|
1
|
Rossi JK, Nuevo-Tapioles C and Philips MR:
Differential functions of the KRAS splice variants. Biochem Soc
Trans. 51:1191–1199. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
García-España A and Philips MR: Origin and
evolution of RAS membrane targeting. Oncogene. 42:1741–1750.
2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Prior IA, Lewis PD and Mattos C: A
comprehensive survey of Ras mutations in cancer. Cancer Res.
72:2457–2467. 2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Dienstmann R, Connor K and Byrne AT:
COLOSSUS Consortium. Precision therapy in RAS mutant colorectal
cancer. Gastroenterology. 158:806–811. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Patelli G, Tosi F, Amatu A, Mauri G,
Curaba A, Patanè DA, Pani A, Scaglione F, Siena S and
Sartore-Bianchi A: Strategies to tackle RAS-mutated metastatic
colorectal cancer. ESMO Open. 6(100156)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Drosten M and Barbacid M: Targeting the
MAPK pathway in KRAS-driven tumors. Cancer Cell. 37:543–550.
2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Schwartz S, Wongvipat J, Trigwell CB,
Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de
Stanchina E, Baselga J, et al: Feedback suppression of PI3Kα
signaling in PTEN-mutated tumors is relieved by selective
inhibition of PI3Kβ. Cancer Cell. 27:109–122. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Tsai FD, Lopes MS, Zhou M, Court H, Ponce
O, Fiordalisi JJ, Gierut JJ, Cox AD, Haigis KM and Philips MR:
K-Ras4A splice variant is widely expressed in cancer and uses a
hybrid membrane-targeting motif. Proc Natl Acad Sci USA.
112:779–784. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Voice JK, Klemke RL, Le A and Jackson JH:
Four human ras homologs differ in their abilities to activate
Raf-1, induce transformation, and stimulate cell motility. J Biol
Chem. 274:17164–17170. 1999.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Mantovani A and Sica A: Macrophages,
innate immunity and cancer: Balance, tolerance, and diversity. Curr
Opin Immunol. 22:231–237. 2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Barclay AN and van den Berg TK: The
interaction between signal regulatory protein alpha (SIRPα) and
CD47: Structure, function, and therapeutic target. Annu Rev
Immunol. 32:25–50. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Hu H, Cheng R, Wang Y, Wang X, Wu J, Kong
Y, Zhan S, Zhou Z, Zhu H, Yu R, et al: Oncogenic KRAS signaling
drives evasion of innate immune surveillance in lung adenocarcinoma
by activating CD47. J Clin Invest. 133(e153470)2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Liu J, van der Hoeven R, Kattan WE, Chang
JT, Montufar-Solis D, Chen W, Wong M, Zhou Y, Lebrilla CB and
Hancock JF: Glycolysis regulates KRAS plasma membrane localization
and function through defined glycosphingolipids. Nat Commun.
14(465)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Patra KC, Wang Q, Bhaskar PT, Miller L,
Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al:
Hexokinase 2 is required for tumor initiation and maintenance and
its systemic deletion is therapeutic in mouse models of cancer.
Cancer Cell. 24:213–228. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Hosios AM, Hecht VC, Danai LV, Johnson MO,
Rathmell JC, Steinhauser ML, Manalis SR and Vander Heiden MG: Amino
acids rather than glucose account for the majority of cell mass in
proliferating mammalian cells. Dev Cell. 36:540–549.
2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nan X, Tamgüney TM, Collisson EA, Lin LJ,
Pitt C, Galeas J, Lewis S, Gray JW, McCormick F and Chu S: Ras-GTP
dimers activate the mitogen-activated protein kinase (MAPK)
pathway. Proc Natl Acad Sci USA. 112:7996–8001. 2015.PubMed/NCBI View Article : Google Scholar
|
|
17
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signalling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Targets. 16 (Suppl
2):S17–S27. 2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Parikh K, Banna G, Liu SV, Friedlaender A,
Desai A, Subbiah V and Addeo A: Drugging KRAS: Current perspectives
and state-of-art review. J Hematol Oncol. 15(152)2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Moore AR, Rosenberg SC, McCormick F and
Malek S: RAS-targeted therapies: Is the undruggable drugged? Nat
Rev Drug Discov. 19:533–552. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Punekar SR, Velcheti V, Neel BG and Wong
KK: The current state of the art and future trends in RAS-targeted
cancer therapies. Nat Rev Clin Oncol. 19:637–655. 2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Tria SM, Burge ME and Whitehall VLJ: The
therapeutic landscape for KRAS-mutated colorectal cancers.
Cancers (Basel). 15(2375)2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Carracedo A, Ma L, Teruya-Feldstein J,
Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma
SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation
through a PI3K-dependent feedback loop in human cancer. J Clin
Invest. 118:3065–3074. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
23
|
Chandarlapaty S, Sawai A, Scaltriti M,
Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK,
Baselga J and Rosen N: AKT inhibition relieves feedback suppression
of receptor tyrosine kinase expression and activity. Cancer Cell.
19:58–71. 2011.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Ostrem JM, Peters U, Sos ML, Wells JA and
Shokat KM: K-Ras(G12C) inhibitors allosterically control GTP
affinity and effector interactions. Nature. 503:548–551.
2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Siegel RL, Miller KD, Sauer AG, Fedewa SA,
Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A:
Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164.
2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chinese Society of Clinical Oncology
(CSCO). Colorectal cancer diagnosis and treatment guidelines.
Beijing: CSCO Press; 2023.
|
|
27
|
National Comprehensive Cancer Network
(NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®): Colon Cancer. Version 2.2023. Plymouth
Meeting, PA: National Comprehensive Cancer Network; 2023. Available
from: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
(Accessed 2024 Jul 20).
|
|
28
|
National Comprehensive Cancer Network.
NCCN Guidelines®: Rectal Cancer. Version 4.2023; 2023.
Available from: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
(Accessed 2024 Jul 20).
|
|
29
|
Bteich F, Mohammadi M, Li T, Bhat MA,
Sofianidi A, Wei N and Kuang C: Targeting KRAS in colorectal
cancer: A bench to bedside review. Int J Mol Sci.
24(12030)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Infante JR, Fecher LA, Falchook GS,
Nallapareddy S, Gordon MS, Becerra C, DeMarini DJ, Cox DS, Xu Y,
Morris SR, et al: Safety, pharmacokinetic, pharmacodynamic, and
efficacy data for the oral MEK inhibitor trametinib: a phase 1
dose-escalation trial. Lancet Oncol. 13:773–781. 2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Rosen LS, LoRusso P, Ma WW, Goldman JW,
Weise A, Colevas AD, Adjei A, Yazji S, Shen A, Johnston S, et al: A
first-in-human phase I study to evaluate the MEK1/2 inhibitor,
cobimetinib, administered daily in patients with advanced solid
tumors. Invest New Drugs. 34:604–613. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Huijberts SCFA, van Geel RMJM, van
Brummelen EMJ, Opdam FL, Marchetti S, Steeghs N, Pulleman S,
Thijssen B, Rosing H, Monkhorst K, et al: Phase I study of
lapatinib plus trametinib in patients with KRAS-mutant colorectal,
non-small cell lung, and pancreatic cancer. Cancer Chemother
Pharmacol. 85:917–930. 2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Deming DA, Cavalcante LL, Lubner SJ,
Mulkerin DL, LoConte NK, Eickhoff JC, Kolesar JM, Fioravanti S,
Greten TF, Compton K, et al: A phase I study of selumetinib
(AZD6244/ARRY-142866), a MEK1/2 inhibitor, in combination with
cetuximab in refractory solid tumors and KRAS mutant colorectal
cancer. Invest New Drugs. 34:168–175. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Hochster HS, Uboha N, Messersmith W, Gold
PJ, ONeil BH, Cohen D, Denlinger C, Cohen S, Leichman CG, Leichman
L and Lenz HJ: Phase II study of selumetinib (AZD6244, ARRY-142886)
plus irinotecan as second-line therapy in patients with K-RAS
mutated colorectal cancer. Cancer Chemother Pharmacol. 75:17–23.
2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Bedard PL, Tabernero J, Janku F, Wainberg
ZA, Paz-Ares L, Vansteenkiste J, Van Cutsem E, Pérez-García J,
Stathis A, Britten CD, et al: A phase Ib dose-escalation study of
the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with
the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with
selected advanced solid tumors. Clin Cancer Res. 21:730–738.
2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Grilley-Olson JE, Bedard PL, Fasolo A,
Cornfeld M, Cartee L, Razak AR, Stayner LA, Wu Y, Greenwood R,
Singh R, et al: A phase Ib dose-escalation study of the MEK
inhibitor trametinib in combination with the PI3K/mTOR inhibitor
GSK2126458 in patients with advanced solid tumors. Invest New
Drugs. 34:740–749. 2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ramanathan RK, Von Hoff DD, Eskens F,
Blumenschein G Jr, Richards D, Genvresse I, Reschke S, Granvil C,
Skubala A, Peña C and Mross K: Phase Ib trial of the PI3K inhibitor
copanlisib combined with the allosteric MEK inhibitor refametinib
in patients with advanced cancer. Target Oncol. 15:163–174.
2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Shapiro GI, LoRusso P, Cho DC, Musib L,
Yan Y, Wongchenko M, Chang I, Patel P, Chan IT, Sanabria-Bohorquez
S, et al: A phase Ib open-label dose escalation study of the
safety, pharmacokinetics, and pharmacodynamics of cobimetinib
(GDC-0973) and ipatasertib (GDC-0068) in patients with locally
advanced or metastatic solid tumors. Invest New Drugs. 39:163–174.
2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Do K, Speranza G, Bishop R, Khin S,
Rubinstein L, Kinders RJ, Datiles M, Eugeni M, Lam MH, Doyle LA, et
al: Biomarker-driven phase 2 study of MK-2206 and selumetinib
(AZD6244, ARRY-142886) in patients with colorectal cancer. Invest
New Drugs. 33:720–728. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Pant S, Bendell JC, Sullivan RJ, Shapiro
G, Millward M, Mi G, Yuen E, Willard MD, Wang D, Joseph S, et al: A
phase I dose-escalation study of ERK inhibitor LY3214996 in
advanced cancer patients. J Clin Oncol.
37(15_suppl)(S3001)2019.
|
|
41
|
O'Hara MH, Edmonds C, Farwell M, Perini
RF, Pryma DA, Teitelbaum UR, Giantonio BJ, Damjanov N, Lal P,
Feldman MD, et al: Phase II pharmacodynamics trial of palbociclib
in patients with KRAS mutant colorectal cancer. J Clin Oncol.
33:626–630. 2015.
|
|
42
|
Skoulidis F, Li BT, Dy GK, Price TJ,
Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F,
et al: Sotorasib for lung cancers with KRAS p.G12C mutation.
N Engl J Med. 384:2371–2381. 2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Nakajima EC, Drezner N, Li X,
Mishra-Kalyani PS, Liu Y, Zhao H, Bi Y, Liu J, Rahman A, Wearne E,
et al: FDA approval summary: Sotorasib for KRAS G12C-mutated
metastatic NSCLC. Clin Cancer Res. 28:1482–1486. 2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Fakih MG, Kopetz S, Kuboki Y, Kim TW,
Munster PN, Krauss JC, Falchook GS, Han SW, Heinemann V, Muro K, et
al: Sotorasib for previously treated colorectal cancers with
KRASG12C mutation (CodeBreaK100): A prespecified
analysis of a single-arm, phase 2 trial. Lancet Oncol. 23:115–124.
2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Yaeger R, Weiss J, Pelster MS, Spira AI,
Barve M, Ou SI, Leal TA, Bekaii-Saab TS, Paweletz CP, Heavey GA, et
al: Adagrasib with or without cetuximab in colorectal cancer with
mutated KRAS G12C. N Engl J Med. 388:44–54. 2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Jacobio Pharma. Clinical results of
Glecirasib in colorectal cancer (Internet). 2023 (cited 2024 Jul
20). Available from: http://www.jacobiopharma.com/en/news/Jacobio_Pharma_Presents_Clinical_Results_of_Glecirasib_in_Colorectal_Cancer.
|
|
47
|
Zhao MH and Wu AW: Targeting KRAS
G12C mutations in colorectal cancer. Gastroenterol Rep (Oxf).
11(goac083)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhao Y, Murciano-Goroff YR, Xue JY, Ang A,
Lucas J, Mai TT, Da Cruz Paula AF, Saiki AY, Mohn D, Achanta P, et
al: Diverse alterations associated with resistance to KRAS(G12C)
inhibition. Nature. 599:679–683. 2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Awad MM, Liu S, Rybkin II, Arbour KC,
Dilly J, Zhu VW, Johnson ML, Heist RS, Patil T, Riely GJ, et al:
Acquired resistance to KRASG12C Inhibition in Cancer. N
Engl J Med. 384:2382–2393. 2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Hong DS, Kuboki Y, Strickler JH, Fakih M,
Houssiau H, Price TJ, Elez E, Siena S, Chan E, Nolte-Hippenmeyer J,
et al: Sotorasib (Soto) plus panitumumab (Pmab) and FOLFIRI for
previously treated KRAS G12C-mutated metastatic colorectal cancer
(mCRC): CodeBreaK 101 phase 1b safety and efficacy. J Clin Oncol.
41 (16_Suppl)(S3513)2023.
|
|
51
|
Yuan Y, Deng YH, Jin YD, Pan Y, Wang C,
Wang Z, Zhang Z, Meng X, Hu Y, Zhao M, et al: Efficacy and safety
of IBI351 (GFH925) monotherapy in metastatic colorectal cancer
harboring KRASG12C mutation: Preliminary results from a pooled
analysis of two phase I studies. J Clin Oncol. 41
(16_Suppl)(S3586)2023.
|
|
52
|
Desai J, Alonso G, Kim SH, Cervantes A,
Karasic T, Medina L, Shacham-Shmueli E, Cosman R, Falcon A, Gort E,
et al: Divarasib plus cetuximab in KRAS G12C-positive colorectal
cancer: A phase 1b trial. Nat Med. 30:271–278. 2024.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Liu C, Lu H, Wang H, Loo A, Zhang X, Yang
G, Kowal C, Delach S, Wang Y, Goldoni S, et al: Combinations with
allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase
signaling. Clin Cancer Res. 27:342–354. 2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kerr DL, Haderk F and Bivona TG:
Allosteric SHP2 inhibitors in cancer: Targeting the intersection of
RAS, resistance, and the immune microenvironment. Curr Opin Chem
Biol. 62:1–12. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hunter JC, Manandhar A, Carrasco MA,
Gurbani D, Gondi S and Westover KD: Biochemical and structural
analysis of common cancer-associated KRAS mutations. Mol Cancer
Res. 13:1325–1335. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kim D, Xue JY and Lito P: Targeting
KRAS(G12C): From inhibitory mechanism to modulation of antitumor
effects in patients. Cell. 183:850–859. 2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Kuboki Y, Yaeger R and Fakih M: Sotorasib
in combination with panitumumab in refractory KRAS G12C-mutated
colorectal cancer: Safety and efficacy for phase Ib full expansion
cohort. Ann Oncol. 33 (Suppl 9):S1445–S1453. 2022.
|
|
58
|
Desai J, Han S, Forster MD, Kim TW, Alonso
Casal G, Shmueli ES, Bowyer SE, De Miguel MJ, Gonzalez AF, Jones
RH, et al: Phase Ia study to evaluate GDC-6036 monotherapy in
patients with colorectal cancer (CRC) with KRAS G12C mutation. Ann
Oncol. 33 (Suppl 7):S136–S196. 2022.
|
|
59
|
Liu RR, Qu XJ, Yang N, Chai XL and Xu JM:
First-in-human study of ZG19018, targeting KRAS G12C, as
monotherapy in patients with advanced solid tumors. J Clin Oncol.
41 (Suppl 16)(e15127)2023.
|
|
60
|
Salvatore L, Fakih M, Kuboki Y, Hong DS,
Modest DA, Taieb J, Price TJ, Cremolini C, Majer IM, Rehn M, et al:
59P Matching-adjusted indirect treatment comparisons (MAIC) of
sotorasib 960mg plus panitumumab vs trifluridine/tipiracil plus
bevacizumab in chemorefractory metastatic colorectal cancer. Ann
Oncol. 35 (Suppl 1):S28–S29. 2024.
|
|
61
|
Ruan D, Lee MA, Deng Y, Lee KW, Millward
M, Grewal JS, Gadgeel SM, Sanborn RE, Hou X, Wei S, et al: Safety
and efficacy of D-1553 in KRAS G12C-mutated colorectal cancer:
Results from a phase I/II study. J Clin Oncol. 41(3563)2023.
|