|
1
|
Zaib S, Rana N and Khan I: Histone
modifications and their role in epigenetics of cancer. Curr Med
Chem. 29:2399–2411. 2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang M and Lin H: Understanding the
function of mammalian sirtuins and protein lysine acylation. Annu
Rev Biochem. 90:245–285. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Fu Y, Yu J, Li F and Ge S: Oncometabolites
drive tumorigenesis by enhancing protein acylation: From
chromosomal remodelling to nonhistone modification. J Exp Clin
Cancer Res. 41(144)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sabari BR, Zhang D, Allis CD and Zhao Y:
Metabolic regulation of gene expression through histone acylations.
Nat Rev Mol Cell Biol. 18:90–101. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Shvedunova M and Akhtar A: Modulation of
cellular processes by histone and non-histone protein acetylation.
Nat Rev Mol Cell Biol. 23:329–349. 2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang
Y, Fang Y and Fang D: Overview of histone modification. Adv Exp Med
Biol. 1283:1–16. 2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tan M, Luo H, Lee S, Jin F, Yang JS,
Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al:
Identification of 67 histone marks and histone lysine crotonylation
as a new type of histone modification. Cell. 146:1016–1028.
2011.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Goudarzi A, Shiota H, Rousseaux S and
Khochbin S: Genome-scale acetylation-dependent histone eviction
during spermatogenesis. J Mol Biol. 426:3342–3349. 2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Berger K and Moeller MJ: Mechanisms of
epithelial repair and regeneration after acute kidney injury. Semin
Nephrol. 34:394–403. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Liu Y, Li M, Fan M, Song Y, Yu H, Zhi X,
Xiao K, Lai S, Zhang J, Jin X, et al: Chromodomain Y-like
protein-mediated histone crotonylation regulates stress-induced
depressive behaviors. Biol Psychiatry. 85:635–649. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Jiang G, Nguyen D, Archin NM, Yukl SA,
Méndez-Lagares G, Tang Y, Elsheikh MM, Thompson GR III,
Hartigan-O'Connor DJ, Margolis DM, et al: HIV latency is reversed
by ACSS2-driven histone crotonylation. J Clin Invest.
128:1190–1198. 2018.PubMed/NCBI View
Article : Google Scholar
|
|
12
|
Wan J, Liu H and Ming L: Lysine
crotonylation is involved in hepatocellular carcinoma progression.
Biomed Pharmacother. 111:976–982. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Fellows R, Denizot J, Stellato C, Cuomo A,
Jain P, Stoyanova E, Balázsi S, Hajnády Z, Liebert A, Kazakevych J,
et al: Microbiota derived short chain fatty acids promote histone
crotonylation in the colon through histone deacetylases. Nat
Commun. 9(105)2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Hou JY, Cao J, Gao LJ, Zhang FP, Shen J,
Zhou L, Shi JY, Feng YL, Yan Z, Wang DP and Cao JM: Upregulation of
α enolase (ENO1) crotonylation in colorectal cancer and its
promoting effect on cancer cell metastasis. Biochem Biophys Res
Commun. 578:77–83. 2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Xu X, Zhu X, Liu F, Lu W, Wang Y and Yu J:
The effects of histone crotonylation and bromodomain protein 4 on
prostate cancer cell lines. Transl Androl Urol. 10:900–914.
2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Johnson H and Eyers CE: Analysis of
post-translational modifications by LC-MS/MS. Methods Mol Biol.
658:93–108. 2010.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Allfrey VG, Faulkner R and Mirsky AE:
Acetylation and methylation of histones and their possible role in
the regulation of RNA synthesis. Proc Natl Acad Sci USA.
51:786–794. 1964.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chen Y, Sprung R, Tang Y, Ball H, Sangras
B, Kim SC, Falck JR, Peng J, Gu W and Zhao Y: Lysine propionylation
and butyrylation are novel post-translational modifications in
histones. Mol Cell Proteomics. 6:812–819. 2007.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y,
Boeke JD and Zhao Y: Lysine succinylation and lysine malonylation
in histones. Mol Cell Proteomics. 11:100–107. 2012.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Tan M, Peng C, Anderson KA, Chhoy P, Xie
Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, et al: Lysine
glutarylation is a protein posttranslational modification regulated
by SIRT5. Cell Metab. 19:605–617. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Dai L, Peng C, Montellier E, Lu Z, Chen Y,
Ishii H, Debernardi A, Buchou T, Rousseaux S, Jin F, et al: Lysine
2-hydroxyisobutyrylation is a widely distributed active histone
mark. Nat Chem Biol. 10:365–370. 2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Xie Z, Zhang D, Chung D, Tang Z, Huang H,
Dai L, Qi S, Li J, Colak G, Chen Y, et al: Metabolic regulation of
gene expression by histone lysine β-hydroxybutyrylation. Mol Cell.
62:194–206. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Huang H, Zhang D, Wang Y, Perez-Neut M,
Han Z, Zheng YG, Hao Q and Zhao Y: Lysine benzoylation is a histone
mark regulated by SIRT2. Nat Commun. 9(3374)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C,
Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic
regulation of gene expression by histone lactylation. Nature.
574:575–580. 2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Jiang Y, Li Y, Liu C, Zhang L, Lv D, Weng
Y, Cheng Z, Chen X, Zhan J and Zhang H: Isonicotinylation is a
histone mark induced by the anti-tuberculosis first-line drug
isoniazid. Nat Commun. 12(5548)2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Xu W, Wan J, Zhan J, Li X, He H, Shi Z and
Zhang H: Global profiling of crotonylation on non-histone proteins.
Cell Res. 27:946–949. 2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Huang H, Wang DL and Zhao Y: Quantitative
crotonylome analysis expands the roles of p300 in the regulation of
lysine crotonylation pathway. Proteomics.
18(e1700230)2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wan J, Liu H, Chu J and Zhang H: Functions
and mechanisms of lysine crotonylation. J Cell Mol Med.
23:7163–7169. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ntorla A and Burgoyne JR: The regulation
and function of histone crotonylation. Front Cell Dev Biol.
9(624914)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Sabari BR, Tang Z, Huang H, Yong-Gonzalez
V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, et al:
Intracellular crotonyl-CoA stimulates transcription through
p300-catalyzed histone crotonylation. Mol Cell. 58:203–215.
2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Liu X, Wei W, Liu Y, Yang X, Wu J, Zhang
Y, Zhang Q, Shi T, Du JX, Zhao Y, et al: MOF as an evolutionarily
conserved histone crotonyltransferase and transcriptional
activation by histone acetyltransferase-deficient and
crotonyltransferase-competent CBP/p300. Cell Discov.
3(17016)2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kollenstart L, de Groot AJL, Janssen GMC,
Cheng X, Vreeken K, Martino F, Côté J, van Veelen PA and van
Attikum H: Gcn5 and Esa1 function as histone crotonyltransferases
to regulate crotonylation-dependent transcription. J Biol Chem.
294:20122–20134. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Madsen AS and Olsen CA: Profiling of
substrates for zinc-dependent lysine deacylase enzymes: HDAC3
exhibits decrotonylase activity in vitro. Angew Chem Int Ed Engl.
51:9083–9087. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T,
Wong CF, Zhang J, Hao Q and Li XD: Identification of ‘erasers’ for
lysine crotonylated histone marks using a chemical proteomics
approach. Elife. 3(e02999)2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wei W, Liu X, Chen J, Gao S, Lu L, Zhang
H, Ding G, Wang Z, Chen Z, Shi T, et al: Class I histone
deacetylases are major histone decrotonylases: Evidence for
critical and broad function of histone crotonylation in
transcription. Cell Res. 27:898–915. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kelly RDW, Chandru A, Watson PJ, Song Y,
Blades M, Robertson NS, Jamieson AG, Schwabe JWR and Cowley SM:
Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone
acetylation and crotonylation in vivo. Sci Rep.
8(14690)2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhao S, Zhang X and Li H: Beyond histone
acetylation-writing and erasing histone acylations. Curr Opin
Struct Biol. 53:169–177. 2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Andrews FH, Shinsky SA, Shanle EK,
Bridgers JB, Gest A, Tsun IK, Krajewski K, Shi X, Strahl BD and
Kutateladze TG: The Taf14 YEATS domain is a reader of histone
crotonylation. Nat Chem Biol. 12:396–398. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Li Y, Sabari BR, Panchenko T, Wen H, Zhao
D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, et al: Molecular
Coupling of histone crotonylation and active transcription by AF9
YEATS domain. Mol Cell. 62:181–193. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y,
Zhao Y, Allis CD, Shi X and Li H: YEATS2 is a selective histone
crotonylation reader. Cell Res. 26:629–632. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Flynn EM, Huang OW, Poy F, Oppikofer M,
Bellon SF, Tang Y and Cochran AG: A subset of human bromodomains
recognizes butyryllysine and crotonyllysine histone peptide
modifications. Structure. 23:1801–1814. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xiong X, Panchenko T, Yang S, Zhao S, Yan
P, Zhang W, Xie W, Li Y, Zhao Y, Allis CD and Li H: Selective
recognition of histone crotonylation by double PHD fingers of MOZ
and DPF2. Nat Chem Biol. 12:1111–1118. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li Y, Zhang R and Hei H: Advances in
post-translational modifications of proteins and cancer
immunotherapy. Front Immunol. 14(1229397)2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Li Y and Seto E: HDACs and HDAC inhibitors
in cancer development and therapy. Cold Spring Harb Perspect Med.
6(a026831)2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chen YZ, Wang ZZ, Wang Y, Ying G, Chen Z
and Song J: nhKcr: A new bioinformatics tool for predicting
crotonylation sites on human nonhistone proteins based on deep
learning. Brief Bioinform. 22(bbab146)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
European Association for the Study of the
Liver. EASL clinical practice guidelines: Management of
hepatocellular carcinoma. J Hepatol. 69:182–236. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Alawyia B and Constantinou C:
Hepatocellular carcinoma: A narrative review on current knowledge
and future prospects. Curr Treat Options Oncol. 24:711–724.
2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhang D, Tang J, Xu Y, Huang X, Wang Y,
Jin X, Wu G and Liu P: Global crotonylome reveals hypoxia-mediated
lamin A crotonylation regulated by HDAC6 in liver cancer. Cell
Death Dis. 13(717)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang XY, Liu ZX, Zhang YF, Xu LX, Chen
MK, Zhou YF, Yu J, Li XX and Zhang N: SEPT2 crotonylation promotes
metastasis and recurrence in hepatocellular carcinoma and is
associated with poor survival. Cell Biosci. 13(63)2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Liu H, Li D, Zhou L, Kan S, He G, Zhou K,
Wang L, Chen M and Shu W: LMNA functions as an oncogene in
hepatocellular carcinoma by regulating the proliferation and
migration ability. J Cell Mol Med. 24:12008–12019. 2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zhang Y, Chen Y, Zhang Z, Tao X, Xu S,
Zhang X, Zurashvili T, Lu Z, Bayascas JR, Jin L, et al: Acox2 is a
regulator of lysine crotonylation that mediates hepatic metabolic
homeostasis in mice. Cell Death Dis. 13(279)2022.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wirsching HG, Galanis E and Weller M:
Glioblastoma. Handb Clin Neurol. 134:381–397. 2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dai SK, Liu PP, Li X, Jiao LF, Teng ZQ and
Liu CM: Dynamic profiling and functional interpretation of histone
lysine crotonylation and lactylation during neural development.
Development. 149(dev200049)2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Yuan H, Wu X, Wu Q, Chatoff A, Megill E,
Gao J, Huang T, Duan T, Yang K, Jin C, et al: Lysine catabolism
reprograms tumour immunity through histone crotonylation. Nature.
617:818–826. 2023.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Dai SK, Liu PP, Du HZ, Liu X, Xu YJ, Liu
C, Wang YY, Teng ZQ and Liu CM: Histone crotonylation regulates
neural stem cell fate decisions by activating bivalent promoters.
EMBO Rep. 22(e52023)2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Alexander M, Kim SY and Cheng H: Update
2020: Management of non-small cell lung cancer. Lung. 198:897–907.
2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wu Q, Li W, Wang C, Fan P, Cao L, Wu Z and
Wang F: Ultradeep lysine crotonylome reveals the crotonylation
enhancement on both histones and nonhistone proteins by SAHA
treatment. J Proteome Res. 16:3664–3671. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mu N, Wang Y, Li X, Du Z, Wu Y, Su M, Wang
Y, Sun X, Su L and Liu X: Crotonylated BEX2 interacts with NDP52
and enhances mitophagy to modulate chemotherapeutic agent-induced
apoptosis in non-small-cell lung cancer cells. Cell Death Dis.
14(645)2023.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Liao M, Chu W, Sun X, Zheng W, Gao S, Li D
and Pei D: Reduction of H3K27cr modification during DNA damage in
colon cancer. Front Oncol. 12(924061)2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Liao M, Sun X, Zheng W, Wu M, Wang Y, Yao
J, Ma Y, Gao S and Pei D: LINC00922 decoys SIRT3 to facilitate the
metastasis of colorectal cancer through up-regulation the H3K27
crotonylation of ETS1 promoter. Mol Cancer. 22(163)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hou JY, Li N, Wang J, Gao LJ, Chang JS and
Cao JM: Histone crotonylation of peripheral blood mononuclear cells
is a potential biomarker for diagnosis of colorectal cancer.
Epigenetics Chromatin. 16(35)2023.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Liao P, Bhattarai N, Cao B, Zhou X, Jung
JH, Damera K, Fuselier TT, Thareja S, Wimley WC, Wang B, et al:
Crotonylation at serine 46 impairs p53 activity. Biochem Biophys
Res Commun. 524:730–735. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kusakabe M, Taguchi A, Sone K, Mori M and
Osuga Y: Carcinogenesis and management of human
papillomavirus-associated cervical cancer. Int J Clin Oncol.
28:965–974. 2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Rahangdale L, Mungo C, O'Connor S,
Chibwesha CJ and Brewer NT: Human papillomavirus vaccination and
cervical cancer risk. BMJ. 379(e070115)2022.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Han X, Xiang X, Yang H, Zhang H, Liang S,
Wei J and Yu J: p300-catalyzed lysine crotonylation promotes the
proliferation, invasion, and migration of HeLa cells via
heterogeneous nuclear ribonucleoprotein A1. Anal Cell Pathol
(Amst). 2020(5632342)2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yu H, Bu C, Liu Y, Gong T, Liu X, Liu S,
Peng X, Zhang W, Peng Y, Yang J, et al: Global crotonylome reveals
CDYL-regulated RPA1 crotonylation in homologous
recombination-mediated DNA repair. Sci Adv.
6(eaay4697)2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kuhlmann N, Chollet C, Baldus L, Neundorf
I and Lammers M: Development of substrate-derived sirtuin
inhibitors with potential anticancer activity. ChemMedChem.
12:1703–1714. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Xu LX, Hao LJ, Ma JQ, Liu JK and Hasim A:
SIRT3 promotes the invasion and metastasis of cervical cancer cells
by regulating fatty acid synthase. Mol Cell Biochem. 464:11–20.
2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Johnson DE, Burtness B, Leemans CR, Lui
VWY, Bauman JE and Grandis JR: Head and neck squamous cell
carcinoma. Nat Rev Dis Primers. 6(92)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Jiang L, Yin X, Zhang H, Zhang X, Cao Z,
Zhou M and Xu W: Development and validation of a prognostic
signature based on the lysine crotonylation regulators in head and
neck squamous cell carcinoma. Biomed Res Int.
2023(4444869)2023.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Cai LY, Chen SJ, Xiao SH, Sun QJ, Ding CH,
Zheng BN, Zhu XY, Liu SQ, Yang F, Yang YX, et al: Targeting
p300/CBP attenuates hepatocellular carcinoma progression through
epigenetic regulation of metabolism. Cancer Res. 81:860–872.
2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lao Y, Cui X, Xu Z, Yan H, Zhang Z, Zhang
Z, Geng L, Li B, Lu Y, Guan Q, et al: Glutaryl-CoA dehydrogenase
suppresses tumor progression and shapes an anti-tumor
microenvironment in hepatocellular carcinoma. J Hepatol.
81:847–861. 2024.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zeng Z, Lei S, He Z, Chen T and Jiang J:
YEATS2 is a target of HIF1α and promotes pancreatic cancer cell
proliferation and migration. J Cell Physiol. 236:2087–2098.
2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Listunov D, Linhares BM, Kim E, Winkler A,
Simes ML, Weaver S, Cho HJ, Rizo A, Zolov S, Keshamouni VG, et al:
Development of potent dimeric inhibitors of GAS41 YEATS domain.
Cell Chem Biol. 28:1716–1727.e6. 2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ma XR, Xu L, Xu S, Klein BJ, Wang H, Das
S, Li K, Yang KS, Sohail S, Chapman A, et al: Discovery of
selective small-molecule inhibitors for the ENL YEATS domain. J Med
Chem. 64:10997–11013. 2021.PubMed/NCBI View Article : Google Scholar
|