|
1
|
Li BK, Al-Karmi S, Huang A and Bouffet E:
Pediatric embryonal brain tumors in the molecular era. Expert Rev
Mol Diagn. 20:293–303. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Lambo S, Von Hoff K, Korshunov A, Pfister
SM and Kool M: ETMR: A tumor entity in its infancy. Acta
Neuropathol (Berl). 140:249–266. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Su Y and Ma XL: The characteristics and
treatment of rare embryonal tumors of central nervous system in
children. Chin J Appl Clin Pediatr. 36:168–171. 2021.
|
|
4
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kleinman CL, Gerges N, Papillon-Cavanagh
S, Sin-Chan P, Pramatarova A, Quang DA, Adoue V, Busche S, Caron M,
Djambazian H, et al: Fusion of TTYH1 with the C19MC microRNA
cluster drives expression of a brain-specific DNMT3B isoform in the
embryonal brain tumor ETMR. Nat Genet. 46:39–44. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Lambo S, Gröbner SN, Rausch T, Waszak SM,
Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S,
et al: The molecular landscape of ETMR at diagnosis and relapse.
Nature. 576:274–280. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Xu K, Sun Z, Wang L and Guan W: Embryonal
tumors with multilayered rosettes, C19MC-altered or not elsewhere
classified: Clinicopathological characteristics, prognostic
factors, and outcomes of 17 children from 2018 to 2022. Front
Oncol. 12(1001959)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Juhnke BO, Gessi M, Gerber NU, Friedrich
C, Mynarek M, von Bueren AO, Haberler C, Schüller U, Kortmann RD,
Timmermann B, et al: Treatment of embryonal tumors with
multilayered rosettes with carboplatin/etoposide induction and
high-dose chemotherapy within the prospective P-HIT trial. Neuro
Oncol. 24:127–137. 2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Capper D, Jones DTW, Sill M, Hovestadt V,
Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al:
DNA methylation-based classification of central nervous system
tumors. Nature. 555:469–474. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Raghuram N, Khan S, Mumal I, Bouffet E and
Huang A: Embryonal tumors with multi-layered rosettes: A disease of
dysregulated miRNAs. J Neurooncol. 150:63–73. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Li M, Lee KF, Lu Y, Clarke I, Shih D,
Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, et al:
Frequent amplification of a chr19q13.41 MicroRNA polycistron in
aggressive primitive neuroectodermal brain tumors. Cancer Cell.
16:533–546. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bentwich I, Avniel A, Karov Y, Aharonov R,
Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, et al:
Identification of hundreds of conserved and nonconserved human
microRNAs. Nat Genet. 37:766–770. 2005.PubMed/NCBI View
Article : Google Scholar
|
|
13
|
Bortolin-Cavaille ML, Dance M, Weber M and
Cavaille J: C19MC microRNAs are processed from introns of large
Pol-II, non-protein-coding transcripts. Nucleic Acids Res.
37:3464–3473. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bar M, Wyman SK, Fritz BR, Qi J, Garg KS,
Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, et al:
MicroRNA discovery and profiling in human embryonic stem cells by
deep sequencing of small RNA libraries. Stem Cells. 26:2496–2505.
2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Korshunov A, Remke M, Gessi M, Ryzhova M,
Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP,
et al: Focal genomic amplification at 19q13.42 comprises a powerful
diagnostic marker for embryonal tumors with ependymoblastic
rosettes. Acta Neuropathol. 120:253–260. 2010.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Pfister S, Remke M, Castoldi M, Bai AHC,
Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P
and Korshunov A: Novel genomic amplification targeting the microRNA
cluster at 19q13.42 in a pediatric embryonal tumor with abundant
neuropil and true rosettes. Acta Neuropathol. 117:457–464.
2009.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Korshunov A, Sturm D, Ryzhova M, Hovestadt
V, Gessi M, Jones DT, Remke M, Northcott P, Perry A, Picard D, et
al: Embryonal tumor with abundant neuropil and true rosettes
(ETANTR), ependymoblastoma, and medulloepithelioma share molecular
similarity and comprise a single clinicopathological entity. Acta
Neuropathol. 128:279–289. 2014.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Picard D, Miller S, Hawkins CE, Bouffet E,
Rogers HA, Chan TS, Kim SK, Ra YS, Fangusaro J, Korshunov A, et al:
Markers of survival and metastatic potential in childhood CNS
primitive neuro-ectodermal brain tumours: An integrative genomic
analysis. Lancet Oncol. 13:838–848. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Spence T, Sin-Chan P, Picard D, Barszczyk
M, Hoss K, Lu M, Kim SK, Ra YS, Nakamura H, Fangusaro J, et al:
CNS-PNETs with C19MC amplification and/or LIN28 expression comprise
a distinct histogenetic diagnostic and therapeutic entity. Acta
Neuropathol. 128:291–303. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Setty BA, Jinesh GG, Arnold M, Pettersson
F, Cheng CH, Cen L, Yoder SJ, Teer JK, Flores ER, Reed DR and Brohl
AS: The genomic landscape of undifferentiated embryonal sarcoma of
the liver is typified by C19MC structural rearrangement and
overexpression combined with TP53 mutation or loss. PLoS Genet.
16(e1008642)2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Ward A, Shukla K, Balwierz A, Soons Z,
König R, Sahin Ö and Wiemann S: MicroRNA-519a is a novel oncomir
conferring tamoxifen resistance by targeting a network of
tumour-suppressor genes in ER + breast cancer. J Pathol.
233:368–379. 2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Fornari F, Milazzo M, Chieco P, Negrini M,
Marasco E, Capranico G, Capranico G, Mantovani V, Marinello J,
Sabbioni S, et al: In hepatocellular carcinoma miR-519d is
up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21,
PTEN, AKT3 and TIMP2. J Pathol. 227:275–285. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X,
Singh I, Du Y, Lu M, Patel N, Torchia J, et al: A C19MC-LIN28A-MYCN
oncogenic circuit driven by hijacked Super-enhancers is a distinct
therapeutic vulnerability in ETMRs: A lethal brain tumor. Cancer
Cell. 36:51–67.e7. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Bernstein E, Kim SY, Carmell MA, Murchison
EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon
GJ: Dicer is essential for mouse development. Nat Genet.
35:215–217. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
25
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Bio. 15:509–524. 2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
De Kock L, Priest JR, Foulkes WD and
Alexandrescu S: An update on the central nervous system
manifestations of DICER1 syndrome. Acta Neuropathol. 139:689–701.
2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Foulkes WD, Priest JR and Duchaine TF:
DICER1: Mutations, microRNAs and mechanisms. Nat Rev Cancer.
14:662–672. 2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Uro-Coste E, Masliah-Planchon J, Siegfried
A, Blanluet M, Lambo S, Kool M, Roujeau T, Boetto S, Palenzuela G,
Bertozzi AI, et al: ETMR-like infantile cerebellar embryonal tumors
in the extended morphologic spectrum of DICER1-related tumors. Acta
Neuropathol. 137:175–177. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Mogilyansky E and Rigoutsos I: The
miR-17/92 cluster: A comprehensive update on its genomics,
genetics, functions and increasingly important and numerous roles
in health and disease. Cell Death Differ. 20:1603–1614.
2013.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Gu Y, Sun J, Groome LJ and Wang Y:
Differential miRNA expression profiles between the first and third
trimester human placentas. Am J Physiol Endocrinol Metab.
304:E836–E843. 2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Malnou EC, Umlauf D, Mouysset M and
Cavaillé J: Imprinted MicroRNA gene clusters in the evolution,
development, and functions of mammalian placenta. Front Genet.
9(706)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Gessi M, Zur Muehlen A, Lauriola L,
Gardiman MP, Giangaspero F and Pietsch T: TP53, β-Catenin and
c-myc/N-myc status in embryonal tumours with ependymoblastic
rosettes: TP53, β-Catenin, c-myc/N-myc in embryonal tumors with
ependymoblastic rosettes. Neuropathol Appl Neurobiol. 37:406–413.
2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Neumann JE, Wefers AK, Lambo S, Bianchi E,
Bockstaller M, Dorostkar MM, Meister V, Schindler P, Korshunov A,
von Hoff K, et al: A mouse model for embryonal tumors with
multilayered rosettes uncovers the therapeutic potential of
Sonic-hedgehog inhibitors. Nat Med. 23:1191–1202. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wu G, Xu G, Schulman BA, Jeffrey PD,
Harper JW and Pavletich NP: Structure of a β-TrCP1-Skp1-β-catenin
complex. Mol Cell. 11:1445–1456. 2003.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Viswanathan SR, Daley GQ and Gregory RI:
Selective blockade of MicroRNA processing by Lin28. Science.
320:97–100. 2008.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Viswanathan SR and Daley GQ: Lin28: A
MicroRNA regulator with a macro role. Cell. 140:445–449.
2010.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Yu J, Vodyanik MA, Smuga-Otto K,
Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA,
Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines
derived from human somatic cells. Science. 318:1917–1920.
2007.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Korshunov A, Ryzhova M, Jones DTW,
Northcott PA, Van Sluis P, Volckmann R, Koster J, Versteeg R,
Cowdrey C, Perry A, et al: LIN28A immunoreactivity is a potent
diagnostic marker of embryonal tumor with multilayered rosettes
(ETMR). Acta Neuropathol. 124:875–881. 2012.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Viswanathan SR, Powers JT, Einhorn W,
Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA,
Lockhart VL, et al: Lin28 promotes transformation and is associated
with advanced human malignancies. Nat Genet. 41:843–848.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Rao S, Rajeswarie RT, Chickabasaviah Yasha
T, Nandeesh BN, Arivazhagan A and Santosh V: LIN28A, a sensitive
immunohistochemical marker for embryonal tumor with multilayered
Rosettes (ETMR), is also positive in a subset of atypical
teratoid/rhabdoid tumor (AT/RT). Childs Nerv Syst. 33:1953–1959.
2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hagan JP, Piskounova E and Gregory RI:
Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in
mouse embryonic stem cells. Nat Struct Mol Biol. 16:1021–1025.
2009.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho
J, Yeom KH, Han J and Kim VN: TUT4 in Concert with Lin28 suppresses
MicroRNA biogenesis through Pre-MicroRNA uridylation. Cell.
138:696–708. 2009.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G,
Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG,
et al: The Lin28/let-7 Axis regulates glucose metabolism. Cell.
147:81–94. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Spence T, Perotti C, Sin-Chan P, Picard D,
Wu W, Singh A, Anderson C, Blough MD, Cairncross JG, Lafay-Cousin
L, et al: A novel C19MC amplified cell line links Lin28/let-7 to
mTOR signaling in embryonal tumor with multilayered rosettes. Dev
Oncol. 16:62–71. 2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Patterson M, Gaeta X, Loo K, Edwards M,
Smale S, Cinkornpumin J, Xie Y, Listgarten J, Azghadi S, Douglass
SM, et al: let-7 miRNAs can act through notch to regulate human
gliogenesis. Stem Cell Rep. 3:758–773. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Molenaar JJ, Domingo-Fernández R, Ebus ME,
Lindner S, Koster J, Drabek K, Mestdagh P, van Sluis P, Valentijn
LJ, van Nes J, et al: LIN28B induces neuroblastoma and enhances
MYCN levels via let-7 suppression. Nat Genet. 44:1199–1206.
2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Dottermusch M, Biabani A, Lempertz T,
Schumann Y, Navolic J, Godbole S, Obrecht D, Frank S, Dorostkar MM,
Voß H, et al: Integrated proteomics spotlight the proteasome as a
therapeutic vulnerability in embryonal tumors with multilayered
rosettes. Neuro Oncol. 26:935–949. 2024.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Gualano FM, Hassoun P, Carter CL and
Hanson D: Embryonal tumor with multilayered rosettes:
Post-treatment maturation and implications for future therapy.
Cancer Reports. 6(e1812)2023.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Schmidt C, Schubert NA, Brabetz S, Mack N,
Schwalm B, Chan JA, Selt F, Herold-Mende C, Witt O, Milde T, et al:
Preclinical drug screen reveals topotecan, actinomycin D, and
volasertib as potential new therapeutic candidates for ETMR brain
tumor patients. Dev Oncol. 19:1607–1617. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Cocito C, Arias-Stella EU, Zhang X,
McKnight C, Itkin Z, Klumpp-Thomas C, Cruzeiro GA, Chi SN, Pisapia
DJ, Filbin MG and Dahmane N: ATRT-11. development of novel
preclinical models and therapeutic strategies for etmr. Neuro
Oncol. 25 (Suppl 1)(i3)2023.
|
|
51
|
Hanson D, Hoffman LM, Nagabushan S,
Goumnerova LC, Rathmann A, Vogel T, Ziegler DS and Chi S: A
modified IRS-III chemotherapy regimen leads to prolonged survival
in children with embryonal tumor with multilayer rosettes.
Neurooncol Adv. 2(vdaa120)2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rakheja D, Chen KS, Liu Y, Shukla AA,
Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter
JS, et al: Somatic mutations in DROSHA and DICER1 impair microRNA
biogenesis through distinct mechanisms in Wilms tumors. Nat Commun.
5(4802)2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Vedanayagam J, Chatila WK, Aksoy BA,
Majumdar S, Skanderup AJ, Demir E, Schultz N, Sander C and Lai EC:
Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains
exert similar effects on miRNA biogenesis. Nat Commun.
10(3682)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Wang Y, Chen J, Yang W, Mo F, Senz J, Yap
D, Anglesio MS, Gilks B, Morin GB and Huntsman DG: The oncogenic
roles of DICER1 RNase IIIb domain mutations in ovarian
sertoli-leydig cell tumors. Neoplasia. 17:650–660. 2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Antao AM, Tyagi A, Kim KS and Ramakrishna
S: Advances in deubiquitinating enzyme inhibition and applications
in cancer therapeutics. Cancers (Basel). 12(1579)2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
El Hage A, French SL, Beyer AL and
Tollervey D: Loss of topoisomerase I leads to R-loop-mediated
transcriptional blocks during ribosomal RNA synthesis. Gene Dev.
24:1546–1558. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Staker BL, Hjerrild K, Feese MD, Behnke
CA, Burgin AB and Stewart L: The mechanism of topoisomerase I
poisoning by a camptothecin analog. Proc Natl Acad Sci.
99:15387–15392. 2002.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Das SK, Rehman I, Ghosh A, Sengupta S,
Majumdar P, Jana B and Das BB: Poly(ADP-ribose) polymers regulate
DNA topoisomerase I (Top1) nuclear dynamics and camptothecin
sensitivity in living cells. Nucleic Acids Res. 44:8363–8375.
2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Smith SG and Zhou MM: The bromodomain: A
new target in emerging epigenetic medicine. ACS Chem Biol.
11:598–608. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Filippakopoulos P, Qi J, Picaud S, Shen Y,
Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et
al: Selective inhibition of BET bromodomains. Nature.
468:1067–1073. 2010.PubMed/NCBI View Article : Google Scholar
|