|
1
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers.
7(6)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Singal AG, Kanwal F and Llovet JM: Global
trends in hepatocellular carcinoma epidemiology: Implications for
screening, prevention and therapy. Nat Rev Clin Oncol. 20:864–884.
2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Singal AG, Lampertico P and Nahon P:
Epidemiology and surveillance for hepatocellular carcinoma: New
trends. J Hepatol. 72:250–261. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
El-Serag HB: Hepatocellular carcinoma. N
Engl J Med. 365:1118–1127. 2011.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y and Lu L:
Harnessing CD8(+) T cell dynamics in hepatitis B virus-associated
liver diseases: Insights, therapies and future directions. Clin
Transl Med. 14(e1731)2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Iannacone M and Guidotti LG: Immunobiology
and pathogenesis of hepatitis B virus infection. Nat Rev Immunol.
22:19–32. 2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
He J, Miao R, Chen Y, Wang H and Liu M:
The dual role of regulatory T cells in hepatitis B virus infection
and related hepatocellular carcinoma. Immunology. 171:445–463.
2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Weber C: Hepatitis: Myeloid-derived
suppressor cells in HBV infection. Nat Rev Gastroenterol Hepatol.
12(370)2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ye B, Liu X, Li X, Kong H, Tian L and Chen
Y: T-cell exhaustion in chronic hepatitis B infection: current
knowledge and clinical significance. Cell Death Dis.
6(e1694)2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Dumolard L, Aspord C, Marche PN and
Jilkova ZM: Immune checkpoints on T and NK cells in the context of
HBV infection: Landscape, pathophysiology and therapeutic
exploitation. Front Immunol. 14(1148111)2023.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Chen Y and Tian Z: HBV-Induced immune
imbalance in the development of HCC. Front Immunol.
10(2048)2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Liu L, Huang Y, Fu Y, Rao J, Zeng F, Ji M,
Xu X, Zhu J, Du W and Liu Z: Hepatitis B virus promotes
hepatocellular carcinoma development by activating GP73 to repress
the innate immune response. Infect Agent Cancer.
17(52)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Jiang Y, Han Q, Zhao H and Zhang J: The
mechanisms of HBV-induced hepatocellular carcinoma. J Hepatocell
Carcinoma. 8:435–450. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Zheng Q, Sun Q, Yao H, Shi R, Wang C, Ma
Z, Xu H, Zhou G, Cheng Z and Xia H: Single-cell landscape
identifies the immunophenotypes and microenvironments of
HBV-positive and HBV-negative liver cancer. Hepatol Commun.
8(e0364)2024.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Lambrechts D, Wauters E, Boeckx B, Aibar
S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den
Eynde K, et al: Phenotype molding of stromal cells in the lung
tumor microenvironment. Nat Med. 24:1277–1289. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Azizi E, Carr AJ, Plitas G, Cornish AE,
Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M,
et al: Single-cell map of diverse immune phenotypes in the breast
tumor microenvironment. Cell. 174:1293–1308, e1236. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhang L, Yu X, Zheng L, Zhang Y, Li Y,
Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking
reveals dynamic relationships of T cells in colorectal cancer.
Nature. 564:268–272. 2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao
R, Modak M, Carotta S, Haslinger C, Kind D, et al: Landscape and
dynamics of single immune cells in hepatocellular carcinoma. Cell.
179:829–845, e820. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y,
Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al: Landscape of
infiltrating T cells in liver cancer revealed by single-cell
sequencing. Cell. 169:1342–1356, e1316. 2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Steele NG, Carpenter ES, Kemp SB,
Sirihorachai VR, The S, Delrosario L, Lazarus J, Amir ED, Gunchick
V, Espinoza C, et al: Multimodal mapping of the tumor and
peripheral blood immune landscape in human pancreatic cancer. Nat
Cancer. 1:1097–1112. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Korsunsky I, Millard N, Fan J, Slowikowski
K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR and Raychaudhuri
S: Fast, sensitive and accurate integration of single-cell data
with harmony. Nat Methods. 16:1289–1296. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Van de Sande B, Flerin C, Davie K, De
Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt
R, Rouchon Q, et al: A scalable SCENIC workflow for single-cell
gene regulatory network analysis. Nat Protoc. 15:2247–2276.
2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Van den Bossche F, Tevel V, Gilis F,
Gaussin JF, Boonen M and Jadot M: Residence of the nucleotide sugar
transporter family members SLC35F1 and SLC35F6 in the
endosomal/lysosomal pathway. Int J Mol Sci. 25(6718)2024.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Song Z: Roles of the nucleotide sugar
transporters (SLC35 family) in health and disease. Mol Aspects Med.
34:590–600. 2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Ringelhan M, Pfister D, O'Connor T,
Pikarsky E and Heikenwalder M: The immunology of hepatocellular
carcinoma. Nat Immunol. 19:222–232. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Bian J, Lin J, Long J, Yang X, Yang X, Lu
X, Sang X and Zhao H: T lymphocytes in hepatocellular carcinoma
immune microenvironment: Insights into human immunology and
immunotherapy. Am J Cancer Res. 10:4585–4606. 2020.PubMed/NCBI
|
|
27
|
Ho DW, Tsui YM, Chan LK, Sze KM, Zhang X,
Cheu JW, Chiu YT, Lee JM, Chan AC, Cheung ET, et al: Single-cell
RNA sequencing shows the immunosuppressive landscape and tumor
heterogeneity of HBV-associated hepatocellular carcinoma. Nat
Commun. 12(3684)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Vodnala SK, Eil R, Kishton RJ, Sukumar M,
Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, et al: T cell
stemness and dysfunction in tumors are triggered by a common
mechanism. Science. 363(eaau0135)2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Sugimoto MA, Vago JP, Teixeira MM and
Sousa LP: Annexin A1 and the resolution of inflammation: Modulation
of neutrophil recruitment, apoptosis, and clearance. J Immunol Res.
2016(8239258)2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Binder B, Thimme R and Hofmann M: MAIT
cells in viral hepatitis and liver diseases. Crit Rev Immunol.
41:37–47. 2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Gajewski TF, Schreiber H and Fu YX: Innate
and adaptive immune cells in the tumor microenvironment. Nat
Immunol. 14:1014–1022. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Diamond MS and Farzan M: The
broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat
Rev Immunol. 13:46–57. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Reif K and Cyster JG: RGS molecule
expression in murine B lymphocytes and ability to down-regulate
chemotaxis to lymphoid chemokines. J Immunol. 164:4720–4729.
2000.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Truxova I, Kasikova L, Hensler M, Skapa P,
Laco J, Pecen L, Belicova L, Praznovec I, Halaska MJ, Brtnicky T,
et al: Mature dendritic cells correlate with favorable immune
infiltrate and improved prognosis in ovarian carcinoma patients. J
Immunother Cancer. 6(139)2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J,
Liu Y and Liu L: Exploring the role of the immune microenvironment
in hepatocellular carcinoma: Implications for immunotherapy and
drug resistance. Elife. 13(e95009)2024.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chen SM, Zhang L, Chen YK, Zhang XZ and Ma
Y: Chronic inflammatory and immune microenvironment promote
hepatocellular carcinoma evolution. J Inflamm Res. 16:5287–5298.
2023.
|
|
37
|
Ren X, Zhang L, Zhang Y, Li Z, Siemers N
and Zhang Z: Insights gained from single-cell analysis of immune
cells in the tumor microenvironment. Annu Rev Immunol. 39:583–609.
2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Song G, Shi Y, Zhang M, Goswami S, Afridi
S, Meng L, Ma J, Chen Y, Lin Y, Zhang J, et al: Global immune
characterization of HBV/HCV-related hepatocellular carcinoma
identifies macrophage and T-cell subsets associated with disease
progression. Cell Discov. 6(90)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sun JC and Lanier LL: NK cell development,
homeostasis and function: Parallels with CD8(+) T cells. Nat Rev
Immunol. 11:645–657. 2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tie Y, Tang F, Wei YQ and Wei XW:
Immunosuppressive cells in cancer: Mechanisms and potential
therapeutic targets. J Hematol Oncol. 15(61)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sivasudhan E, Blake N, Lu Z, Meng J and
Rong R: Hepatitis B viral protein HBx and the molecular mechanisms
modulating the hallmarks of hepatocellular carcinoma: A
comprehensive review. Cells. 11(741)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Sun Y, Yu M, Qu M, Ma Y, Zheng D, Yue Y,
Guo S, Tang L, Li G, Zheng W, et al: Hepatitis B virus-triggered
PTEN/beta-catenin/c-Myc signaling enhances PD-L1 expression to
promote immune evasion. Am J Physiol Gastrointest Liver Physiol.
318:G162–G173. 2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Shin EC, Sung PS and Park SH: Immune
responses and immunopathology in acute and chronic viral hepatitis.
Nat Rev Immunol. 16:509–523. 2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Donne R and Lujambio A: The liver cancer
immune microenvironment: Therapeutic implications for
hepatocellular carcinoma. Hepatology. 77:1773–1796. 2023.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Hu MY, Yan JJ, Petersen I, Himmerkus N,
Bleich M and Stumpp M: A SLC4 family bicarbonate transporter is
critical for intracellular pH regulation and biomineralization in
sea urchin embryos. Elife. 7(e36600)2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Vuillefroy de Silly R, Pericou L, Seijo B,
Crespo I and Irving M: Acidity suppresses CD8 + T-cell function by
perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J. 43:4922–4953.
2024.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Treiner E, Duban L, Bahram S,
Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S and
Lantz O: Selection of evolutionarily conserved mucosal-associated
invariant T cells by MR1. Nature. 422:164–169. 2003.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Le Bourhis L, Guerri L, Dusseaux M, Martin
E, Soudais C and Lantz O: Mucosal-associated invariant T cells:
Unconventional development and function. Trends Immunol.
32:212–218. 2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Ling L, Lin Y, Zheng W, Hong S, Tang X,
Zhao P, Li M, Ni J, Li C, Wang L and Jiang Y: Circulating and
tumor-infiltrating mucosal associated invariant T (MAIT) cells in
colorectal cancer patients. Sci Rep. 6(20358)2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Gherardin NA, Loh L, Admojo L, Davenport
AJ, Richardson K, Rogers A, Darcy PK, Jenkins MR, Prince HM,
Harrison SJ, et al: Enumeration, functional responses and cytotoxic
capacity of MAIT cells in newly diagnosed and relapsed multiple
myeloma. Sci Rep. 8(4159)2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Yan J, Allen S, McDonald E, Das I, Mak
JYW, Liu L, Fairlie DP, Meehan BS, Chen Z, Corbett AJ, et al: MAIT
cells promote tumor initiation, growth, and Metastases via Tumor
MR1. Cancer Discov. 10:124–141. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Petley EV, Koay HF, Henderson MA, Sek K,
Todd KL, Keam SP, Lai J, House IG, Li J, Zethoven M, et al: MAIT
cells regulate NK cell-mediated tumor immunity. Nat Commun.
12(4746)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi
M, Huang IC, Farzan M and Jung JU: The antiviral effector IFITM3
disrupts intracellular cholesterol homeostasis to block viral
entry. Cell Host Microbe. 13:452–464. 2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Londrigan SL, Wakim LM, Smith J, Haverkate
AJ, Brooks AG and Reading PC: IFITM3 and type I interferons are
important for the control of influenza A virus replication in
murine macrophages. Virology. 540:17–22. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Clement M, Forbester JL, Marsden M,
Sabberwal P, Sommerville MS, Wellington D, Dimonte S, Clare S,
Harcourt K, Yin Z, et al: IFITM3 restricts virus-induced
inflammatory cytokine production by limiting Nogo-B mediated TLR
responses. Nat Commun. 13(5294)2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Pizzagalli MD, Bensimon A and
Superti-Furga G: A guide to plasma membrane solute carrier
proteins. FEBS J. 288:2784–2835. 2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Song W, Li D, Tao L, Luo Q and Chen L:
Solute carrier transporters: The metabolic gatekeepers of immune
cells. Acta Pharm Sin B. 10:61–78. 2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ji L, Zhao X, Zhang B, Kang L, Song W,
Zhao B, Xie W, Chen L and Hu X: Slc6a8-mediated creatine uptake and
accumulation reprogram macrophage polarization via regulating
cytokine responses. Immunity. 51:272–284, e277. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Bian Y, Li W, Kremer DM, Sajjakulnukit P,
Li S, Crespo J, Nwosu ZC, Zhang L, Czerwonka A, Pawłowska A, et al:
Cancer SLC43A2 alters T cell methionine metabolism and histone
methylation. Nature. 585:277–282. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Farenholtz J, Artelt N, Blumenthal A,
Endlich K, Kroemer HK, Endlich N and von Bohlen Und Halbach O:
Expression of Slc35f1 in the murine brain. Cell Tissue Res.
377:167–176. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sulieman H, Emerson A, Wilson PM, Mulligan
KA, Ladner RD and LaBonte MJ: Harnessing nucleotide metabolism and
immunity in cancer: A tumour microenvironment perspective. FEBS J.
292:2155–2172. 2024.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Madsen HB, Peeters MJ, Straten PT and
Desler C: Nucleotide metabolism in the regulation of tumor
microenvironment and immune cell function. Curr Opin Biotechnol.
84(103008)2023.PubMed/NCBI View Article : Google Scholar
|