|
1
|
National Cancer Institute: Cancer Stat
Facts: Brain and Other Nervous System Cancer. https://seer.cancer.gov/statfacts/html/brain.html.
|
|
2
|
National Center for Health Statistics:
Declines in cancer death rates among youth: United States,
2001-2021. NCHS Data Brief No. 484, November 2023. https://www.cdc.gov/nchs/products/databriefs/db484.htm.
|
|
3
|
Schaff LR and Mellinghoff IK: Glioblastoma
and other primary brain malignancies in adults: A review. JAMA.
329:574–587. 2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
National Brain Tumor Society: Grade
4-Glioblastoma (GBM). https://braintumor.org/events/glioblastoma-awareness-day/about-glioblastoma/.
|
|
5
|
Butt AM, Jones HC and Abbott NJ:
Electrical resistance across the blood-brain barrier in
anaesthetized rats: A developmental study. J Physiol. 429:47–62.
1990.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Brown LS, Foster CG, Courtney JM, King NE,
Howells DW and Sutherland BA: Pericytes and neurovascular function
in the healthy and diseased brain. Front Cell Neurosci.
13(282)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ou A, Yung WKA and Majd N: Molecular
mechanisms of treatment resistance in glioblastoma. Int J Mol Sci.
22(351)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Sarkaria JN, Hu LS, Parney IF, Pafundi DH,
Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy
JK, et al: Is the blood-brain barrier really disrupted in all
glioblastomas? A critical assessment of existing clinical data.
Neuro Oncol. 20:184–191. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Bendell JC, Domchek SM, Burstein HJ,
Harris L, Younger J, Kuter I, Bunnell C, Rue M, Gelman R and Winer
E: Central nervous system metastases in women who receive
trastuzumab-based therapy for metastatic breast carcinoma. Cancer.
97:2972–2977. 2003.PubMed/NCBI View Article : Google Scholar
|
|
10
|
McCord M, Mukouyama YS, Gilbert MR and
Jackson S: Targeting WNT signaling for multifaceted glioblastoma
therapy. Front Cell Neurosci. 11(318)2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Alvarez JI, Dodelet-Devillers A, Kebir H,
Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L,
Bernard M, et al: The Hedgehog pathway promotes blood-brain barrier
integrity and CNS immune quiescence. Science. 334:1727–1731.
2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mo F, Pellerino A, Soffietti R and Rudà R:
Blood-brain barrier in brain tumors: Biology and clinical
relevance. Int J Mol Sci. 22(12654)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ommaya AK: Subcutaneous reservoir and pump
for sterile access to ventricular cerebrospinal fluid. Lancet.
2:983–984. 1963.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jabbour E, O'Brien S, Kantarjian H,
Garcia-Manero G, Ferrajoli A, Ravandi F, Cabanillas M and Thomas
DA: Neurologic complications associated with intrathecal liposomal
cytarabine given prophylactically in combination with high-dose
methotrexate and cytarabine to patients with acute lymphocytic
leukemia. Blood. 109:3214–3218. 2007.
|
|
15
|
Siegal T, Horowitz A and Gabizon A:
Doxorubicin encapsulated in sterically stabilized liposomes for the
treatment of a brain tumor model: Biodistribution and therapeutic
efficacy. J Neurosurg. 83:1029–1037. 1995.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Pinzón-Daza M, Garzón R, Couraud P, Romero
Ia, Weksler B, Ghigo D, Bosia A and Riganti C: The association of
statins plus LDL receptor-targeted Liposome-encapsulated
doxorubicin increases in vitro drug delivery across blood-brain
barrier cells. Br J Pharmacol. 167:1431–1447. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Durmus S, Sparidans RW, Wagenaar E,
Beijnen JH and Schinkel AH: Oral availability and brain penetration
of the B-RAFV600E inhibitor vemurafenib can be enhanced by the
P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2)
inhibitor elacridar. Mol Pharm. 9:3236–3245. 2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
McDannold N, Zhang Y, Supko JG, Power C,
Sun T, Peng C, Vykhodtseva N, Golby AJ and Reardon DA: Acoustic
feedback enables safe and reliable carboplatin delivery across the
blood-brain barrier with a clinical focused ultrasound system and
improves survival in a rat glioma model. Theranostics. 9:6284–6299.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Portnow J, Synold TW, Badie B, Tirughana
R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, et
al: Neural stem Cell-based anticancer gene therapy: A
First-in-Human study in recurrent High-grade glioma patients. Clin
Cancer Res. 23:2951–2960. 2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Shen Y, Thng DKH, Wong ALA and Toh TB:
Mechanistic insights and the clinical prospects of targeted
therapies for glioblastoma: A comprehensive review. Exp Hematol
Oncol. 13(40)2024.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Fu D, Calvo JA and Samson LD: Balancing
repair and tolerance of DNA damage caused by alkylating agents. Nat
Rev Cancer. 12:104–120. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Roos WP, Batista LF, Naumann SC, Wick W,
Weller M, Menck CF and Kaina B: Apoptosis in malignant glioma cells
triggered by the temozolomide-induced DNA lesion O6-methylguanine.
Oncogene. 26:186–197. 2007.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kitange GJ, Carlson BL, Schroeder MA,
Grogan PT, Lamont JD, Decker PA, Wu W, James CD and Sarkaria JN:
Induction of MGMT expression is associated with temozolomide
resistance in glioblastoma xenografts. Neuro Oncol. 11:281–291.
2009.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hegi ME, Diserens AC, Gorlia T, Hamou MF,
de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani
L, et al: MGMT gene silencing and benefit from temozolomide in
glioblastoma. N Engl J Med. 352:997–1003. 2005.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Sarkaria JN, Ballman KV, Kizilbash SH,
Sulman EP, Giannini C, Mashru SH, Piccioni DE, Friday BEB, Dixon
JG, Kabat B, et al: Randomized phase II/III trial of veliparib or
placebo in combination with adjuvant temozolomide in newly
diagnosed glioblastoma (GBM) patients with MGMT promoter
hypermethylation (Alliance A071102). J Clin Oncol. 40 (Suppl
16)(S2001)2022.
|
|
27
|
Stupp R, Hegi ME, Gorlia T, Erridge SC,
Perry J, Hong YK, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, et
al: Cilengitide combined with standard treatment for patients with
newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC
EORTC 26071-22072 study): A multicentre, randomised, open-label,
phase 3 trial. Lancet Oncol. 15:1100–1108. 2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Balana C, De Las Penas R, Sepúlveda JM,
Gil-Gil MJ, Luque R, Gallego O, Carrato C, Sanz C, Reynes G,
Herrero A, et al: Bevacizumab and temozolomide versus temozolomide
alone as neoadjuvant treatment in unresected glioblastoma: The
GENOM 009 randomized phase II trial. J Neurooncol. 127:569–579.
2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Shinsato Y, Furukawa T, Yunoue S, Yonezawa
H, Minami K, Nishizawa Y, Ikeda R, Kawahara K, Yamamoto M, Hirano
H, et al: Reduction of MLH1 and PMS2 confers temozolomide
resistance and is associated with recurrence of glioblastoma.
Oncotarget. 4:2261–2270. 2013.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cahill DP, Levine KK, Betensky RA, Codd
PJ, Romany CA, Reavie LB, Batchelor TT, Futreal PA, Stratton MR,
Curry WT, et al: Loss of the mismatch repair protein MSH6 in human
glioblastomas is associated with tumor progression during
temozolomide treatment. Clin Cancer Res. 13:2038–2045.
2007.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Stark AM, Doukas A, Hugo HH, Hedderich J,
Hattermann K, Maximilian Mehdorn H and Held-Feindt J: Expression of
DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent
glioblastoma. Neurol Res. 37:95–105. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Hunter C, Smith R, Cahill DP, Stephens P,
Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies H, et
al: A hypermutation phenotype and somatic MSH6 mutations in
recurrent human malignant gliomas after alkylator chemotherapy.
Cancer Res. 66:3987–3991. 2006.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Leelatian N, Hong CS and Bindra RS: The
role of mismatch repair in glioblastoma multiforme treatment
response and resistance. Neurosurg Clin N Am. 32:171–180.
2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Brastianos PK, Kim AE, Giobbie-Hurder A,
Lee EQ, Lin NU, Overmoyer B, Wen PY, Nayak L, Cohen JV, Dietrich J,
et al: Pembrolizumab in brain metastases of diverse histologies:
Phase 2 trial results. Nat Med. 29:1728–1737. 2023.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chen J, Li Y, Yu TS, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526.
2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Warrier NM, Krishnan RK, Prabhu V,
Hariharapura RC, Agarwal P and Kumar P: Survivin inhibition by
piperine sensitizes glioblastoma cancer stem cells and leads to
better drug response. Int J Mol Sci. 23(7604)2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ahluwalia MS, Reardon DA, Abad AP, Curry
WT, Wong ET, Figel SA, Mechtler LL, Peereboom DM, Hutson AD,
Withers HG, et al: Phase IIa study of SurVaxM plus adjuvant
temozolomide for newly diagnosed glioblastoma. J Clin Oncol.
41:1453–1465. 2023.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Munoz JL, Walker ND, Scotto KW and
Rameshwar P: Temozolomide competes for P-glycoprotein and
contributes to chemoresistance in glioblastoma cells. Cancer Lett.
367:69–75. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Oberstadt MC, Bien-Möller S, Weitmann K,
Herzog S, Hentschel K, Rimmbach C, Vogelgesang S, Balz E, Fink M,
Michael H, et al: Epigenetic modulation of the drug resistance
genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme. BMC Cancer.
13(617)2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yan Y, Liu Y, Liang Q and Xu Z: Drug
metabolism-related gene ABCA1 augments temozolomide chemoresistance
and immune infiltration abundance of M2 macrophages in glioma. Eur
J Med Res. 28(373)2023.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Meng J, Qian W, Yang Z, Gong L, Xu D,
Huang H, Jiang X, Pu Z, Yin Y and Zou J: p53/E2F7 axis promotes
temozolomide chemoresistance in glioblastoma multiforme. BMC
Cancer. 24(317)2024.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Karve AS, Desai JM, Gadgil SN, Dave N,
Wise-Draper TM, Gudelsky GA, Phoenix TN, DasGupta B, Yogendran L,
Sengupta S, et al: A Review of approaches to potentiate the
activity of temozolomide against glioblastoma to overcome
resistance. Int J Mol Sci. 25(3217)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Goenka A, Tiek D, Song X, Huang T, Hu B
and Cheng SY: The many facets of therapy resistance and tumor
recurrence in glioblastoma. Cells. 10(484)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Persano L, Pistollato F, Rampazzo E, Della
Puppa A, Abbadi S, Frasson C, Volpin F, Indraccolo S, Scienza R and
Basso G: BMP2 sensitizes glioblastoma stem-like cells to
Temozolomide by affecting HIF-1α stability and MGMT expression.
Cell Death Dis. 3(e412)2012.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Seidel S, Garvalov BK, Wirta V, von
Stechow L, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AT,
Nistér M, et al: A hypoxic niche regulates glioblastoma stem cells
through hypoxia inducible factor 2 alpha. Brain. 133:983–995.
2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ren P, Wang JY, Zeng ZR, Li NX, Chen HL,
Peng XG, Bhawal UK and Guo WZ: A novel hypoxia-driven gene
signature that can predict the prognosis and drug resistance of
gliomas. Front Genet. 13(976356)2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ge X, Pan MH, Wang L, Li W, Jiang C, He J,
Abouzid K, Liu LZ, Shi Z and Jiang BH: Hypoxia-mediated
mitochondria apoptosis inhibition induces temozolomide treatment
resistance through miR-26a/Bad/Bax axis. Cell Death Dis.
9(1128)2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Brenner AJ, Sun JD, Floyd J, Hart CP, Eng
C, Kroll S, Fichtel L, Gruslova A, Lodi A and Tiziani S: Phase 1/2
study of investigational hypoxia-targeted drug, TH-302, and
bevacizumab (bev) in recurrent glioblastoma (GBM) following bev
failure. J Clin Oncol. 32 (15_Suppl)(S2029)2014.
|
|
49
|
Strowd R, Ellingson B, Raymond C, Yao J,
Wen PY, Ahluwalia M, Piotrowski A, Desai A, Clarke JL, Lieberman
FS, et al: Activity of a first-in-class oral HIF2-alpha inhibitor,
PT2385, in patients with first recurrence of glioblastoma. J
Neurooncol. 165:101–112. 2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lickliter JD, Ruben J, Kichenadasse G,
Jennens R, Gzell C, Mason RP, Zhou H, Becker J, Unger E and Stea B:
Dodecafluoropentane emulsion as a radiosensitizer in glioblastoma
multiforme. Cancer Res Commun. 3:1607–1614. 2023.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Jeong W, Park SR, Rapisarda A, Fer N,
Kinders RJ, Chen A, Melillo G, Turkbey B, Steinberg SM, Choyke P,
et al: Weekly EZN-2208 (PEGylated SN-38) in combination with
bevacizumab in patients with refractory solid tumors. Invest New
Drugs. 32:340–346. 2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Network TC: Corrigendum: Comprehensive
genomic characterization defines human glioblastoma genes and core
pathways. Nature. 494(506)2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Velpula KK and Tsung AJ: PDK1: A new
therapeutic target for glioblastoma? CNS Oncol. 3:177–179.
2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Velpula KK, Guda MR, Sahu K, Tuszynski J,
Asuthkar S, Bach SE, Lathia JD and Tsung AJ: Metabolic targeting of
EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma.
Oncotarget. 8:35639–35655. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kaur B, Khwaja FW, Severson EA, Matheny
SL, Brat DJ and Van Meir EG: Hypoxia and the
hypoxia-inducible-factor pathway in glioma growth and angiogenesis.
Neuro Oncol. 7:134–153. 2005.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Würth R, Bajetto A, Harrison JK, Barbieri
F and Florio T: CXCL12 modulation of CXCR4 and CXCR7 activity in
human glioblastoma stem-like cells and regulation of the tumor
microenvironment. Front Cell Neurosci. 8(144)2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Nogueira L, Ruiz-Ontañon P,
Vazquez-Barquero A, Moris F and Fernandez-Luna JL: The NFκB
pathway: A therapeutic target in glioblastoma. Oncotarget.
2:646–653. 2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Pareja F, Macleod D, Shu C, Crary JF,
Canoll PD, Ross AH and Siegelin MD: PI3K and Bcl-2 inhibition
primes glioblastoma cells to apoptosis through downregulation of
Mcl-1 and Phospho-BAD. Mol Cancer Res. 12:987–1001. 2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Valdés-Rives SA, Casique-Aguirre D,
Germán-Castelán L, Velasco-Velázquez MA and González-Arenas A:
Apoptotic signaling pathways in glioblastoma and therapeutic
implications. BioMed Res Int. 2017(7403747)2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Daniele S, Costa B, Zappelli E, Da Pozzo
E, Sestito S, Nesi G, Campiglia P, Marinelli L, Novellino E,
Rapposelli S and Martini C: Combined inhibition of AKT/mTOR and
MDM2 enhances Glioblastoma Multiforme cell apoptosis and
differentiation of cancer stem cells. Sci Rep.
5(9956)2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Song Z, Pan Y, Ling G, Wang S, Huang M,
Jiang X and Ke Y: Escape of U251 glioma cells from
temozolomide-induced senescence was modulated by CDK1/survivin
signaling. Am J Transl Res. 9:2163–2180. 2017.PubMed/NCBI
|
|
62
|
Josset E, Burckel H, Noël G and Bischoff
P: The mTOR inhibitor RAD001 potentiates autophagic cell death
induced by temozolomide in a glioblastoma cell line. Anticancer
Res. 33:1845–1851. 2013.PubMed/NCBI
|
|
63
|
Zou Y, Chen M, Zhang S, Miao Z, Wang J, Lu
X and Zhao X: TRPC5-induced autophagy promotes the TMZ-resistance
of glioma cells via the CAMMKβ/AMPKα/mTOR pathway. Oncol Rep.
41:3413–3423. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wen PY, de Groot JF, Battiste J, Goldlust
SA, Garner JS, Friend J, Simpson JA, Damek D, Olivero A and
Cloughesy TF: Paxalisib in patients with newly diagnosed
glioblastoma with unmethylated MGMT promoter status: Final phase 2
study results. J Clin Oncol. 40 (16_suppl)(2047)2022.
|
|
65
|
Wen PY, Omuro A, Ahluwalia MS,
Fathallah-Shaykh HM, Mohile N, Lager JJ, Laird AD, Tang J, Jiang J,
Egile C and Cloughesy TF: Phase I dose-escalation study of the
PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide
with or without radiotherapy in patients with high-grade glioma.
Neuro Oncol. 17:1275–1283. 2015.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Yu Z, Xie G, Zhou G, Cheng Y, Zhang G, Yao
G, Chen Y, Li Y and Zhao G: NVP-BEZ235, a novel dual PI3K-mTOR
inhibitor displays anti-glioma activity and reduces chemoresistance
to temozolomide in human glioma cells. Cancer Lett. 367:58–68.
2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Xu P, Zhang G, Hou S and Sha LG: MAPK8
mediates resistance to temozolomide and apoptosis of glioblastoma
cells through MAPK signaling pathway. Biomed Pharmacother.
106:1419–1427. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH,
Lin YF and Shih CM: Resveratrol enhances the therapeutic effect of
temozolomide against malignant glioma in vitro and in vivo by
inhibiting autophagy. Free Radic Biol Med. 52:377–391.
2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ma L, Liu J, Zhang X, Qi J, Yu W and Gu Y:
p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma
cells against TMZ. Med Oncol. 32(69)2015.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Cheng HS, Chong YK, Lim EKY, Lee XY, Pang
QY, Novera W, Marvalim C, Lee JXT, Ang BT, Tang C and Tan NS: Dual
p38MAPK and MEK inhibition disrupts adaptive chemoresistance in
mesenchymal glioblastoma to temozolomide. Neuro Oncol.
26:1247–1261. 2024.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Reardon DA, Vredenburgh JJ, Desjardins A,
Peters K, Gururangan S, Sampson JH, Marcello J, Herndon JE II,
McLendon RE, Janney D, et al: Effect of CYP3A-inducing
anti-epileptics on sorafenib exposure: Results of a phase II study
of sorafenib plus daily temozolomide in adults with recurrent
glioblastoma. J Neurooncol. 101:57–66. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Hainsworth JD, Ervin T, Friedman E, Priego
V, Murphy PB, Clark BL and Lamar RE: Concurrent radiotherapy and
temozolomide followed by temozolomide and sorafenib in the
first-line treatment of patients with glioblastoma multiforme.
Cancer. 116:3663–3669. 2010.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Singh N, Miner A, Hennis L and Mittal S:
Mechanisms of temozolomide resistance in glioblastoma-a
comprehensive review. Cancer Drug Resist. 4:17–43. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Riganti C, Salaroglio IC, Caldera V,
Campia I, Kopecka J, Mellai M, Annovazzi L, Bosia A, Ghigo D and
Schiffer D: Temozolomide downregulates P-glycoprotein expression in
glioblastoma stem cells by interfering with the Wnt3a/glycogen
synthase-3 kinase/β-catenin pathway. Neuro Oncol. 15:1502–1517.
2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Xu K, Zhang Z, Pei H, Wang H, Li L and Xia
Q: FoxO3a induces temozolomide resistance in glioblastoma cells via
the regulation of β-catenin nuclear accumulation. Oncol Rep.
37:2391–2397. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li
C, Zhang L, Holland E, Yao L, Qin L, et al: Wnt-mediated
endothelial transformation into mesenchymal stem cell-like cells
induces chemoresistance in glioblastoma. Sci Transl Med.
12(eaay7522)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wickström M, Dyberg C, Milosevic J, Einvik
C, Calero R, Sveinbjörnsson B, Sandén E, Darabi A, Siesjö P, Kool
M, et al: Wnt/β-catenin pathway regulates MGMT gene expression in
cancer and inhibition of Wnt signalling prevents chemoresistance.
Nat Commun. 6(8904)2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Tomar VS, Patil V and Somasundaram K:
Temozolomide induces activation of Wnt/β-catenin signaling in
glioma cells via PI3K/Akt pathway: Implications in glioma therapy.
Cell Biol Toxicol. 36:273–278. 2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Lu C, Cui C, Liu B, Zou S, Song H, Tian H,
Zhao J and Li Y: FERMT3 contributes to glioblastoma cell
proliferation and chemoresistance to temozolomide through integrin
mediated Wnt signaling. Neurosci Lett. 657:77–83. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Luo W, Yan D, Song Z, Zhu X, Liu X, Li X
and Zhao S: miR-126-3p sensitizes glioblastoma cells to
temozolomide by inactivating Wnt/β-catenin signaling via targeting
SOX2. Life Sci. 226:98–106. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Zeng A, Yin J, Li Y, Li R, Wang Z, Zhou X,
Jin X, Shen F, Yan W and You Y: miR-129-5p targets Wnt5a to block
PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis.
9(394)2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhang KL, Han L, Chen LY, Shi ZD, Yang M,
Ren Y, Chen LC, Zhang JX, Pu PY and Kang CS: Blockage of a
miR-21/EGFR regulatory feedback loop augments anti-EGFR therapy in
glioblastomas. Cancer Lett. 342:139–149. 2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Huang T, Alvarez AA, Pangeni RP, Horbinski
CM, Lu S, Kim SH, James CD, J Raizer J, A Kessler J, Brenann CW, et
al: A regulatory circuit of miR-125b/miR-20b and Wnt signalling
controls glioblastoma phenotypes through FZD6-modulated pathways.
Nat Commun. 7(12885)2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM,
Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling
desensitizes glioma cells to temozolomide by targeting the
NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One.
14(e0225913)2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kahlert UD, Suwala AK, Koch K, Natsumeda
M, Orr BA, Hayashi M, Maciaczyk J and Eberhart CG: Pharmacologic
wnt inhibition reduces proliferation, survival, and clonogenicity
of glioblastoma cells. J Neuropathol Exp Neurol. 74:889–900.
2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kim Y, Kim KH, Lee J, Lee Y, Kim M, Lee
SJ, Park K, Yang H, Jin J, Joo KM, et al: Wnt activation is
implicated in glioblastoma radioresistance. Lab Invest. 92:466–473.
2012.PubMed/NCBI View Article : Google Scholar
|
|
87
|
De Robertis A, Valensin S, Rossi M, Tunici
P, Verani M, De Rosa A, Giordano C, Varrone M, Nencini A, Pratelli
C, et al: Identification and characterization of a small-molecule
inhibitor of Wnt signaling in glioblastoma cells. Mol Cancer Ther.
12:1180–1189. 2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Yoshino T, Ikeda M, Finn RS, Jeffry Evans
TR, Weng L, Saito K, Mody K, Tamai T, Paoletti C and Iwasa S:
Abstract CT523: An open-label, multicenter, phase 1b/2 Study of
E7386 (Wnt/β-catenin pathway inhibitor) + pembrolizumab in patients
with pretreated advanced solid tumors. Cancer Res. 82
(Suppl)(CT523)2022.
|
|
89
|
Bhat KP, Salazar KL, Balasubramaniyan V,
Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL,
Kim SH, et al: The transcriptional coactivator TAZ regulates
mesenchymal differentiation in malignant glioma. Genes Dev.
25:2594–2609. 2011.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Orr BA, Bai H, Odia Y, Jain D, Anders RA
and Eberhart CG: Yes-associated protein 1 is widely expressed in
human brain tumors and promotes glioblastoma growth. J Neuropathol
Exp Neurol. 70:568–577. 2011.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Tian T, Li A, Lu H, Luo R, Zhang M and Li
Z: TAZ promotes temozolomide resistance by upregulating MCL-1 in
human glioma cells. Biochem Biophys Res Commun. 463:638–643.
2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Casati G, Giunti L, Iorio AL, Marturano A,
Galli L and Sardi I: Hippo pathway in regulating drug resistance of
glioblastoma. Int J Mol Sci. 22(13431)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Minata M, Audia A, Shi J, Lu S, Bernstock
J, Pavlyukov MS, Das A, Kim SH, Shin YJ, Lee Y, et al: Phenotypic
plasticity of invasive edge glioma stem-like cells in response to
ionizing radiation. Cell Rep. 26:1893–1905.e7. 2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Vigneswaran K, Boyd NH, Oh SY, Lallani S,
Boucher A, Neill SG, Olson JJ and Read RD: YAP/TAZ transcriptional
coactivators create therapeutic vulnerability to verteporfin in
EGFR-mutant glioblastoma. Clin Cancer Res. 27:1553–1569.
2021.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Read RD: Repurposing the drug verteporfin
as anti-neoplastic therapy for glioblastoma. Neuro Oncol.
24:708–710. 2022.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Hagenbeek TJ, Zbieg JR, Hafner M, Mroue R,
Lacap JA, Sodir NM, Noland CL, Afghani S, Kishore A, Bhat KP, et
al: An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ
signaling and overcomes KRAS G12C inhibitor resistance. Nat Cancer.
4:812–828. 2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Lu J, Gao M, He H, Feng L, Gao Z, Cui W,
Yang K, Lu J, Zheng Q, Zhu J, et al: Abstract 1671: Discovery of
ETS-003, a potent and selective YAP/TAZ-TEAD PPI inhibitor with
broad anti-tumor activity in Hippo-YAP aberrant cancers. Cancer
Res. 83 (Suppl)(S1671)2023.
|
|
98
|
Chapeau EA, Sansregret L, Galli GG, Chène
P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM,
Bauer D, et al: Direct and selective pharmacological disruption of
the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and
RAS-MAPK-altered cancers. Nat Cancer. 5:1102–1120. 2024.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Movahedpour A, Khatami SH, Khorsand M,
Salehi M, Savardashtaki A, Mirmajidi SH, Negahdari B, Khanjani N,
Naeli P, Vakili O, et al: Exosomal noncoding RNAs: Key players in
glioblastoma drug resistance. Mol Cell Biochem. 476:4081–4092.
2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Shea A, Harish V, Afzal Z, Chijioke J,
Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, et
al: MicroRNAs in glioblastoma multiforme pathogenesis and
therapeutics. Cancer Med. 5:1917–1946. 2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Xiao S, Yang Z, Qiu X, Lv R, Liu J, Wu M,
Liao Y and Liu Q: miR-29c contribute to glioma cells temozolomide
sensitivity by targeting O6-methylguanine-DNA methyltransferases
indirectely. Oncotarget. 7:50229–50238. 2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Cunha PP, Costa PM, Morais CM, Lopes IR,
Cardoso AM, Cardoso AL, Mano M, Jurado AS and Pedroso de Lima MC:
High-throughput screening uncovers miRNAs enhancing glioblastoma
cell susceptibility to tyrosine kinase inhibitors. Hum Mol Genet.
26:4375–4387. 2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang
Y and Liang J: Long noncoding RNA H19: Functions and mechanisms in
regulating programmed cell death in cancer. Cell Death Discov.
10(76)2024.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Zhang Z, Yin J, Lu C, Wei Y, Zeng A and
You Y: Exosomal transfer of long Non-coding RNA SBF2-AS1 enhances
chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer
Res. 38(166)2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Li H, Yuan X, Yan D, Li D, Guan F, Dong Y,
Wang H, Liu X and Yang B: Long Non-Coding RNA MALAT1 decreases the
sensitivity of resistant glioblastoma cell lines to temozolomide.
Cell Physiol Biochem. 42:1192–1201. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Amodio N, Raimondi L, Juli G, Stamato MA,
Caracciolo D, Tagliaferri P and Tassone P: MALAT1: A druggable long
non-coding RNA for targeted anti-cancer approaches. J Hematol
Oncol. 11(63)2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao
Z, Qian L, Li Z, Wei J, Huo L, et al: Novel function of lncRNA
ADAMTS9-AS2 in promoting temozolomide resistance in glioblastoma
via upregulating the FUS/MDM2 ubiquitination axis. Front Cell Dev
Biol. 7(217)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo
Y, Peng R and Cheng L: LncRNA CASC2 Interacts With miR-181a to
modulate glioma growth and resistance to TMZ through PTEN pathway.
J Cell Biochem. 118:1889–1899. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Ahmed SP, Castresana JS and Shahi MH: Role
of circular RNA in brain tumor development. Cells.
11(2130)2022.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z,
Zhang G, Gu J and Kang D: Exosome-mediated transfer of circRNA
CircNFIX enhances temozolomide resistance in glioma. Cancer Lett.
479:1–12. 2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Han C, Wang S, Wang H and Zhang J:
Exosomal circ-HIPK3 facilitates tumor progression and temozolomide
resistance by regulating miR-421/ZIC5 axis in glioma. Cancer
Biother Radiopharm. 36:537–548. 2021.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Campelo MM, Reis-das-Mercês L, Vidal AF,
da Silva FRP, de Oliveira ACA, Monteiro JRS, Cabral CG, Noronha RCR
and Pereira AL: The dual role of circHIPK3 in cancer and its
implications for multiple drugs resistance: A systematic review and
computational approach. Front Oncol. 15(1547889)2025.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Li X, Wang N, Leng H, Yuan H and Xu L:
Hsa_circ_0043949 reinforces temozolomide resistance via
upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis.
37:2979–2993. 2022.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J,
Shi Z and You Y: EIF4A3-induced circular RNA ASAP1 promotes
tumorigenesis and temozolomide resistance of glioblastoma via
NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 23:611–624.
2021.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Hua L, Huang L, Zhang X and Feng H:
Downregulation of hsa_circ_0000936 sensitizes resistant glioma
cells to temozolomide by sponging miR-1294. J Biosci.
45(101)2020.PubMed/NCBI
|
|
116
|
Zhao J, Cui X, Zhan Q, Zhang K, Su D, Yang
S, Hong B, Wang Q, Ju J, Cheng C, et al: CRISPR-Cas9 library
screening combined with an exosome-targeted delivery system
addresses tumorigenesis/TMZ resistance in the mesenchymal subtype
of glioblastoma. Theranostics. 14:2835–2855. 2024.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Halasz LM, Soltys SG, Breneman JC, Chan
MD, Laack NN, Minniti G and Kirkpatrick JP: Treatment of gliomas: A
changing landscape. Int J Radiat Oncol Biol Phys. 98:255–258.
2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Shaffer R, Nichol AM, Vollans E, Fong M,
Nakano S, Moiseenko V, Schmuland M, Ma R, McKenzie M and Otto K: A
comparison of volumetric modulated arc therapy and conventional
intensity-modulated radiotherapy for frontal and temporal
High-grade gliomas. Int J Radiat Oncol Biol Phys. 76:1177–1184.
2010.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Wang TJC, Wu CC, Jani A, Estrada J, Ung T,
Chow DS, Soun JE, Saad S, Qureshi YH, Gartrell R, et al:
Hypofractionated radiation therapy versus standard fractionated
radiation therapy with concurrent temozolomide in elderly patients
with newly diagnosed glioblastoma. Pract Radiat Oncol. 6:306–314.
2016.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Gu J, Mu N, Jia B, Guo Q, Pan L, Zhu M,
Zhang W, Zhang K, Li W, Li M, et al: Targeting radiation-tolerant
persister cells as a strategy for inhibiting radioresistance and
recurrence in glioblastoma. Neuro Oncol. 24:1056–1070.
2022.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Fang X, Huang Z, Zhai K, Huang Q, Tao W,
Kim L, Wu Q, Almasan A, Yu JS, Li X, et al: Inhibiting DNA-PK
induces glioma stem cell differentiation and sensitizes
glioblastoma to radiation in mice. Sci Transl Med.
13(eabc7275)2021.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Huang ZL, Liu ZG, Lin Q, Tao YL, Li X,
Baxter P, Su JM, Adesina AM, Man C, Chintagumpala M, et al:
Fractionated radiation therapy alters energy metabolism and induces
cellular quiescence exit in patient-derived orthotopic xenograft
models of high-grade glioma. Transl Oncol.
45(101988)2024.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Osuka S, Zhu D, Zhang Z, Li C, Stackhouse
CT, Sampetrean O, Olson JJ, Gillespie GY, Saya H, Willey CD, et al:
N-cadherin upregulation mediates adaptive radioresistance in
glioblastoma. J Clin Invest. 131(e136098)2021.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Stackhouse CT, Anderson JC, Yue Z, Nguyen
T, Eustace NJ, Langford CP, Wang J, Rowland JR IV, Xing C, Mikhail
FM, et al: An in vivo model of glioblastoma radiation resistance
identifies long noncoding RNAs and targetable kinases. JCI Insight.
7(e148717)2022.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Huang RX and Zhou PK: DNA damage response
signaling pathways and targets for radiotherapy sensitization in
cancer. Signal Transduct Target Ther. 5(60)2020.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Bastiancich C, Bastiat G and Lagarce F:
Gemcitabine and glioblastoma: Challenges and current perspectives.
Drug Discov Today. 23:416–423. 2018.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Lesueur P, Chevalier F, El-Habr EA, Junier
MP, Chneiweiss H, Castera L, Müller E, Stefan D and Saintigny Y:
Radiosensitization effect of talazoparib, a parp inhibitor, on
glioblastoma stem cells exposed to low and high linear energy
transfer radiation. Sci Rep. 8(3664)2018.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Stea B, Falsey R, Kislin K, Patel J,
Glanzberg H, Carey S, Ambrad AA, Meuillet EJ and Martinez JD: Time
and dose-dependent radiosensitization of the glioblastoma
multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor
ZD1839 (‘Iressa’). Cancer Lett. 202:43–51. 2003.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Lo Cascio C, Margaryan T, Luna-Melendez E,
McNamara JB, White CI, Knight W, Ganta S, Opachich Z, Cantoni C,
Yoo W, et al: Quisinostat is a brain-penetrant radiosensitizer in
glioblastoma. JCI Insight. 8(e167081)2023.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Galanis E, Anderson SK, Miller CR,
Sarkaria JN, Jaeckle K, Buckner JC, Ligon KL, Ballman KV, Moore DF
Jr, Nebozhyn M, et al: Phase I/II trial of vorinostat combined with
temozolomide and radiation therapy for newly diagnosed
glioblastoma: Results of Alliance N0874/ABTC 02. Neuro Oncol.
20:546–556. 2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Compter I, Eekers DBP, Hoeben A, Rouschop
KMA, Reymen B, Ackermans L, Beckervordersantforth J, Bauer NJC,
Anten MM, Wesseling P, et al: Chloroquine combined with concurrent
radiotherapy and temozolomide for newly diagnosed glioblastoma: A
phase IB trial. Autophagy. 17:2604–2612. 2021.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Benej M, Hong X, Vibhute S, Scott S, Wu J,
Graves E, Le QT, Koong AC, Giaccia AJ, Yu B, et al: Papaverine and
its derivatives radiosensitize solid tumors by inhibiting
mitochondrial metabolism. Proc Natl Acad Sci USA. 115:10756–10761.
2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Ali MY, Oliva CR, Noman ASM, Allen BG,
Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM and Griguer
CE: Radioresistance in glioblastoma and the development of
radiosensitizers. Cancers (Basel). 12(2511)2020.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Verhaak RG, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al:
Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1. Cancer Cell. 17:98–110. 2010.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Szerlip NJ, Pedraza A, Chakravarty D, Azim
M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et
al: Intratumoral heterogeneity of receptor tyrosine kinases EGFR
and PDGFRA amplification in glioblastoma defines subpopulations
with distinct growth factor response. Proc Natl Acad Sci USA.
109:3041–3046. 2012.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Lane R, Cilibrasi C, Chen J, Shah K,
Messuti E, Mazarakis NK, Stebbing J, Critchley G, Song E, Simon T,
et al: PDGF-R inhibition induces glioblastoma cell differentiation
via DUSP1/p38MAPK signalling. Oncogene. 41:2749–2763.
2022.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Cenciarelli C, Marei HE, Felsani A,
Casalbore P, Sica G, Puglisi MA, Cameron AJ, Olivi A and Mangiola
A: PDGFRα depletion attenuates glioblastoma stem cells features by
modulation of STAT3, RB1 and multiple oncogenic signals.
Oncotarget. 7:53047–53063. 2016.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Mayr L, Neyazi S, Schwark K, Trissal M,
Beck A, Labelle J, Eder SK, Weiler-Wichtl L, Marques JG, de
Biagi-Junior CAO, et al: Effective targeting of PDGFRA-altered
high-grade glioma with avapritinib. Cancer Cell. 43:740–756.e8.
2025.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Gilbert MR, Dignam JJ, Armstrong TS, Wefel
JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S,
Won M, et al: A randomized trial of bevacizumab for newly diagnosed
glioblastoma. N Engl J Med. 370:699–708. 2014.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Reardon DA, Brandes AA, Omuro A,
Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr
O, et al: Effect of nivolumab vs bevacizumab in patients with
recurrent glioblastoma: The CheckMate 143 Phase 3 randomized
clinical trial. JAMA Oncol. 6:1003–1010. 2020.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Brennan CW, Verhaak RG, McKenna A, Campos
B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ,
Berman SH, et al: The somatic genomic landscape of glioblastoma.
Cell. 155:462–477. 2013.PubMed/NCBI View Article : Google Scholar
|
|
142
|
An Z, Aksoy O, Zheng T, Fan QW and Weiss
WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma:
Signaling pathways and targeted therapies. Oncogene. 37:1561–1575.
2018.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Ezzati S, Salib S, Balasubramaniam M and
Aboud O: Epidermal growth factor receptor inhibitors in
glioblastoma: Current status and future possibilities. Int J Mol
Sci. 25(2316)2024.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Guo G, Gong K, Ali S, Ali N, Shallwani S,
Hatanpaa KJ, Pan E, Mickey B, Burma S, Wang DH, et al: Primary
resistance to EGFR inhibition in glioblastoma is mediated by a
TNF-JNK-Axl-ERK signaling axis. Nat Neurosci. 20:1074–1084.
2017.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Marin BM, Porath KA, Jain S, Kim M,
Conage-Pough JE, Oh JH, Miller CL, Talele S, Kitange GJ, Tian S, et
al: Heterogeneous delivery across the blood-brain barrier limits
the efficacy of an EGFR-targeting antibody drug conjugate in
glioblastoma. Neuro Oncol. 23:2042–2053. 2021.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Hottinger AF, Ben Aissa A, Espeli V,
Squiban D, Dunkel N, Vargas MI, Hundsberger T, Mach N, Schaller K,
Weber DC, et al: Phase I study of sorafenib combined with radiation
therapy and temozolomide as first-line treatment of high-grade
glioma. Br J Cancer. 110:2655–2661. 2014.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Kim JY, Jo Y, Oh HK and Kim EH: Sorafenib
increases tumor treating Fields-induced cell death in glioblastoma
by inhibiting STAT3. Am J Cancer Res. 10:3475–3486. 2020.PubMed/NCBI
|
|
148
|
Schreck KC, Grossman SA and Pratilas CA:
BRAF mutations and the utility of RAF and MEK inhibitors in primary
brain tumors. Cancers (Basel). 11(1262)2019.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Fabro F, Lamfers MLM and Leenstra S:
Advancements, challenges, and future directions in tackling
glioblastoma resistance to small kinase inhibitors. Cancers
(Basel). 14(600)2022.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Marie Y, Carpentier AF, Omuro AM, Sanson
M, Thillet J, Hoang-Xuan K and Delattre JY: EGFR tyrosine kinase
domain mutations in human gliomas. Neurology. 64:1444–1445.
2005.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Stommel JM, Kimmelman AC, Ying H,
Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE,
Ligon KL, Brennan C, et al: Coactivation of receptor tyrosine
kinases affects the response of tumor cells to targeted therapies.
Science. 318:287–290. 2007.PubMed/NCBI View Article : Google Scholar
|
|
152
|
Nathanson DA, Gini B, Mottahedeh J,
Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K, et
al: Targeted therapy resistance mediated by dynamic regulation of
extrachromosomal mutant EGFR DNA. Science. 343:72–76.
2014.PubMed/NCBI View Article : Google Scholar
|
|
153
|
Day EK, Sosale NG, Xiao A, Zhong Q, Purow
B and Lazzara MJ: Glioblastoma cell resistance to EGFR and MET
inhibition can be overcome via blockade of FGFR-SPRY2 bypass
signaling. Cell Rep. 30:3383–3396.e7. 2020.PubMed/NCBI View Article : Google Scholar
|
|
154
|
Chakravarti A, Loeffler JS and Dyson NJ:
Insulin-like growth factor receptor I mediates resistance to
Anti-epidermal growth factor receptor therapy in primary human
glioblastoma cells through continued activation of phosphoinositide
3-kinase signaling. Cancer Res. 62:200–207. 2002.PubMed/NCBI
|
|
155
|
Han S, Liu Y, Cai SJ, Qian M, Ding J,
Larion M, Gilbert MR and Yang C: IDH mutation in glioma: Molecular
mechanisms and potential therapeutic targets. Br J Cancer.
122:1580–1589. 2020.PubMed/NCBI View Article : Google Scholar
|
|
156
|
Fanucci K, Pilat MJ, Shyr D, Shyr Y,
Boerner S, Li J, Durecki D, Drappatz J, Puduvalli V, Lieberman FS,
et al: Multicenter Phase II trial of the PARP inhibitor olaparib in
recurrent IDH1- and IDH2-mutant glioma. Cancer Res Commun.
3:192–201. 2023.PubMed/NCBI View Article : Google Scholar
|
|
157
|
Lin MD, Tsai AC, Abdullah KG, McBrayer SK
and Shi DD: Treatment of IDH-mutant glioma in the INDIGO era. NPJ
Precis Oncol. 8(149)2024.PubMed/NCBI View Article : Google Scholar
|
|
158
|
Omuro A, Brandes AA, Carpentier AF, Idbaih
A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M,
Bähr O, et al: Radiotherapy combined with nivolumab or temozolomide
for newly diagnosed glioblastoma with unmethylated MGMT promoter:
An international randomized phase III trial. Neuro Oncol.
25:123–134. 2023.PubMed/NCBI View Article : Google Scholar
|
|
159
|
Lee AH, Sun L, Mochizuki AY, Reynoso JG,
Orpilla J, Chow F, Kienzler JC, Everson RG, Nathanson DA, Bensinger
SJ, et al: Neoadjuvant PD-1 blockade induces T cell and cDC1
activation but fails to overcome the immunosuppressive tumor
associated macrophages in recurrent glioblastoma. Nat Commun.
12(6938)2021.PubMed/NCBI View Article : Google Scholar
|
|
160
|
Lin YJ, Wu CY, Wu JY and Lim M: The role
of myeloid cells in GBM immunosuppression. Front Immunol.
13(887781)2022.PubMed/NCBI View Article : Google Scholar
|
|
161
|
Sesé B, Íñiguez-Muñoz S, Ensenyat-Mendez
M, Llinàs-Arias P, Ramis G, Orozco JIJ, Fernández de Mattos S,
Villalonga P and Marzese DM: Glioblastoma Embryonic-like stem cells
exhibit immune-evasive phenotype. Cancers (Basel).
14(2070)2022.PubMed/NCBI View Article : Google Scholar
|
|
162
|
Chen A, Jiang Y, Li Z, Wu L, Santiago U,
Zou H, Cai C, Sharma V, Guan Y, McCarl LH, et al: Chitinase-3-like
1 protein complexes modulate macrophage-mediated immune suppression
in glioblastoma. J Clin Invest. 131(e147552)2021.PubMed/NCBI View Article : Google Scholar
|
|
163
|
Chongsathidkiet P, Jackson C, Koyama S,
Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant
CA, Kemeny HR, et al: Sequestration of T cells in bone marrow in
the setting of glioblastoma and other intracranial tumors. Nat Med.
24:1459–1468. 2018.PubMed/NCBI View Article : Google Scholar
|
|
164
|
Kang W, Mo Z, Li W, Ma H and Zhang Q:
Heterogeneity and individualized treatment of microenvironment in
glioblastoma (review). Oncol Rep. 50(217)2023.PubMed/NCBI View Article : Google Scholar
|
|
165
|
Wu A, Maxwell R, Xia Y, Cardarelli P,
Oyasu M, Belcaid Z, Kim E, Hung A, Luksik AS, Garzon-Muvdi T, et
al: Combination anti-CXCR4 and anti-PD-1 immunotherapy provides
survival benefit in glioblastoma through immune cell modulation of
tumor microenvironment. J Neurooncol. 143:241–249. 2019.PubMed/NCBI View Article : Google Scholar
|