|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Singal AG, Kanwal F and Llovet JM: Global
trends in hepatocellular carcinoma epidemiology: Implications for
screening, prevention and therapy. Nat Rev Clin Oncol. 20:864–884.
2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Yang JD, Hainaut P, Gores GJ, Amadou A,
Plymoth A and Roberts LR: A global view of hepatocellular
carcinoma: Trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol. 16:589–604. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Clark T, Maximin S, Meier J, Pokharel S
and Bhargava P: Hepatocellular carcinoma: Review of epidemiology,
screening, imaging diagnosis, response assessment, and treatment.
Curr Probl Diagn Radiol. 44:479–486. 2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sia D, Villanueva A, Friedman SL and
Llovet JM: Liver cancer cell of origin, molecular class, and
effects on patient prognosis. Gastroenterology. 152:745–761.
2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang H, Su X, Burley SK and Zheng XFS:
mTOR regulates aerobic glycolysis through NEAT1 and nuclear
paraspeckle-mediated mechanism in hepatocellular carcinoma.
Theranostics. 12:3518–3533. 2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Vogel A, Meyer T, Sapisochin G, Salem R
and Saborowski A: Hepatocellular carcinoma. Lancet. 400:1345–1362.
2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Chang Y, Jeong SW, Young Jang J and Jae
Kim Y: Recent updates of transarterial chemoembolilzation in
hepatocellular carcinoma. Int J Mol Sci. 21(8165)2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Galle PP, Dufour JF, Peck-Radosavljevic M,
Trojan J and Vogel A: Systemic therapy of advanced hepatocellular
carcinoma. Future Oncol. 17:1237–1251. 2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Llovet JM, De Baere T, Kulik L, Haber PK,
Greten TF, Meyer T and Lencioni R: Locoregional therapies in the
era of molecular and immune treatments for hepatocellular
carcinoma. Nat Rev Gastroenterol Hepatol. 18:293–313.
2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Llovet JM, Montal R, Sia D and Finn RS:
Molecular therapies and precision medicine for hepatocellular
carcinoma. Nat Rev Clin Oncol. 15:599–616. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S,
Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of
sorafenib in patients in the Asia-Pacific region with advanced
hepatocellular carcinoma: A phase III randomised, double-blind,
placebo-controlled trial. Lancet Oncol. 10:25–34. 2009.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Llovet JM, Castet F, Heikenwalder M, Maini
MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX and Finn RS:
Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol.
19:151–172. 2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ,
Xiong L, Wen Y and Zhang ZJ: Current status of sorafenib
nanoparticle delivery systems in the treatment of hepatocellular
carcinoma. Theranostics. 11:5464–5490. 2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ladd AD, Duarte S, Sahin I and Zarrinpar
A: Mechanisms of drug resistance in HCC. Hepatology. 79:926–940.
2024.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Dattachoudhury S, Sharma R, Kumar A and
Jaganathan BG: Sorafenib inhibits proliferation, migration and
invasion of breast cancer cells. Oncology. 98:478–486.
2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B,
Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of
sorafenib resistance in hepatocellular carcinoma: Theoretical basis
and therapeutic aspects. Signal Transduct Target Ther.
5(87)2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Tian C, Liu Y, Xue L, Zhang D, Zhang X, Su
J, Chen J, Li X, Wang L and Jiao S: Sorafenib inhibits ovarian
cancer cell proliferation and mobility and induces radiosensitivity
by targeting the tumor cell epithelial-mesenchymal transition. Open
Life Sci. 17:616–625. 2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Gupta N, Verma RK, Prinja S and Dhiman RK:
Cost-effectiveness of sorafenib for treatment of advanced
hepatocellular carcinoma in India. J Clin Exp Hepatol. 9:468–475.
2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zschäbitz S and Grüllich C: Lenvantinib: A
tyrosine kinase inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα, KIT and
RET. Recent Results Cancer Res. 211:187–198. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Bo W and Chen Y: Lenvatinib resistance
mechanism and potential ways to conquer. Front Pharmacol.
14(1153991)2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Liu X, Lu Y and Qin S: Atezolizumab and
bevacizumab for hepatocellular carcinoma: Mechanism,
pharmacokinetics and future treatment strategies. Future Oncol.
17:2243–2256. 2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Gao X, Zhao R, Ma H and Zuo S: Efficacy
and safety of atezolizumab plus bevacizumab treatment for advanced
hepatocellular carcinoma in the real world: A single-arm
meta-analysis. BMC Cancer. 23(635)2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
López DJ, Rodríguez JA and Bañuelos S:
Molecular mechanisms regulating the DNA repair protein APE1: A
focus on its flexible N-terminal tail domain. Int J Mol Sci.
22(6308)2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Caston RA, Gampala S, Armstrong L,
Messmann RA, Fishel ML and Kelley MR: The multifunctional APE1 DNA
repair-redox signaling protein as a drug target in human disease.
Drug Discov Today. 26:218–228. 2021.PubMed/NCBI View Article : Google Scholar
|
|
27
|
He H, Liu X, Wu Y, Qi L, Huang J, Zhou Y,
Zeng J, Wang K and He X: DNA nanotechnology-empowered fluorescence
imaging of APE1 Activity. Chemistry. 5:1815–1831. 2023.
|
|
28
|
An SY, Jin SA, Seo HJ, Lee YR, Kim S, Jeon
BH and Jeong JO: Protective effect of secretory APE1/Ref-1 on
doxorubicin-induced cardiotoxicity via suppression of ROS and p53
pathway. ESC Heart Fail. 11:1182–1193. 2024.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zhang S, He L, Dai N, Guan W, Shan J, Yang
X, Zhong Z, Qing Y, Jin F, Chen C, et al: Serum APE1 as a
predictive marker for platinum-based chemotherapy of non-small cell
lung cancer patients. Oncotarget. 7:77482–77494. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
McIlwain DW, Fishel ML, Boos A, Kelley MR
and Jerde TJ: APE1/Ref-1 redox-specific inhibition decreases
survivin protein levels and induces cell cycle arrest in prostate
cancer cells. Oncotarget. 9:10962–10977. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lee YR, Park MS, Joo HK, Kim KM, Kim J,
Jeon BH and Choi S: Therapeutic positioning of secretory acetylated
APE1/Ref-1 requirement for suppression of tumor growth in
triple-negative breast cancer in vivo. Sci Rep.
8(8701)2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Di Maso V, Mediavilla MG, Vascotto C, Lupo
F, Baccarani U, Avellini C, Tell G, Tiribelli C and Crocè LS:
Transcriptional Up-Regulation of APE1/Ref-1 in hepatic tumor: Role
in hepatocytes resistance to oxidative stress and apoptosis. PLoS
One. 10(e0143289)2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Logsdon DP, Grimard M, Luo M, Shahda S,
Jiang Y, Tong Y, Yu Z, Zyromski N, Schipani E, Carta F, et al:
Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9
expression: Dual targeting in patient-derived 3D pancreatic cancer
models. Mol Cancer Ther. 15:2722–2732. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sun Z, Zhu Y, Aminbuhe Fan Q, Peng J and
Zhang N: Differential expression of APE1 in hepatocellular
carcinoma and the effects on proliferation and apoptosis of cancer
cells. Biosci Trends. 12:456–462. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lu X, Zhao H, Yuan H, Chu Y and Zhu X:
High nuclear expression of APE1 correlates with unfavorable
prognosis and promotes tumor growth in hepatocellular carcinoma. J
Mol Histol. 52:219–231. 2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Di Maso V, Avellini C, Crocè LS, Rosso N,
Quadrifoglio F, Cesaratto L, Codarin E, Bedogni G, Beltrami CA,
Tell G and Tiribelli C: Subcellular localization of APE1/Ref-1 in
human hepatocellular carcinoma: Possible prognostic significance.
Mol Med. 13:89–96. 2007.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Hegde ML, Hazra TK and Mitra S: Early
steps in the DNA base excision/single-strand interruption repair
pathway in mammalian cells. Cell Res. 18:27–47. 2008.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Demple B, Herman T and Chen DS: Cloning
and expression of APE, the cDNA encoding the major human apurinic
endonuclease: Definition of a family of DNA repair enzymes. Proc
Natl Acad Sci U S A. 88:11450–11454. 1991.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Kciuk M, Marciniak B, Mojzych M and Kontek
R: Focus on UV-Induced DNA damage and repair-disease relevance and
protective strategies. Int J Mol Sci. 21(7264)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Krokan HE and Bjørås M: Base excision
repair. Cold Spring Harb Perspect Biol. 5(a012583)2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hindi NN, Elsakrmy N and Ramotar D: The
base excision repair process: Comparison between higher and lower
eukaryotes. Cell Mol Life Sci. 78:7943–7965. 2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Khodyreva SN, Prasad R, Ilina ES,
Sukhanova MV, Kutuzov MM, Liu Y, Hou EW, Wilson SH and Lavrik OI:
Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase
in poly(ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci USA.
107:22090–22095. 2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Vidal AE, Boiteux S, Hickson ID and
Radicella JP: XRCC1 coordinates the initial and late stages of DNA
abasic site repair through protein–protein interactions. EMBO J.
20(6530-6539-6539)2001.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bennett RA, Wilson DM III, Wong D and
Demple B: Interaction of human apurinic endonuclease and DNA
polymerase beta in the base excision repair pathway. Proc Natl Acad
Sci USA. 94:7166–7169. 1997.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Antoniali G, Serra F, Lirussi L, Tanaka M,
D'Ambrosio C, Zhang S, Radovic S, Dalla E, Ciani Y, Scaloni A, et
al: Mammalian APE1 controls miRNA processing and its interactome is
linked to cancer RNA metabolism. Nat Commun. 8(797)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Berquist BR, McNeill DR and Wilson DM III:
Characterization of abasic endonuclease activity of human Ape1 on
alternative substrates, as well as effects of ATP and sequence
context on AP site incision. J Mol Biol. 379:17–27. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Antoniali G, Dalla E, Mangiapane G, Zhao
X, Jing X, Cheng Y, De Sanctis V, Ayyildiz D, Piazza S, Li M and
Tell G: APE1 controls DICER1 expression in NSCLC through miR-33a
and miR-130b. Cell Mol Life Sci. 79(446)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Malfatti MC, Antoniali G, Codrich M and
Tell G: Coping with RNA damage with a focus on APE1, a BER enzyme
at the crossroad between DNA damage repair and RNA
processing/decay. DNA Repair (Amst). 104(103133)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kladova OA, Bazlekowa-Karaban M, Baconnais
S, Piétrement O, Ishchenko AA, Matkarimov BT, Iakovlev DA, Vasenko
A, Fedorova OS, Le Cam E, et al: The role of the N-terminal domain
of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA
glycosylase stimulation. DNA Repair (Amst). 64:10–25.
2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Oliveira TT, Coutinho LG, de Oliveira LOA,
Timoteo ARS, Farias GC and Agnez-Lima LF: APE1/Ref-1 role in
inflammation and immune response. Front Immunol.
13(793096)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hu Z, Hui B, Hou X, Liu R, Sukhanov S and
Liu X: APE1 inhibits foam cell formation from macrophages via LOX1
suppression. Am J Transl Res. 12:6559–6568. 2020.PubMed/NCBI
|
|
52
|
Luo M, Zhang J, He H, Su D, Chen Q, Gross
ML, Kelley MR and Georgiadis MM: Characterization of the Redox
activity and disulfide bond formation in apurinic/apyrimidinic
endonuclease. Biochemistry. 51:695–705. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Pekhale K, Haval G, Perween N, Antoniali
G, Tell G and Ghaskadbi S and Ghaskadbi S: DNA repair enzyme APE1
from evolutionarily ancient Hydra reveals redox activity
exclusively found in mammalian APE1. DNA Repair (Amst). 59:44–56.
2017.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kelley MR, Logsdon D and Fishel ML:
Targeting DNA repair pathways for cancer treatment: What's new?
Future Oncol. 10:1215–1237. 2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kelley MR, Georgiadis MM and Fishel ML:
APE1/Ref-1 role in redox signaling: Translational applications of
targeting the redox function of the DNA repair/redox protein
APE1/Ref-1. Curr Mol Pharmacol. 5:36–53. 2012.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Georgiadis MM, Luo M, Gaur RK, Delaplane
S, Li X and Kelley MR: Evolution of the redox function in mammalian
Apurinic/apyrimidinic endonuclease. Mutat Res. 643:54–63.
2008.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Lee EO, Joo HK, Lee YR, Kim S, Lee KH, Lee
SD and Jeon BH: APE1/Ref-1 inhibits adipogenic transcription
factors during adipocyte differentiation in 3T3-L1 cells. Int J Mol
Sci. 24(3251)2023.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Shah F, Logsdon D, Messmann RA,
Fehrenbacher JC, Fishel ML and Kelley MR: Exploiting the Ref-1-APE1
node in cancer signaling and other diseases: From bench to clinic.
NPJ Precis Oncol. 1(19)2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Garcia-Bailo B, El-Sohemy A, Haddad PS,
Arora P, Benzaied F, Karmali M and Badawi A: Vitamins D, C, and E
in the prevention of type 2 diabetes mellitus: Modulation of
inflammation and oxidative stress. Biologics. 5:7–19.
2011.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Biswas A, Khanna S, Roy S, Pan X, Sen CK
and Gordillo GM: Endothelial cell tumor growth is Ape/ref-1
dependent. Am J Physiol Cell Physiol. 309:C296–C307.
2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ding J, Fishel ML, Reed AM, McAdams E,
Czader MB, Cardoso AA and Kelley MR: Ref-1/APE1 as a
transcriptional regulator and novel therapeutic target in pediatric
T-cell Leukemia. Mol Cancer Ther. 16:1401–1411. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Fishel ML, Jiang Y, Rajeshkumar NV,
Scandura G, Sinn AL, He Y, Shen C, Jones DR, Pollok KE, Ivan M, et
al: Impact of APE1/Ref-1 redox inhibition on pancreatic tumor
growth. Mol Cancer Ther. 10:1698–1708. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Vasko MR, Guo C, Thompson EL and Kelley
MR: The repair function of the multifunctional DNA repair/redox
protein APE1 is neuroprotective after ionizing radiation. DNA
Repair (Amst). 10:942–952. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zou GM and Maitra A: Small-molecule
inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic
cancer cell growth and migration. Mol Cancer Ther. 7:2012–2021.
2008.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Huynh J, Chand A, Gough D and Ernst M:
Therapeutically exploiting STAT3 activity in cancer-using tissue
repair as a road map. Nat Rev Cancer. 19:82–96. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Hu X, li J, Fu M, Zhao X and Wang W: The
JAK/STAT signaling pathway: From bench to clinic. Signal Transduct
Target Ther. 6(402)2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Seif F, Khoshmirsafa M, Aazami H,
Mohsenzadegan M, Sedighi G and Bahar M: The role of JAK-STAT
signaling pathway and its regulators in the fate of T helper cells.
Cell Commun Signal. 15(23)2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Cardoso AA, Jiang Y, Luo M, Reed AM,
Shahda S, He Y, Maitra A, Kelley MR and Fishel ML: APE1/Ref-1
regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3
dual-targeting effectively inhibits pancreatic cancer cell
survival. PLoS One. 7(e47462)2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Fishel ML, Xia H, McGeown J, McIlwain DW,
Elbanna M, Craft AA, Kaimakliotis HZ, Sandusky GE, Zhang C, Pili R,
et al: Antitumor activity and mechanistic characterization of
APE1/Ref-1 inhibitors in bladder cancer. Mol Cancer Ther.
18:1947–1960. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pawlus MR, Wang L and Hu CJ: STAT3 and
HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and
RCC4 cells. Oncogene. 33:1670–1679. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Dinarello A, Betto RM, Diamante L,
Tesoriere A, Ghirardo R, Cioccarelli C, Meneghetti G, Peron M,
Laquatra C, Tiso N, et al: STAT3 and HIF1α cooperatively mediate
the transcriptional and physiological responses to hypoxia. Cell
Death Discov. 9(226)2023.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Rad E, Dodd K, Thomas L, Upadhyaya M and
Tee A: STAT3 and HIF1α signaling drives oncogenic cellular
phenotypes in malignant peripheral nerve sheath tumors. Mol Cancer
Res. 13:1149–1160. 2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Bhakat KK, Mantha AK and Mitra S:
Transcriptional regulatory functions of mammalian AP-endonuclease
(APE1/Ref-1), an essential multifunctional protein. Antioxid Redox
Signal. 11:621–638. 2009.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wu HH, Cheng YW, Chang JT, Wu TC, Liu WS,
Chen CY and Lee H: Subcellular localization of apurinic
endonuclease 1 promotes lung tumor aggressiveness via NF-kappaB
activation. Oncogene. 29:4330–4340. 2010.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Huang TT, Wuerzberger-Davis SM, Wu ZH and
Miyamoto S: Sequential modification of NEMO/IKKgamma by SUMO-1 and
ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell.
115:565–576. 2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang
L, Tian Y, Liu L, Su M, Wang H, et al: Role of the NFκB-signaling
pathway in cancer. Onco Targets Ther. 11:2063–2073. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Siqueira PB, de Sousa Rodrigues MM, de
Amorim ÍSS, da Silva TG, da Silva Oliveira M, Rodrigues JA, de
Souza da Fonseca A and Mencalha AL: The APE1/REF-1 and the
hallmarks of cancer. Mol Biol Rep. 51(47)2024.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Shin JH, Choi S, Lee YR, Park MS, Na YG,
Irani K, Lee SD, Park JB, Kim JM, Lim JS and Jeon BH: APE1/Ref-1 as
a serological biomarker for the detection of bladder cancer. Cancer
Res Treat. 47:823–833. 2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Luo M and Kelley MR: Inhibition of the
human apurinic/apyrimidinic endonuclease (APE1) repair activity and
sensitization of breast cancer cells to DNA alkylating agents with
lucanthone. Anticancer Res. 24:2127–2134. 2004.PubMed/NCBI
|
|
80
|
Long K, Gu L, Li L, Zhang Z, Li E, Zhang
Y, He L, Pan F, Guo Z and Hu Z: Small-molecule inhibition of APE1
induces apoptosis, pyroptosis, and necroptosis in non-small cell
lung cancer. Cell Death Dis. 12(503)2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fishel ML, He Y, Reed AM, Chin-Sinex H,
Hutchins GD, Mendonca MS and Kelley MR: Knockdown of the DNA repair
and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell
and tumor growth. DNA Repair (Amst). 7:177–186. 2008.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Deng X, Zhen P, Niu X, Dai Y, Wang Y and
Zhou M: APE1 promotes proliferation and migration of cutaneous
squamous cell carcinoma. J Dermatol Sci. 100:67–74. 2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Yang Z, Yang S, Misner BJ, Liu-Smith F and
Meyskens FL: The role of APE/Ref-1 signaling pathway in
hepatocellular carcinoma progression. Int J Oncol. 45:1820–1828.
2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Singh AK, Kumar R and Pandey AK:
Hepatocellular carcinoma: Causes, mechanism of progression and
biomarkers. Curr Chem Genom Transl Med. 12:9–26. 2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Tell G, Quadrifoglio F, Tiribelli C and
Kelley MR: The many functions of APE1/Ref-1: Not only a DNA repair
enzyme. Antioxid Redox Signal. 11:601–620. 2009.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sheng Q, Zhang Y, Wang R, Zhang J, Chen B,
Wang J, Zhang W and Xin X: Prognostic significance of APE1
cytoplasmic localization in human epithelial ovarian cancer. Med
Oncol. 29:1265–1271. 2012.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Bazzani V, Barchiesi A, Radecka D,
Pravisani R, Guadagno A, Di Loreto C, Baccarani U and Vascotto C:
Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA
repair contributing to cell proliferation and mitochondrial
integrity in early stages of hepatocellular carcinoma. BMC Cancer.
20(969)2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Wu HH, Chu YC, Wang L, Tsai LH, Lee MC,
Chen CY, Shieh SH, Cheng YW and Lee H: Cytoplasmic Ape1 Expression
Elevated by p53 aberration may predict survival and relapse in
resected non-small cell lung cancer. Ann Surg Oncol. 20 (Suppl
3):S336–S347. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Abbotts R and Madhusudan S: Human AP
endonuclease 1 (APE1): From mechanistic insights to druggable
target in cancer. Cancer Treat Rev. 36:425–435. 2010.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Malfatti MC, Bellina A, Antoniali G and
Tell G: Revisiting two decades of research focused on targeting
APE1 for cancer therapy: The pros and cons. Cells.
12(1895)2023.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S,
Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, et al:
Elevated APE1 dysregulates homologous recombination and cell cycle
driving genomic evolution, tumorigenesis, and chemoresistance in
esophageal adenocarcinoma. Gastroenterology. 165:357–373.
2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Wang D, Xiang DB, Yang XQ, Chen LS, Li MX,
Zhong ZY and Zhang YS: APE1 overexpression is associated with
cisplatin resistance in non-small cell lung cancer and targeted
inhibition of APE1 enhances the activity of cisplatin in A549
cells. Lung Cancer. 66:298–304. 2009.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Franchi LP, de Freitas Lima JEB, Piva HL
and Tedesco AC: The redox function of apurinic/apyrimidinic
endonuclease 1 as key modulator in photodynamic therapy. J
Photochem Photobiol B. 211(111992)2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Zhou J, Wei Z, Yang C, Jia D, Pan B, Zeng
Y, Sun D and Yu Y: APE1 promotes radiation resistance against
radiation-induced pyroptosis by inhibiting the STING pathway in
lung adenocarcinoma. Transl Oncol. 36(101749)2023.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Li Y, Zhao X, Xiao H, Yang B, Liu J, Rao
W, Dai X, Li M, Dai N, Yang Y and Wang D: APE1 may influence CD4+
naïve T cells on recurrence free survival in early stage NSCLC. BMC
Cancer. 21(233)2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Woo J, Park H, Sung SH, Moon BI, Suh H and
Lim W: Prognostic Value of Human Apurinic/Apyrimidinic Endonuclease
1 (APE1) Expression in Breast Cancer. PLoS One.
9(e99528)2014.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Lee SG, Lee DG, Joo YH and Chung N:
Synergistic inhibitory effects of the oxyresveratrol and
dacarbazine combination against melanoma cells. Oncol Lett.
22(667)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Gómez-Zorita S, González-Arceo M,
Fernández-Quintela A, Eseberri I, Trepiana J and Portillo MP:
Scientific evidence supporting the beneficial effects of
isoflavones on human health. Nutrients. 12(3853)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Sui J, Li M, Qian C, Wang S, Cheng Y, Chen
BP and Wang D: Functional analysis of tanshinone IIA that blocks
the redox function of human apurinic/apyrimidinic endonuclease
1/redox factor-1. Drug Des Devel Ther. 8:2147–2160. 2014.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Cesaratto L, Codarin E, Vascotto C,
Leonardi A, Kelley MR, Tiribelli C and Tell G: Specific inhibition
of the redox activity of ape1/ref-1 by e3330 blocks tnf-α-induced
activation of IL-8 production in liver cancer cell lines. PLoS One.
8(e70909)2013.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Kang S, Wang Z, Li B, Gao X, He W, Cao S,
Cai Y and Chen H: Anti-tumor effects of resveratrol on malignant
melanoma is associated with promoter demethylation of RUNX3 gene.
Pharmazie. 74:163–167. 2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Laev SS, Salakhutdinov NF and Lavrik OI:
Inhibitors of nuclease and redox activity of apurinic/apyrimidinic
endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med
Chem. 25:2531–2544. 2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kim IS: Current perspectives on the
beneficial effects of soybean isoflavones and their metabolites for
humans. Antioxidants (Basel). 10(1064)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Hillman GG: Soy isoflavones protect normal
tissues while enhancing radiation responses. Semin Radiat Oncol.
29:62–71. 2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Singh-Gupta V, Joiner MC, Runyan L, Yunker
CK, Sarkar FH, Miller S, Gadgeel SM, Konski AA and Hillman GG: Soy
isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA
repair activity in non-small cell lung cancer. J Thorac Oncol.
6:688–698. 2011.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Su D, Delaplane S, Luo M, Rempel DL, Vu B,
Kelley MR, Gross ML and Georgiadis MM: Interactions of
apurinic/apyrimidinic endonuclease with a redox inhibitor: Evidence
for an alternate conformation of the enzyme. Biochemistry.
50:82–92. 2011.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Luo M, Delaplane S, Jiang A, Reed A, He Y,
Fishel M, Nyland RL II, Borch RF, Qiao X, Georgiadis MM and Kelley
MR: Role of the multifunctional DNA repair and redox signaling
protein Ape1/Ref-1 in cancer and endothelial cells: Small-molecule
inhibition of the redox function of Ape1. Antioxid Redox Signal.
10:1853–1867. 2008.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Zou GM, Karikari C, Kabe Y, Handa H,
Anders RA and Maitra A: The Ape-1/Ref-1 redox antagonist E3330
inhibits the growth of tumor endothelium and endothelial progenitor
cells: Therapeutic implications in tumor angiogenesis. J Cell
Physiol. 219:209–218. 2009.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Sengupta S, Mantha AK, Mitra S and Bhakat
KK: Human AP endonuclease (APE1/Ref-1) and its acetylation regulate
YB-1-p300 recruitment and RNA polymerase II loading in the
drug-induced activation of multidrug resistance gene MDR1.
Oncogene. 30:482–493. 2011.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Du Y, Zhou Y, Yan X, Pan F, He L, Guo Z
and Hu Z: APE1 inhibition enhances ferroptotic cell death and
contributes to hepatocellular carcinoma therapy. Cell Death Differ.
31:431–446. 2024.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Sadek K, Abouzed T, Nasr S and Shoukry M:
Licochalcone B ameliorates liver cancer via targeting of apoptotic
genes, DNA repair systems, and cell cycle control. Iran J Pharm
Res. 19:372–386. 2020.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Sadek K, Abouzeid T, Nasr S and Shukry M:
Role and potential targeting of hepatic apurinic/apyrimidinic
endonuclease-1 and cyclin-dependent kinase-4 in hepatocellular
carcinoma. Can J Physiol Pharmacol. 96(X)2018.PubMed/NCBI View Article : Google Scholar
|