ho T: DNA methylation and
epigenetic inheritance. Methods. 27:179–183. 2002.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Jabbour E, Issa JP, Garcia-Manero G and
Kantarjian H: Evolution of decitabine development: Accomplishments,
ongoing investigations, and future strategies. Cancer.
112:2341–2351. 2008.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sorm F and Veselý J: Effect of
5-aza-2'-deoxycytidine against leukemic and hemopoietic tissues in
AKR mice. Neoplasma. 15:339–343. 1968.PubMed/NCBI
|
|
35
|
Xu K and Hansen E: Novel agents for
myelodysplastic syndromes. J Oncol Pharm Pract. 27:1982–1992.
2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kordella C, Lamprianidou E and Kotsianidis
I: Mechanisms of action of hypomethylating agents: Endogenous
retroelements at the epicenter. Front Oncol.
11(650473)2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Quintás-Cardama A, Santos FP and
Garcia-Manero G: Therapy with azanucleosides for myelodysplastic
syndromes. Nat Rev Clin Oncol. 7:433–444. 2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Hollenbach PW, Nguyen AN, Brady H,
Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and
MacBeth KJ: A comparison of azacitidine and decitabine activities
in acute myeloid leukemia cell lines. PLoS One.
5(e9001)2010.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Seelan RS, Mukhopadhyay P, Pisano MM and
Greene RM: Effects of 5-Aza-2'-deoxycytidine (decitabine) on gene
expression. Drug Metab Rev. 50:193–207. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cashen AF, Shah AK, Todt L, Fisher N and
DiPersio J: Pharmacokinetics of decitabine administered as a 3-h
infusion to patients with acute myeloid leukemia (AML) or
myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol.
61:759–766. 2008.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Chabot GG, Rivard GE and Momparler RL:
Plasma and cerebrospinal fluid pharmacokinetics of
5-Aza-2'-deoxycytidine in rabbits and dogs. Cancer Res. 43:592–597.
1983.PubMed/NCBI
|
|
42
|
Kim N, Norsworthy KJ, Subramaniam S, Chen
H, Manning ML, Kitabi E, Earp J, Ehrlich LA, Okusanya OO, Vallejo
J, et al: FDA approval summary: Decitabine and cedazuridine tablets
for myelodysplastic syndromes. Clin Cancer Res. 28:3411–3416.
2022.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kantarjian H, Oki Y, Garcia-Manero G,
Huang X, O'Brien S, Cortes J, Faderl S, Bueso-Ramos C, Ravandi F,
Estrov Z, et al: Results of a randomized study of 3 schedules of
low-dose decitabine in higher-risk myelodysplastic syndrome and
chronic myelomonocytic leukemia. Blood. 109:52–57. 2007.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kantarjian H, Issa JP, Rosenfeld CS,
Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C,
Ravandi F, et al: Decitabine improves patient outcomes in
myelodysplastic syndromes: Results of a phase III randomized study.
Cancer. 106:1794–1803. 2006.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Müller A and Florek M:
5-Azacytidine/azacitidine. Recent Results Cancer Res. 184:159–170.
2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Krawczyk J, Keane N, Freeman CL, Swords R,
O'Dwyer M and Giles FJ: 5-Azacytidine for the treatment of
myelodysplastic syndromes. Expert Opin Pharmacother. 14:1255–1268.
2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Glover AB, Leyland-Jones BR, Chun HG,
Davies B and Hoth DF: Azacitidine: 10 Years later. Cancer Treat
Rep. 71:737–746. 1987.PubMed/NCBI
|
|
48
|
Kaminskas E, Farrell AT, Wang YC, Sridhara
R and Pazdur R: FDA drug approval summary: Azacitidine
(5-azacytidine, Vidaza) for injectable suspension. Oncologist.
10:176–182. 2005.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Marcucci G, Silverman L, Eller M, Lintz L
and Beach CL: Bioavailability of azacitidine subcutaneous versus
intravenous in patients with the myelodysplastic syndromes. J Clin
Pharmacol. 45:597–602. 2005.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Garcia-Manero G, Roboz G, Walsh K,
Kantarjian H, Ritchie E, Kropf P, O'Connell C, Tibes R, Lunin S,
Rosenblat T, et al: Guadecitabine (SGI-110) in patients with
intermediate or high-risk myelodysplastic syndromes: phase 2
results from a multicentre, open-label, randomised, phase 1/2
trial. Lancet Haematol. 6:e317–e327. 2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chuang JC, Warner SL, Vollmer D,
Vankayalapati H, Redkar S, Bearss DJ, Qiu X, Yoo CB and Jones PA:
S110, a 5-Aza-2'-deoxycytidine-containing dinucleotide, is an
effective DNA methylation inhibitor in vivo and can reduce tumor
growth. Mol Cancer Ther. 9:1443–1450. 2010.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Issa JJ, Roboz G, Rizzieri D, Jabbour E,
Stock W, O'Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, et al:
Safety and tolerability of guadecitabine (SGI-110) in patients with
myelodysplastic syndrome and acute myeloid leukaemia: A
multicentre, randomised, dose-escalation phase 1 study. Lancet
Oncol. 16:1099–1110. 2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ramakrishnan S, Hu Q, Krishnan N, Wang D,
Smit E, Granger V, Rak M, Attwood K, Johnson C, Morrison C, et al:
Decitabine, a DNA-demethylating agent, promotes differentiation via
NOTCH1 signaling and alters immune-related pathways in
muscle-invasive bladder cancer. Cell Death Dis.
8(3217)2017.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Li M and Zhang D: DNA methyltransferase-1
in acute myeloid leukaemia: Beyond the maintenance of DNA
methylation. Ann Med. 54:2011–2023. 2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Pappalardi MB, Keenan K, Cockerill M,
Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J,
Steidel M, et al: Discovery of a first-in-class reversible
DNMT1-selective inhibitor with improved tolerability and efficacy
in acute myeloid leukemia. Nat Cancer. 2:1002–1017. 2021.PubMed/NCBI
|
|
56
|
Quesnel B and Fenaux P: P15INK4b gene
methylation and myelodysplastic syndromes. Leuk Lymphoma.
35:437–443. 1999.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Daver NG, Maiti A, Kadia TM, Vyas P,
Majeti R, Wei AH, Garcia-Manero G, Craddock C, Sallman DA and
Kantarjian HM: TP53-mutated myelodysplastic syndrome and acute
myeloid leukemia: Biology, current therapy, and future directions.
Cancer Discov. 12:2516–2529. 2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Claus R, Hackanson B, Poetsch AR, Zucknick
M, Sonnet M, Blagitko-Dorfs N, Hiller J, Wilop S, Brümmendorf TH,
Galm O, et al: Quantitative analyses of DAPK1 methylation in AML
and MDS. Int J Cancer. 131:E138–E142. 2012.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Flotho C, Claus R, Batz C, Schneider M,
Sandrock I, Ihde S, Plass C, Niemeyer CM and Lübbert M: The DNA
methyltransferase inhibitors azacitidine, decitabine and zebularine
exert differential effects on cancer gene expression in acute
myeloid leukemia cells. Leukemia. 23:1019–1028. 2009.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Xie B, Peng F, He F, Cheng Y, Cheng J,
Zhou Z and Mao W: DNA methylation influences the CTCF-modulated
transcription of RASSF1A in lung cancer cells. Cell Biol Int.
46:1900–1914. 2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tang Q, Cheng J, Cao X, Surowy H and
Burwinkel B: Blood-based DNA methylation as biomarker for breast
cancer: A systematic review. Clin Epigenetics.
8(115)2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Cheng W, Jiang Y, Liu C, Shen O, Tang W
and Wang X: Identification of aberrant promoter hypomethylation of
HOXA10 in ovarian cancer. J Cancer Res Clin Oncol. 136:1221–1227.
2010.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ranjan N, Pandey V, Panigrahi MK, Klumpp
L, Naumann U and Babu PP: The tumor suppressor MTUS1/ATIP1
modulates tumor promotion in glioma: Association with epigenetics
and DNA repair. Cancers (Basel). 13(1245)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Götze S, Feldhaus V, Traska T, Wolter M,
Reifenberger G, Tannapfel A, Kuhnen C, Martin D, Müller O and
Sievers S: ECRG4 is a candidate tumor suppressor gene frequently
hypermethylated in colorectal carcinoma and glioma. BMC Cancer.
9(447)2009.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Alaminos M, Dávalos V, Ropero S, Setién F,
Paz MF, Herranz M, Fraga MF, Mora J, Cheung NK, Gerald WL and
Esteller M: EMP3, a myelin-related gene located in the critical
19q13.3 region, is epigenetically silenced and exhibits features of
a candidate tumor suppressor in glioma and neuroblastoma. Cancer
Res. 65:2565–2571. 2005.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Sanaei M and Kavoosi F: The effect of
5-aza,2'-deoxyCytidine (5 AZA CdR or decitabine) on extrinsic,
intrinsic, and JAK/STAT pathways in neuroblastoma and glioblastoma
cells lines. Asian Pac J Cancer Prev. 24:1841–1854. 2023.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yang X, Han H, De Carvalho DD, Lay FD,
Jones PA and Liang G: Gene body methylation can alter gene
expression and is a therapeutic target in cancer. Cancer Cell.
26:577–590. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ochs K and Kaina B: Apoptosis induced by
DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and
Fas/caspase-8 independent. Cancer Res. 60:5815–5824.
2000.PubMed/NCBI
|
|
69
|
Tabu K, Sasai K, Kimura T, Wang L,
Aoyanagi E, Kohsaka S, Tanino M, Nishihara H and Tanaka S: Promoter
hypomethylation regulates CD133 expression in human gliomas. Cell
Res. 18:1037–1046. 2008.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Yi JM, Tsai HC, Glöckner SC, Lin S, Ohm
JE, Easwaran H, James CD, Costello JF, Riggins G, Eberhart CG, et
al: Abnormal DNA methylation of CD133 in colorectal and
glioblastoma tumors. Cancer Res. 68:8094–8103. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Federici L, Capelle L, Annereau M, Bielle
F, Willekens C, Dehais C, Laigle-Donadey F, Hoang-Xuan K, Delattre
JY, Idbaih A, et al: 5-Azacitidine in patients with IDH1/2-mutant
recurrent glioma. Neuro Oncol. 22:1226–1228. 2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Sato T, Issa JJ and Kropf P: DNA
Hypomethylating drugs in cancer therapy. Cold Spring Harb Perspect
Med. 7(a026948)2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Matei D, Fang F, Shen C, Schilder J,
Arnold A, Zeng Y, Berry WA, Huang T and Nephew KP: Epigenetic
resensitization to platinum in ovarian cancer. Cancer Res.
72:2197–2205. 2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Glaysher S, Gabriel FG, Johnson P, Polak
M, Knight LA, Parker K, Poole M, Narayanan A and Cree IA: NHS
Collaborative Research Programme for Predictive Oncology. Molecular
basis of chemosensitivity of platinum pre-treated ovarian cancer to
chemotherapy. Br J Cancer. 103:656–662. 2010.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hannon CE and Eisen MB: Intrinsic protein
disorder is insufficient to drive subnuclear clustering in
embryonic transcription factors. Elife. 12(RP88221)2024.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Moen EL, Stark AL, Zhang W, Dolan ME and
Godley LA: The role of gene body cytosine modifications in MGMT
expression and sensitivity to temozolomide. Mol Cancer Ther.
13:1334–1344. 2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Plumb JA, Strathdee G, Sludden J, Kaye SB
and Brown R: Reversal of drug resistance in human tumor xenografts
by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene
promoter. Cancer Res. 60:6039–6044. 2000.PubMed/NCBI
|
|
78
|
Tawbi HA, Beumer JH, Tarhini AA, Moschos
S, Buch SC, Egorin MJ, Lin Y, Christner S and Kirkwood JM: Safety
and efficacy of decitabine in combination with temozolomide in
metastatic melanoma: A phase I/II study and pharmacokinetic
analysis. Ann Oncol. 24:1112–1119. 2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Skiriutė D, Vaitkienė P, Ašmonienė V,
Steponaitis G, Deltuva VP and Tamašauskas A: Promoter methylation
of AREG, HOXA11, hMLH1, NDRG2, NPTX2 and Tes genes in glioblastoma.
J Neurooncol. 113:441–449. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Rodríguez-Hernández I, Garcia JL,
Santos-Briz A, Hernández-Laín A, González-Valero JM, Gómez-Moreta
JA, Toldos-González O, Cruz JJ, Martin-Vallejo J and
González-Sarmiento R: Integrated analysis of mismatch repair system
in malignant astrocytomas. PLoS One. 8(e76401)2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fukushima T, Katayama Y, Watanabe T,
Yoshino A, Ogino A, Ohta T and Komine C: Promoter hypermethylation
of mismatch repair gene hMLH1 predicts the clinical response of
malignant astrocytomas to nitrosourea. Clin Cancer Res.
11:1539–1544. 2005.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Gallitto M, Cheng He R, Inocencio JF, Wang
H, Zhang Y, Deikus G, Wasserman I, Strahl M, Smith M, Sebra R and
Yong RL: Epigenetic preconditioning with decitabine sensitizes
glioblastoma to temozolomide via induction of MLH1. J Neurooncol.
147:557–566. 2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Mehnert JM, Panda A, Zhong H, Hirshfield
K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L,
Kaufman HL, et al: Immune activation and response to pembrolizumab
in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340.
2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Panda A, Betigeri A, Subramanian K, Ross
JS, Pavlick DC, Ali S, Markowski P, Silk A, Kaufman HL, Lattime E,
et al: Identifying a clinically applicable mutational burden
threshold as a potential biomarker of response to immune checkpoint
therapy in solid tumors. JCO Precis Oncol.
2017(PO.17.00146)2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Rizvi NA, Hellmann MD, Snyder A, Kvistborg
P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer
immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science. 348:124–128.
2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin
H, Klein L, Singh SK and Kishore U: Molecular heterogeneity and
immunosuppressive microenvironment in glioblastoma. Front Immunol.
11(1402)2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Zaidi N and Jaffee EM: Immune cells track
hard-to-target brain tumours. Nature. 565:170–171. 2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhong J, Yang X, Chen J, He K, Gao X, Wu
X, Zhang M, Zhou H, Xiao F, An L, et al: Circular EZH2-encoded
EZH2-92aa mediates immune evasion in glioblastoma via inhibition of
surface NKG2D ligands. Nat Commun. 13(4795)2022.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Long S, Huang G, Ouyang M, Xiao K, Zhou H,
Hou A, Li Z, Zhong Z, Zhong D, Wang Q, et al: Epigenetically
modified AP-2α by DNA methyltransferase facilitates glioma immune
evasion by upregulating PD-L1 expression. Cell Death Dis.
14(365)2023.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Tompa M, Kraboth Z, Galik B, Kajtar B,
Gyenesei A and Kalman B: Epigenetic suppression of the IL-7 pathway
in progressive glioblastoma. Biomedicines. 10(2174)2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Héninger E, Krueger TE and Lang JM:
Augmenting antitumor immune responses with epigenetic modifying
agents. Front Immunol. 6(29)2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Malekzadeh P, Pasetto A, Robbins PF,
Parkhurst MR, Paria BC, Jia L, Gartner JJ, Hill V, Yu Z, Restifo
NP, et al: Neoantigen screening identifies broad TP53 mutant
immunogenicity in patients with epithelial cancers. J Clin Invest.
129:1109–1114. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Tran E, Robbins PF, Lu YC, Prickett TD,
Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al:
T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J
Med. 375:2255–2262. 2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ma R, Rei M, Woodhouse I, Ferris K,
Kirschner S, Chandran A, Gileadi U, Chen JL, Pereira Pinho M,
Ariosa-Morejon Y, et al: Decitabine increases neoantigen and cancer
testis antigen expression to enhance T-cell-mediated toxicity
against glioblastoma. Neuro Oncol. 24:2093–2106. 2022.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Okemoto K, Kasai K, Wagner B, Haseley A,
Meisen H, Bolyard C, Mo X, Wehr A, Lehman A, Fernandez S, et al:
DNA demethylating agents synergize with oncolytic HSV1 against
malignant gliomas. Clin Cancer Res. 19:5952–5959. 2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Nebhan CA and Johnson DB: Pembrolizumab in
the adjuvant treatment of melanoma: Efficacy and safety. Expert Rev
Anticancer Ther. 21:583–590. 2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Allen PB, Savas H, Evens AM, Advani RH,
Palmer B, Pro B, Karmali R, Mou E, Bearden J, Dillehay G, et al:
Pembrolizumab followed by AVD in untreated early unfavorable and
advanced-stage classical Hodgkin lymphoma. Blood. 137:1318–1326.
2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Nie J, Wang C, Liu Y, Yang Q, Mei Q, Dong
L, Li X, Liu J, Ku W, Zhang Y, et al: Addition of low-dose
decitabine to anti-PD-1 antibody camrelizumab in
relapsed/refractory classical hodgkin lymphoma. J Clin Oncol.
37:1479–1489. 2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Merseburger AS, Apolo AB, Chowdhury S,
Hahn NM, Galsky MD, Milowsky MI, Petrylak D, Powles T, Quinn DI,
Rosenberg JE, et al: SIU-ICUD recommendations on bladder cancer:
Systemic therapy for metastatic bladder cancer. World J Urol.
37:95–105. 2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Chowdhury S, Infante JR, Hawkins R, Voss
MH, Perini R, Arkenau T, Voskoboynik M, Aimone P, Naeije I, Reising
A and McDermott DF: A phase I/II study to assess the safety and
efficacy of pazopanib and pembrolizumab combination therapy in
patients with advanced renal cell carcinoma. Clin Genitourin
Cancer. 19:434–446. 2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed
HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG and
Youngblood B: De novo epigenetic programs inhibit PD-1
blockade-mediated T cell rejuvenation. Cell. 170:142–157.e19.
2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Li X, Li Y, Dong L, Chang Y, Zhang X, Wang
C, Chen M, Bo X, Chen H, Han W and Nie J: Decitabine priming
increases anti-PD-1 antitumor efficacy by promoting CD8+ progenitor
exhausted T cell expansion in tumor models. J Clin Invest.
133(e165673)2023.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Wang Y, Tong C, Dai H, Wu Z, Han X, Guo Y,
Chen D, Wei J, Ti D, Liu Z, et al: Low-dose decitabine priming
endows CAR T cells with enhanced and persistent antitumour
potential via epigenetic reprogramming. Nat Commun.
12(409)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Papadatos-Pastos D, Yuan W, Pal A, Crespo
M, Ferreira A, Gurel B, Prout T, Ameratunga M, Chénard-Poirier M,
Curcean A, et al: Phase 1, dose-escalation study of guadecitabine
(SGI-110) in combination with pembrolizumab in patients with solid
tumors. J Immunother Cancer. 10(e004495)2022.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Wei SC, Duffy CR and Allison JP:
Fundamental mechanisms of immune checkpoint blockade therapy.
Cancer Discov. 8:1069–1086. 2018.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Reardon DA, Brandes AA, Omuro A,
Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr
O, et al: Effect of nivolumab vs bevacizumab in patients with
recurrent glioblastoma: The CheckMate 143 phase 3 randomized
clinical trial. JAMA Oncol. 6:1003–1010. 2020.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Omuro A, Brandes AA, Carpentier AF, Idbaih
A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M,
Bähr O, et al: Radiotherapy combined with nivolumab or temozolomide
for newly diagnosed glioblastoma with unmethylated MGMT promoter:
An international randomized phase III trial. Neuro Oncol.
25:123–134. 2023.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lim M, Weller M, Idbaih A, Steinbach J,
Finocchiaro G, Raval RR, Ansstas G, Baehring J, Taylor JW, Honnorat
J, et al: Phase III trial of chemoradiotherapy with temozolomide
plus nivolumab or placebo for newly diagnosed glioblastoma with
methylated MGMT promoter. Neuro Oncol. 24:1935–1949.
2022.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur
V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V,
van der Burg SH, et al: Actively personalized vaccination trial for
newly diagnosed glioblastoma. Nature. 565:240–245. 2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Keskin DB, Anandappa AJ, Sun J, Tirosh I,
Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E,
et al: Neoantigen vaccine generates intratumoral T cell responses
in phase Ib glioblastoma trial. Nature. 565:234–239.
2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Rojas LA, Sethna Z, Soares KC, Olcese C,
Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, et al:
Personalized RNA neoantigen vaccines stimulate T cells in
pancreatic cancer. Nature. 618:144–150. 2023.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Weller M, Butowski N, Tran DD, Recht LD,
Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al:
Rindopepimut with temozolomide for patients with newly diagnosed,
EGFRvIII-expressing glioblastoma (ACT IV): A randomised,
double-blind, international phase 3 trial. Lancet Oncol.
18:1373–1385. 2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y
and Tian X: Vaccine adjuvants: Mechanisms and platforms. Signal
Transduct Target Ther. 8(283)2023.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277.
2012.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Liau LM, Ashkan K, Brem S, Campian JL,
Trusheim JE, Iwamoto FM, Tran DD, Ansstas G, Cobbs CS, Heth JA, et
al: Association of autologous tumor lysate-loaded dendritic cell
vaccination with extension of survival among patients with newly
diagnosed and recurrent glioblastoma: A phase 3 prospective
externally controlled cohort trial. JAMA Oncol. 9:112–121.
2023.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Everson RG, Antonios JP, Lisiero DN, Soto
H, Scharnweber R, Garrett MC, Yong WH, Li N, Li G, Kruse CA, et al:
Efficacy of systemic adoptive transfer immunotherapy targeting
NY-ESO-1 for glioblastoma. Neuro Oncol. 18:368–378. 2016.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Zhang X, Rao A, Sette P, Deibert C,
Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, et al:
IDH mutant gliomas escape natural killer cell immune surveillance
by downregulation of NKG2D ligand expression. Neuro Oncol.
18:1402–1412. 2016.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Zhang X, Kim WJ, Rao AV, Jaman E, Deibert
CP, Sandlesh P, Krueger K, Allen JC and Amankulor NM: In vivo
efficacy of decitabine as a natural killer cell-mediated
immunotherapy against isocitrate dehydrogenase mutant gliomas.
Neurosurg Focus. 52(E3)2022.PubMed/NCBI View Article : Google Scholar
|