1
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Rotow J and Bivona TG: Understanding and
targeting resistance mechanisms in NSCLC. Nat Rev Cancer.
17:637–658. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Mambetsariev I, Arvanitis L, Fricke J,
Pharaon R, Baroz AR, Afkhami M, Koczywas M, Massarelli E and Salgia
R: Small cell lung cancer transformation following treatment in
EGFR-mutated Non-small cell lung cancer. J Clin Med.
11(1429)2022.PubMed/NCBI View Article : Google Scholar
|
4
|
Yin X, Li Y, Wang H, Jia T, Wang E, Luo Y,
Wei Y, Qin Z and Ma X: Small cell lung cancer transformation: From
pathogenesis to treatment. Semin Cancer Biol. 86:595–606.
2022.PubMed/NCBI View Article : Google Scholar
|
5
|
Oser MG, Niederst MJ, Sequist LV and
Engelman JA: Transformation from non-small-cell lung cancer to
small-cell lung cancer: Molecular drivers and cells of origin.
Lancet Oncol. 16:e165–e172. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Lee JK, Lee J, Kim S, Kim S, Youk J, Park
S, An Y, Keam B, Kim DW, Heo DS, et al: Clonal history and genetic
predictors of transformation into Small-Cell carcinomas from lung
adenocarcinomas. J Clin Oncol. 35:3065–3074. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Xu J, Xu L, Wang B, Kong W, Chen Y and Yu
Z: Outcomes in patients with lung adenocarcinoma with
transformation to small cell lung cancer after EGFR tyrosine kinase
inhibitors resistance: A systematic review and pooled analysis.
Front Oncol. 11(766148)2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Knudsen ES, Pruitt SC, Hershberger PA,
Witkiewicz AK and Goodrich DW: Cell cycle and beyond: Exploiting
new RB1 controlled mechanisms for cancer therapy. Trends Cancer.
5:308–324. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Muller PA and Vousden KH: p53 mutations in
cancer. Nat Cell Biol. 15:2–8. 2013.PubMed/NCBI View
Article : Google Scholar
|
10
|
Offin M, Chan JM, Tenet M, Rizvi HA, Shen
R, Riely GJ, Rekhtman N, Daneshbod Y, Quintanal-Villalonga A,
Penson A, et al: Concurrent RB1 and TP53 alterations define a
subset of EGFR-mutant lung cancers at risk for histologic
transformation and inferior clinical outcomes. J Thorac Oncol.
14:1784–1793. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang W, Xu C, Chen H, Jia J, Wang L, Feng
H, Wang H, Song Z, Yang N and Zhang Y: Genomic alterations and
clinical outcomes in patients with lung adenocarcinoma with
transformation to small cell lung cancer after treatment with EGFR
tyrosine kinase inhibitors: A multicenter retrospective study. Lung
Cancer. 155:20–27. 2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Peifer M, Fernández-Cuesta L, Sos ML,
George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander
T, et al: Integrative genome analyses identify key somatic driver
mutations of small-cell lung cancer. Nat Genet. 44:1104–1110.
2012.PubMed/NCBI View
Article : Google Scholar
|
13
|
Xie T, Li Y, Ying J, Cai W, Li J, Lee KY,
Ricciuti B, Pacheco J and Xing P: Whole exome sequencing (WES)
analysis of transformed small cell lung cancer (SCLC) from lung
adenocarcinoma (LUAD). Transl Lung Cancer Res. 9:2428–2439.
2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Leonetti A, Facchinetti F, Minari R,
Cortellini A, Rolfo CD, Giovannetti E and Tiseo M: Notch pathway in
small-cell lung cancer: From preclinical evidence to therapeutic
challenges. Cell Oncol (Dordr). 42:261–273. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Koba H, Kimura H, Yoneda T, Ogawa N,
Tanimura K, Tambo Y, Sone T, Hosomichi K, Tajima A and Kasahara K:
NOTCH alteration in EGFR-mutated lung adenocarcinoma leads to
histological small-cell carcinoma transformation under EGFR-TKI
treatment. Transl Lung Cancer Res. 10:4161–4173. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Sriuranpong V, Borges MW, Ravi RK, Arnold
DR, Nelkin BD, Baylin SB and Ball DW: Notch signaling induces cell
cycle arrest in small cell lung cancer cells. Cancer Res.
61:3200–3205. 2001.PubMed/NCBI
|
17
|
Meder L, König K, Ozretić L, Schultheis
AM, Ueckeroth F, Ade CP, Albus K, Boehm D, Rommerscheidt-Fuss U and
Florin A: NOTCH, ASCL1, p53 and RB alterations define an
alternative pathway driving neuroendocrine and small cell lung
carcinomas. Int J Cancer. 138:927–938. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Quintanal-Villalonga A, Taniguchi H, Zhan
YA, Hasan MM, Chavan SS, Meng F, Uddin F, Manoj P, Donoghue MTA and
Won HH: Multiomic analysis of lung tumors defines pathways
activated in neuroendocrine transformation. Cancer Discov.
11:3028–3047. 2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Tan AC: Targeting the PI3K/Akt/mTOR
pathway in non-small cell lung cancer (NSCLC). Thorac Cancer.
11:511–518. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Park JW, Lee JK, Sheu KM, Wang L, Balanis
NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, et al:
Reprogramming normal human epithelial tissues to a common, lethal
neuroendocrine cancer lineage. Science. 362:91–95. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Suda K, Murakami I, Sakai K, Mizuuchi H,
Shimizu S, Sato K, Tomizawa K, Tomida S, Yatabe Y, Nishio K and
Mitsudomi T: Small cell lung cancer transformation and T790M
mutation: Complimentary roles in acquired resistance to kinase
inhibitors in lung cancer. Sci Rep. 5(14447)2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Tsui DWY, Murtaza M, Wong ASC, Rueda OM,
Smith CG, Chandrananda D, Soo RA, Lim HL, Goh BC, Caldas C, et al:
Dynamics of multiple resistance mechanisms in plasma DNA during
EGFR-targeted therapies in non-small cell lung cancer. EMBO Mol
Med. 10(e7945)2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Ireland AS, Micinski AM, Kastner DW, Guo
B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero
D, et al: MYC drives temporal evolution of small cell lung cancer
subtypes by reprogramming neuroendocrine fate. Cancer Cell.
38:60–78.e12. 2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Rudin CM, Brambilla E, Faivre-Finn C and
Sage J: Small-cell lung cancer. Nat Rev Dis Primers.
7(3)2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Lin MW, Su KY, Su TJ, Chang CC, Lin JW,
Lee YH, Yu SL, Chen JS and Hsieh MS: Clinicopathological and
genomic comparisons between different histologic components in
combined small cell lung cancer and non-small cell lung cancer.
Lung Cancer. 125:282–290. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Quintanal-Villalonga A, Taniguchi H, Zhan
YA, Hasan MM, Chavan SS, Meng F, Uddin F, Allaj V, Manoj P, Shah
NS, et al: Comprehensive molecular characterization of lung tumors
implicates AKT and MYC signaling in adenocarcinoma to squamous cell
transdifferentiation. J Hematol Oncol. 14(170)2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Jia Y, Yun CH, Park E, Ercan D, Manuia M,
Juarez J, Xu C, Rhee K, Chen T, Zhang H, et al: Overcoming
EGFR(T790M) and EGFR(C797S) resistance with mutant-selective
allosteric inhibitors. Nature. 534:129–132. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Katayama H, Brinkley WR and Sen S: The
Aurora kinases: Role in cell transformation and tumorigenesis.
Cancer Metastasis Rev. 22:451–464. 2003.PubMed/NCBI View Article : Google Scholar
|
29
|
Beltran H and Demichelis F: Therapy
considerations in neuroendocrine prostate cancer: What next. Endocr
Relat Cancer. 28:T67–T78. 2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Mosquera JM, Beltran H, Park K, MacDonald
TY, Robinson BD, Tagawa ST, Perner S, Bismar TA, Erbersdobler A,
Dhir R, et al: Concurrent AURKA and MYCN gene amplifications are
harbingers of lethal treatment-related neuroendocrine prostate
cancer. Neoplasia. 15:1–10. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Shah KN, Bhatt R, Rotow J, Rohrberg J,
Olivas V, Wang VE, Hemmati G, Martins MM, Maynard A, Kuhn J, et al:
Aurora kinase A drives the evolution of resistance to
third-generation EGFR inhibitors in lung cancer. Nat Med.
25:111–118. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Marcoux N, Gettinger SN, O'Kane G, Arbour
KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi
PD, et al: EGFR-mutant adenocarcinomas that transform to Small-cell
lung cancer and other neuroendocrine carcinomas: Clinical outcomes.
J Clin Oncol. 37:278–285. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Guidelines of Chinese Society of Clinical
Oncology (CSCO). Small Cell Lung Cancer, 2022.
|
34
|
Ferrer L, Giaj LM, Brevet M, Antoine M,
Mazieres J, Rossi G, Chiari R, Westeel V, Poudenx M, Letreut J, et
al: A brief report of transformation from NSCLC to SCLC: Molecular
and therapeutic characteristics. J Thorac Oncol. 14:130–134.
2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Niederst MJ, Sequist LV, Poirier JT,
Mermel CH, Lockerman EL, Garcia AR, Katayama R, Costa C, Ross KN,
Moran T, et al: RB loss in resistant EGFR mutant lung
adenocarcinomas that transform to small-cell lung cancer. Nat
Commun. 6(6377)2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Lai L, Meng W, Wei J, Zhang X, Tan Z, Lu Y
and Hou E: Transformation of NSCLC to SCLC after 1st- and
3rd-generation EGFR-TKI resistance and response to EP regimen and
erlotinib: 2 CARE-compliant case reports. Medicine (Baltimore).
100(e25046)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Iams WT, Porter J and Horn L:
Immunotherapeutic approaches for small-cell lung cancer. Nat Rev
Clin Oncol. 17:300–312. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Fujimoto D, Akamatsu H, Morimoto T, Wakuda
K, Sato Y, Kawa Y, Yokoyama T, Tamiya M, Hiraoka R, Shingu N, et
al: Histologic transformation of epidermal growth factor
receptor-mutated lung cancer. Eur J Cancer. 166:41–50.
2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Nishikawa S, Tambo Y, Ninomiya H, Oguri T,
Kawashima Y, Takano N, Kitazono S, Ohyanagi F, Horiike A,
Yanagitani N, et al: A case treated with nivolumab after small cell
lung cancer transformation of mutant EGFR non-small cell lung
cancer. Ann Oncol. 27:2300–2302. 2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Tokaca N, Wotherspoon A, Nicholson AG,
Fotiadis N, Thompson L and Popat S: Lack of response to nivolumab
in a patient with EGFR-mutant non-small cell lung cancer
adenocarcinoma sub-type transformed to small cell lung cancer. Lung
Cancer. 111:65–68. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Le X, Negrao MV, Reuben A, Federico L,
Diao L, McGrail D, Nilsson M, Robichaux J, Munoz IG, Patel S, et
al: Characterization of the immune landscape of EGFR-mutant NSCLC
identifies CD73/adenosine pathway as a potential therapeutic
target. J Thorac Oncol. 16:583–600. 2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Liu Y: Small cell lung cancer
transformation from EGFR-mutated lung adenocarcinoma: A case report
and literatures review. Cancer Biol Ther. 19:445–449.
2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Bar J, Ofek E, Barshack I, Gottfried T,
Zadok O, Kamer I, Urban D, Perelman M and Onn A: Transformation to
small cell lung cancer as a mechanism of resistance to
immunotherapy in non-small cell lung cancer. Lung Cancer.
138:109–115. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Zhang CY, Sun H, Su JW, Chen YQ, Zhang SL,
Zheng MY, Li YF, Huang J, Zhang C, Tai ZX, et al: A potential
treatment option for transformed small-cell lung cancer on PD-L1
inhibitor-based combination therapy improved survival. Lung Cancer.
175:68–78. 2023.PubMed/NCBI View Article : Google Scholar
|
45
|
Wang S, Xie T, Hao X, Wang Y, Hu X, Wang
L, Li Y, Li J and Xing P: Comprehensive analysis of treatment modes
and clinical outcomes of small cell lung cancer transformed from
epidermal growth factor receptor mutant lung adenocarcinoma. Thorac
Cancer. 12:2585–2593. 2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Zhang C, Zhang S, Yao Y, Gao Y, Huang J,
Peng K, Gao Q, Chen H, Xu C, Xu X, et al: MA12.08 chemotherapy plus
EGFR TKIs or bevacizumab versus chemotherapy alone in
SCLC-Transformed EGFR-Mutant lung adenocarcinoma. J Thorac Oncol.
16 (Suppl):S178–S179. 2021.
|
47
|
Blum T and Schönfeld N: The lung cancer
patient, the pneumologist and palliative care: A developing
alliance. Eur Respir J. 45:211–226. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Inoue-Yamauchi A, Jeng PS, Kim K, Chen HC,
Han S, Ganesan YT, Ishizawa K, Jebiwott S, Dong Y, Pietanza MC, et
al: Targeting the differential addiction to anti-apoptotic BCL-2
family for cancer therapy. Nat Commun. 8(16078)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Ku SY, Rosario S, Wang Y, Mu P, Seshadri
M, Goodrich ZW, Goodrich MM, Labbé DP, Gomez EC, Wang J, et al: Rb1
and Trp53 cooperate to suppress prostate cancer lineage plasticity,
metastasis, and antiandrogen resistance. Science. 355:78–83.
2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Byers LA, Wang J, Nilsson MB, Fujimoto J,
Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L, et al:
Proteomic profiling identifies dysregulated pathways in small cell
lung cancer and novel therapeutic targets including PARP1. Cancer
Discov. 2:798–811. 2012.PubMed/NCBI View Article : Google Scholar
|