1
|
Song YS and Park YJ: Mechanisms of TERT
Reactivation and Its Interaction with BRAFV600E. Endocrinol Metab
(Seoul). 35:515–525. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Jin A, Xu J and Wang Y: The role of TERT
promoter mutations in postoperative and preoperative diagnosis and
prognosis in thyroid cancer. Medicine (Baltimore).
97(e11548)2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Liu X, Bishop J, Shan Y, Pai S, Liu D,
Murugan AK, Sun H, El-Naggar AK and Xing M: Highly prevalent TERT
promoter mutations in aggressive thyroid cancers. Endocr Relat
Cancer. 20:603–610. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Gandolfi G, Ragazzi M, Frasoldati A, Piana
S, Ciarrocchi A and Sancisi V: TERT promoter mutations are
associated with distant metastases in papillary thyroid carcinoma.
Eur J Endocrinol. 172:403–413. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G,
Murugan AK, Guan H, Yu H, Wang Y, et al: TERT promoter mutations
and their association with BRAF V600E mutation and aggressive
clinicopathological characteristics of thyroid cancer. J Clin
Endocrinol Metab. 99:E1130–E1136. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Shi X, Liu R, Qu S, Zhu G, Bishop J, Liu
X, Sun H, Shan Z, Wang E, Luo Y, et al: Association of TERT
promoter mutation 1,295,228 C>T with BRAF V600E mutation, older
patient age, and distant metastasis in anaplastic thyroid cancer. J
Clin Endocrinol Metab. 100:E632–E637. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Jung C, Bae J, Kim Y, Jeon S, Kim S, Kim
T, et al: The role of TERT promoter mutations and ALK rearrangement
in thyroid cancer patients with a high prevalence of the BRAF V600E
mutation. Thyroid. 25 (Suppl 1):2015.
|
8
|
Fan HC, Chang FW, Tsai JD, Lin KM, Chen
CM, Lin SZ, Liu CA and Harn HJ: Telomeres and Cancer. Life (Basel).
11(1405)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões
M, Soares P and Vinagre J: Telomere maintenance mechanisms in
cancer. Genes (Basel). 9(241)2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Leão R, Apolónio JD, Lee D, Figueiredo A,
Tabori U and Castelo-Branco P: Mechanisms of human telomerase
reverse transcriptase (hTERT) regulation: Clinical impacts in
cancer. J Biomed Sci. 25(22)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Dratwa M, Wysoczańska B, Łacina P, Kubik T
and Bogunia-Kubik K: TERT-Regulation and roles in cancer formation.
Front Immunol. 11(589929)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Landa I: InTERTwined: How TERT promoter
mutations impact BRAFV600E-driven thyroid cancers. Curr Opin Endocr
Metab Res. 30(100460)2023.PubMed/NCBI View Article : Google Scholar
|
13
|
Landa I, Ganly I, Chan TA, Mitsutake N,
Matsuse M, Ibrahimpasic T, Ghossein RA and Fagin JA: Frequent
somatic TERT promoter mutations in thyroid cancer: Higher
prevalence in advanced ORMS of the disease. J Clin Endocrinol
Metab. 98:E1562–E1566. 2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Vallarelli AF, Rachakonda PS, André J,
Heidenreich B, Riffaud L, Bensussan A, Kumar R and Dumaz N: TERT
promoter mutations in melanoma render TERT expression dependent on
MAPK pathway activation. Oncotarget. 7:53127–53136. 2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Insilla AC, Proietti A, Borrelli N,
Macerola E, Niccoli C, Vitti P, Miccoli P and Basolo F: TERT
promoter mutations and their correlation with BRAF and RAS
mutations in a consecutive cohort of 145 thyroid cancer cases.
Oncol Lett. 15:2763–2770. 2015.
|
16
|
Delyon J, Vallet A, Bernard-Cacciarella M,
Kuzniak I, Reger de Moura C, Louveau B, Jouenne F, Mourah S, Lebbé
C and Dumaz N: TERT expression induces resistance to BRAF and MEK
Inhibitors in BRAF-mutated melanoma in vitro. Cancers (Basel).
15(2888)2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Melo M, Gaspar da Rocha A, Batista R,
Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V,
Lobo C, et al: TERT, BRAF, and NRAS in primary thyroid cancer and
metastatic disease. J Clin Endocrinol Metab. 102:1898–1907.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Oishi N, Kondo T, Ebina A, Sato Y, Akaishi
J, Hino R, Yamamoto N, Mochizuki K, Nakazawa T, Yokomichi H, et al:
Molecular alterations of coexisting thyroid papillary carcinoma and
anaplastic carcinoma: Identification of TERT mutation as an
independent risk factor for transformation. Mod Pathol.
30:1527–1537. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Sipos JA and Mazzaferri EL: Thyroid cancer
epidemiology and prognostic variables. Clin Oncol (R Coll Radiol).
22:395–404. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Blateau P, Coyaud E, Laurent E, Béganton
B, Ducros V, Chauchard G, Vendrell JA and Solassol J: TERT promoter
mutation as an independent prognostic marker for poor prognosis
MAPK inhibitors-treated melanoma. Cancers (Basel).
12(2224)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Vuong HG, Altibi AMA, Duong UNP and
Hassell L: Prognostic implication of BRAF and TERT promoter
mutation combination in papillary thyroid carcinoma-A
meta-analysis. Clin Endocrinol (Oxf). 87:411–417. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Li S, Xue J, Jiang K, Chen Y, Zhu L and
Liu R: TERT promoter methylation is associated with high expression
of TERT and poor prognosis in papillary thyroid cancer. Front
Oncol. 14(1325345)2024.PubMed/NCBI View Article : Google Scholar
|
23
|
Guterres AN and Villanueva J: Targeting
telomerase for cancer therapy. Oncogene. 39:5811–5824.
2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Donati B and Ciarrocchi A: Telomerase and
telomeres biology in thyroid cancer. Int J Mol Sci.
20(2887)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Dosset M, Castro A, Carter H and Zanetti
M: Telomerase and CD4 T cell immunity in cancer. Cancers (Basel).
12(1687)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Wu L, Fidan K, Um JY and Ahn KS:
Telomerase: Key regulator of inflammation and cancer. Pharmacol
Res. 155(104726)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Nalobin DS, Galiakberova AA, Alipkina SI
and Glukhov AI: Regulation of telomerase activity. Biol Bull Rev.
8:pp142–154. 2018.
|
28
|
Bajaj S, Kumar MS, Peters GJ and Mayur YC:
Targeting telomerase for its advent in cancer therapeutics. Med Res
Rev. 40:1871–1919. 2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Milosevic Z, Pesic M, Stankovic T, Dinic
J, Milovanovic Z, Stojsic J, Dzodic R, Tanic N and Bankovic J:
Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction
pathways to chemosensitize anaplastic thyroid carcinoma. Transl
Res. 164:411–423. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Yu W, Imoto I, Inoue J, Onda M, Emi M and
Inazawa J: A novel amplification target, DUSP26, promotes
anaplastic thyroid cancer cell growth by inhibiting p38 MAPK
activity. Oncogene. 26:1178–1187. 2007.PubMed/NCBI View Article : Google Scholar
|
31
|
Smith N and Nucera C: Personalized therapy
in patients with anaplastic thyroid cancer: Targeting genetic and
epigenetic alterations. J Clin Endocrinol Metab. 100:35–42.
2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhong Z, Hu Z, Jiang Y, Sun R, Chen X, Chu
H, Zeng M and Sun C: Interleukin-11 promotes epithelial-mesenchymal
transition in anaplastic thyroid carcinoma cells through
PI3K/Akt/GSK3β signaling pathway activation. Oncotarget.
7:59652–59663. 2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Yuan J and Guo Y: Targeted therapy for
anaplastic thyroid carcinoma: Advances and management. Cancers
(Basel). 15(179)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Kimura T, Doolittle WKL, Kruhlak M, Zhao
L, Hwang E, Zhu X, Tang B, Wolcott KM and Cheng SY: Inhibition of
MEK signaling attenuates cancer stem cell activity in anaplastic
thyroid cancer. Thyroid. 34:484–495. 2024.PubMed/NCBI View Article : Google Scholar
|
35
|
Ferrari SM, Elia G, Ragusa F, Ruffilli I,
La Motta C, Paparo SR, Patrizio A, Vita R, Benvenga S, Materazzi G,
et al: Novel treatments for anaplastic thyroid carcinoma. Gland
Surg. 9 (Suppl 1):S28–S42. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Naoum GE, Morkos M, Kim B and Arafat W:
Novel targeted therapies and immunotherapy for advanced thyroid
cancers. Mol Cancer. 17(51)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Huang J, Harris EJ and Lorch JH: Treatment
of aggressive thyroid cancer. Surg Pathol Clin. 12:943–950.
2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Gui L, Liu S, Zhang Y and Shi Y: A
remarkable and durable response to sintilimab and anlotinib in the
first-line treatment of an anaplastic thyroid carcinoma without
targetable genomic alterations: A case report. Onco Targets Ther.
14:2741–2746. 2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Adotévi O, Mollier K, Neuveut C, Dosset M,
Ravel P, Fridman WH, Tartour E, Charneau P, Wain-Hobson S and
Langlade-Demoyen P: Targeting human telomerase reverse
transcriptase with recombinant lentivector is highly effective to
stimulate antitumor CD8 T-cell immunity in vivo. Blood.
115:3025–3032. 2010.PubMed/NCBI View Article : Google Scholar
|
40
|
Mao J, Zhang Q, Wang Y, Zhuang Y, Xu L, Ma
X, Guan D, Zhou J, Liu J, Wu X, et al: TERT activates endogenous
retroviruses to promote an immunosuppressive tumour
microenvironment. EMBO Rep. 23(e52984)2022.PubMed/NCBI View Article : Google Scholar
|