Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
March-April 2024 Volume 4 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2024 Volume 4 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Immune checkpoint inhibitors in metastatic melanoma therapy (Review)

  • Authors:
    • Vedant Shah
    • Viraj Panchal
    • Abhi Shah
    • Bhavya Vyas
    • Siddharth Agrawal
    • Sanket Bharadwaj
  • View Affiliations / Copyright

    Affiliations: Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
    Copyright: © Shah et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 13
    |
    Published online on: February 9, 2024
       https://doi.org/10.3892/mi.2024.137
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin‑2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T‑lymphocyte‑associated antigen‑4 (CTLA‑4), programmed cell death protein 1 (PD‑1) and its ligand, PDL‑1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence‑free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti‑PD1 with anti‑CTLA‑4, have further enhanced the overall survival and response rates by targeting various phases of T‑cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum‑based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune‑related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Finn L, Markovic SN and Joseph RW: Therapy for metastatic melanoma: The past, present, and future. BMC Med. 10(23)2012.PubMed/NCBI View Article : Google Scholar

2 

Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, Cust AE, de Vries E, Whiteman DC and Bray F: Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 158:495–503. 2022.PubMed/NCBI View Article : Google Scholar

3 

Miller AJ and Mihm MC Jr: Melanoma. N Engl J Med. 355:51–65. 2006.PubMed/NCBI View Article : Google Scholar

4 

Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, et al: Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst. 85:622–632. 1993.PubMed/NCBI View Article : Google Scholar

5 

Bronte V and Mocellin S: Suppressive influences in the immune response to cancer. J Immunother. 32:1–11. 2009.PubMed/NCBI View Article : Google Scholar

6 

Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2001.PubMed/NCBI View Article : Google Scholar

7 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012.PubMed/NCBI View Article : Google Scholar

8 

Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F, Yoshida T, Kato Y, Fagarasan S, Muramatsu M, Eto T, et al: PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 208:395–407. 2011.PubMed/NCBI View Article : Google Scholar

9 

Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janjic B, Tarhini AA, Tawbi HA, Kirkwood JM, Moschos S, et al: PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines. Cancer Res. 74:1045–1055. 2014.PubMed/NCBI View Article : Google Scholar

10 

Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS and Noelle R: VISTA is an immune checkpoint molecule for human T-cells. Cancer Res. 74:1924–1932. 2014.PubMed/NCBI View Article : Google Scholar

11 

Hanaizi Z, van Zwieten-Boot B, Calvo G, Lopez AS, van Dartel M, Camarero J, Abadie E and Pignatti F: The European medicines agency review of ipilimumab (Yervoy) for the treatment of advanced (unresectable or metastatic) melanoma in adults who have received prior therapy: Summary of the scientific assessment of the committee for medicinal products for human use. Eur J Cancer. 48:237–242. 2012.PubMed/NCBI View Article : Google Scholar

12 

Tarhini AA: Tremelimumab: A review of development to date in solid tumors. Immunotherapy. 5:215–229. 2013.PubMed/NCBI View Article : Google Scholar

13 

Wang D, Wang T, Liu J, Yu H, Jiao S, Feng B, Zhou F, Fu Y, Yin Q, Zhang P, et al: Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16:5503–5513. 2016.PubMed/NCBI View Article : Google Scholar

14 

Ottaviano M, De Placido S and Ascierto PA: Recent success and limitations of immune checkpoint inhibitors for cancer: A lesson from melanoma. Virchows Arch. 474:421–432. 2019.PubMed/NCBI View Article : Google Scholar

15 

Chambers CA, Sullivan TJ and Allison JP: Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T-cells. Immunity. 7:885–895. 1997.PubMed/NCBI View Article : Google Scholar

16 

Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3:541–547. 1995.PubMed/NCBI View Article : Google Scholar

17 

Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270:985–988. 1995.PubMed/NCBI View Article : Google Scholar

18 

Walker LSK and Sansom DM: The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 11:852–863. 2011.PubMed/NCBI View Article : Google Scholar

19 

Ménard C, Ghiringhelli F, Roux S, Chaput N, Mateus C, Grohmann U, Caillat-Zucman S, Zitvogel L and Robert C: Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: Surrogate marker of efficacy of tremelimumab? Clin Cancer Res. 14:5242–5249. 2008.PubMed/NCBI View Article : Google Scholar

20 

Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010.PubMed/NCBI View Article : Google Scholar

21 

Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, et al: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 100:8372–8377. 2003.PubMed/NCBI View Article : Google Scholar

22 

Malek TR and Castro I: Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity. 33:153–165. 2010.PubMed/NCBI View Article : Google Scholar

23 

Reuben JM, Lee BN, Li C, Gomez-Navarro J, Bozon VA, Parker CA, Hernandez IM, Gutierrez C, Lopez-Berestein G and Camacho LH: Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 106:2437–2444. 2006.PubMed/NCBI View Article : Google Scholar

24 

Ribas A, Comin-Anduix B, Economou JS, Donahue TR, de la Rocha P, Morris LF, Jalil J, Dissette VB, Shintaku IP, Glaspy JA, et al: Intratumoral immune cell infiltrates, FoxP3, and indoleamine 2,3-dioxygenase in patients with melanoma undergoing CTLA4 blockade. Clin Cancer Res. 15:390–399. 2009.PubMed/NCBI View Article : Google Scholar

25 

Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011.PubMed/NCBI View Article : Google Scholar

26 

Buchbinder EI and Desai A: CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39:98–106. 2016.PubMed/NCBI View Article : Google Scholar

27 

Amarnath S, Mangus CW, Wang JCM, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, et al: The PDL1-PD1 axis converts human TH1 cells into regulatory T-cells. Sci Transl Med. 3(111ra120)2011.PubMed/NCBI View Article : Google Scholar

28 

Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT and Gajewski TF: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 5(200ra116)2013.PubMed/NCBI View Article : Google Scholar

29 

Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM and Zarour HM: IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Res. 75:1635–1644. 2015.PubMed/NCBI View Article : Google Scholar

30 

Zou W and Chen L: Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 8:467–477. 2008.PubMed/NCBI View Article : Google Scholar

31 

Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA and Fauci AS: The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 181:6738–6746. 2008.PubMed/NCBI View Article : Google Scholar

32 

Yang J, Riella LV, Chock S, Liu T, Zhao X, Yuan X, Paterson AM, Watanabe T, Vanguri V, Yagita H, et al: The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. J Immunol. 187:1113–1119. 2011.PubMed/NCBI View Article : Google Scholar

33 

Krönig H, Julia Falchner K, Odendahl M, Brackertz B, Conrad H, Muck D, Hein R, Blank C, Peschel C, Haller B, et al: PD-1 expression on Melan-A-reactive T cells increases during progression to metastatic disease. Int J Cancer. 130:2327–2336. 2012.PubMed/NCBI View Article : Google Scholar

34 

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013.PubMed/NCBI View Article : Google Scholar

35 

Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK and Sharpe AH: PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 206:3015–3029. 2009.PubMed/NCBI View Article : Google Scholar

36 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:23–34. 2015.PubMed/NCBI View Article : Google Scholar

37 

Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, et al: Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 377:1345–1356. 2017.PubMed/NCBI View Article : Google Scholar

38 

Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E, Rosa F, Picasso V, Di Guardo L, Cimminiello C, Cavalieri S, et al: Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget. 9:12452–12470. 2018.PubMed/NCBI View Article : Google Scholar

39 

Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, et al: BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 4:670–679. 2003.PubMed/NCBI View Article : Google Scholar

40 

Murphy KM, Nelson CA and Sedý JR: Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol. 6:671–681. 2006.PubMed/NCBI View Article : Google Scholar

41 

Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V and Zarour HM: CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 72:887–896. 2012.PubMed/NCBI View Article : Google Scholar

42 

Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ and Wang L: VISTA regulates the development of protective antitumor immunity. Cancer Res. 74:1933–1944. 2014.PubMed/NCBI View Article : Google Scholar

43 

Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, et al: Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 415:536–541. 2002.PubMed/NCBI View Article : Google Scholar

44 

Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, et al: Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 318:1141–1143. 2007.PubMed/NCBI View Article : Google Scholar

45 

Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB and Kuchroo VK: The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 6:1245–1252. 2005.PubMed/NCBI View Article : Google Scholar

46 

Sabatos CA, Chakravarti S, Cha E, Schubart A, Sánchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ and Kuchroo VK: Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 4:1102–1110. 2003.PubMed/NCBI View Article : Google Scholar

47 

Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL and Smyth MJ: Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res. 71:3540–3551. 2011.PubMed/NCBI View Article : Google Scholar

48 

Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma. N Engl J Med. 379:1711–1721. 2018.PubMed/NCBI View Article : Google Scholar

49 

Ascierto PA, Melero I, Bhatia S, Bono P, Sanborn RE, Lipson EJ, Callahan MK, Gajewski T, Gomez-Roca CA, Hodi FS, et al: Initial efficacy of anti-lymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti-PD-1/PD-L1 therapy. J Clin Orthod. 35 (15 Suppl)(S9520)2017.

50 

Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 170:1120–1133.e17. 2017.PubMed/NCBI View Article : Google Scholar

51 

Rotte A, Jin JY and Lemaire V: Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol. 29:71–83. 2018.PubMed/NCBI View Article : Google Scholar

52 

Tarhini A: Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: The underlying mechanisms and clinical management. Scientifica (Cairo). 2013(857519)2013.PubMed/NCBI View Article : Google Scholar

53 

Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, et al: Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer. 54:139–148. 2016.PubMed/NCBI View Article : Google Scholar

54 

Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34. 2022.PubMed/NCBI View Article : Google Scholar

55 

Olson DJ, Eroglu Z, Brockstein B, Poklepovic AS, Bajaj M, Babu S, Hallmeyer S, Velasco M, Lutzky J, Higgs E, et al: Pembrolizumab plus ipilimumab following anti-PD-1/L1 failure in melanoma. J Clin Oncol. 39:2647–2655. 2021.PubMed/NCBI View Article : Google Scholar

56 

Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL Jr, Lawrence DP, Logan TF, Schuchter LM, Nair S, Fecher L, et al: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): An open-label, randomised, phase 2 trial. Lancet Oncol. 17:943–955. 2016.PubMed/NCBI View Article : Google Scholar

57 

Shoushtari AN, Wagstaff J, Ascierto PA, Butler MO, Lao CD, Marquez-Rodas I, Chiarion-Sileni V, Dummer R, Ferrucci PF, Lorigan P, et al: CheckMate 067: Long-term outcomes in patients with mucosal melanoma. J Clin Orthod. 38 (15 Suppl)(S10019)2020.

58 

Pradeep J, Win TT, Aye SN and Sreeramareddy CT: Efficacy and safety of immune checkpoint inhibitors for advanced malignant melanoma: A meta-analysis on monotherapy vs combination therapy. J Cancer. 13:3091–3102. 2022.PubMed/NCBI View Article : Google Scholar

59 

Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC, Cormier JN, Lewis C, Hwu WJ, Hanna E, et al: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 24:1649–1654. 2018.PubMed/NCBI View Article : Google Scholar

60 

Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al: Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-Year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17:1558–1568. 2016.PubMed/NCBI View Article : Google Scholar

61 

Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, et al: Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-Year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19:1480–1492. 2018.PubMed/NCBI View Article : Google Scholar

62 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019.PubMed/NCBI View Article : Google Scholar

63 

Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al: Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 372:2006–2017. 2015.PubMed/NCBI View Article : Google Scholar

64 

Long GV, Atkinson V, Lo S, Sandhu S, Guminski AD, Brown MP, Wilmott JS, Edwards J, Gonzalez M, Scolyer RA, et al: Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 19:672–681. 2018.PubMed/NCBI View Article : Google Scholar

65 

Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, et al: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 29:3085–3096. 2011.PubMed/NCBI View Article : Google Scholar

66 

Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN and Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 293:876–880. 2001.PubMed/NCBI View Article : Google Scholar

67 

Ellis LM and Hicklin DJ: Resistance to targeted therapies: Refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 15:7471–7478. 2009.PubMed/NCBI View Article : Google Scholar

68 

Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, et al: Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 468:973–977. 2010.PubMed/NCBI View Article : Google Scholar

69 

Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, et al: COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 468:968–972. 2010.PubMed/NCBI View Article : Google Scholar

70 

Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, et al: Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68:4853–4861. 2008.PubMed/NCBI View Article : Google Scholar

71 

Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, et al: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010.PubMed/NCBI View Article : Google Scholar

72 

Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, et al: Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 17:77–88. 2010.PubMed/NCBI View Article : Google Scholar

73 

Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007.PubMed/NCBI View Article : Google Scholar

74 

Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, Rinehart C, Seidel B, Yee D, Arteaga CL and Engelman JA: Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 118:2609–2619. 2008.PubMed/NCBI View Article : Google Scholar

75 

Paraiso KHT, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, Wood E, Fedorenko IV, Sondak VK, Anderson AR, et al: PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71:2750–2760. 2011.PubMed/NCBI View Article : Google Scholar

76 

Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, Garbe C, Chiarion-Sileni V, Testori A, Chen TT, et al: Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 33:1191–1196. 2015.PubMed/NCBI View Article : Google Scholar

77 

Eggermont AMM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, et al: Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 375:1845–1855. 2016.PubMed/NCBI View Article : Google Scholar

78 

Ascierto PA, Del Vecchio M, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, Lebbé C, Bastholt L, Hamid O, Rutkowski P, et al: Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 18:611–622. 2017.PubMed/NCBI View Article : Google Scholar

79 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.PubMed/NCBI View Article : Google Scholar

80 

Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, et al: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16:375–384. 2015.PubMed/NCBI View Article : Google Scholar

81 

Larkin J, Minor D, D'Angelo S, Neyns B, Smylie M, Miller WH Jr, Gutzmer R, Linette G, Chmielowski B, Lao CD, et al: Overall survival in patients with advanced melanoma who received nivolumab versus investigator's choice chemotherapy in CheckMate 037: A randomized, controlled, open-label phase III trial. J Clin Oncol. 36:383–390. 2018.PubMed/NCBI View Article : Google Scholar

82 

Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V, Marquez-Rodas I, et al: Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 377:1824–1835. 2017.PubMed/NCBI View Article : Google Scholar

83 

Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, et al: Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 16:908–918. 2015.PubMed/NCBI View Article : Google Scholar

84 

Robert C, Ribas A, Schachter J, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil CM, Lotem M, et al: Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20:1239–1251. 2019.PubMed/NCBI View Article : Google Scholar

85 

Schachter J, Ribas A, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al: Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 390:1853–1862. 2017.PubMed/NCBI View Article : Google Scholar

86 

Long GV, Atkinson V, Ascierto PA, Robert C, Hassel JC, Rutkowski P, Savage KJ, Taylor F, Coon C, Gilloteau I, et al: Effect of nivolumab on health-related quality of life in patients with treatment-naïve advanced melanoma: Results from the phase III CheckMate 066 study. Ann Oncol. 27:1940–1946. 2016.PubMed/NCBI View Article : Google Scholar

87 

Schadendorf D, Dummer R, Hauschild A, Robert C, Hamid O, Daud A, van den Eertwegh A, Cranmer L, O'Day S, Puzanov I, et al: Health-related quality of life in the randomised KEYNOTE-002 study of pembrolizumab versus chemotherapy in patients with ipilimumab-refractory melanoma. Eur J Cancer. 67:46–54. 2016.PubMed/NCBI View Article : Google Scholar

88 

Nosrati A, Tsai KK, Goldinger SM, Tumeh P, Grimes B, Loo K, Algazi AP, Nguyen-Kim TDL, Levesque M, Dummer R, et al: Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. Br J Cancer. 116:1141–1147. 2017.PubMed/NCBI View Article : Google Scholar

89 

Zhang Y, Liu B, Kotenko S and Li W: Prognostic value of neutrophil-lymphocyte ratio and lactate dehydrogenase in melanoma patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Medicine (Baltimore). 101(e29536)2022.PubMed/NCBI View Article : Google Scholar

90 

Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, Lazar AJ, Faries MB, Kirkwood JM, McArthur GA, et al: Melanoma staging: Evidence-based changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 67:472–492. 2017.PubMed/NCBI View Article : Google Scholar

91 

Balch CM, Gershenwald JE, Soong SJ, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009.PubMed/NCBI View Article : Google Scholar

92 

Hauschild A, Engel G, Brenner W, Gläser R, Mönig H, Henze E and Christophers E: S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology. 56:338–344. 1999.PubMed/NCBI View Article : Google Scholar

93 

Jury CS, McAllister EJ and MacKie RM: Rising levels of serum S100 protein precede other evidence of disease progression in patients with malignant melanoma. Br J Dermatol. 143:269–274. 2000.PubMed/NCBI View Article : Google Scholar

94 

Mårtenson ED, Hansson LO, Nilsson B, von Schoultz E, Månsson Brahme E, Ringborg U and Hansson J: Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. J Clin Oncol. 19:824–831. 2001.PubMed/NCBI View Article : Google Scholar

95 

Janka EA, Várvölgyi T, Sipos Z, Soós A, Hegyi P, Kiss S, Dembrovszky F, Csupor D, Kéringer P, Pécsi D, et al: Predictive performance of serum S100B versus LDH in melanoma patients: A systematic review and meta-analysis. Front Oncol. 11(772165)2021.PubMed/NCBI View Article : Google Scholar

96 

Friedman RC, Farh KKH, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009.PubMed/NCBI View Article : Google Scholar

97 

Lim LP, Glasner ME, Yekta S, Burge CB and Bartel DP: Vertebrate microRNA genes. Science. 299(1540)2003.PubMed/NCBI View Article : Google Scholar

98 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001.PubMed/NCBI View Article : Google Scholar

99 

Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001.PubMed/NCBI View Article : Google Scholar

100 

Lee RC and Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001.PubMed/NCBI View Article : Google Scholar

101 

Pfeffer SR, Grossmann KF, Cassidy PB, Yang CH, Fan M, Kopelovich L, Leachman SA and Pfeffer LM: Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med Res. 4:2012–2027. 2015.PubMed/NCBI View Article : Google Scholar

102 

Lin N, Zhou Y, Lian X and Tu Y: Expression of microRNA-106b and its clinical significance in cutaneous melanoma. Genet Mol Res. 14:16379–16385. 2015.PubMed/NCBI View Article : Google Scholar

103 

Friedman EB, Shang S, de Miera EVS, Fog JU, Teilum MW, Ma MW, Berman RS, Shapiro RL, Pavlick AC, Hernando E, et al: Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med. 10(155)2012.PubMed/NCBI View Article : Google Scholar

104 

Wróblewska JP, Lach MS, Ustaszewski A, Kulcenty K, Ibbs M, Jagiełło I, Suchorska WM and Marszałek A: The potential role of selected miRNA in uveal melanoma primary tumors as early biomarkers of disease progression. Genes (Basel). 11(271)2020.PubMed/NCBI View Article : Google Scholar

105 

Tsao SCH, Weiss J, Hudson C, Christophi C, Cebon J, Behren A and Dobrovic A: Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 5(11198)2015.PubMed/NCBI View Article : Google Scholar

106 

Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KH, Saturno G, Furney SJ, et al: Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 6:286–299. 2016.PubMed/NCBI View Article : Google Scholar

107 

Clark WH Jr, Elder DE, Guerry D IV, Braitman LE, Trock BJ, Schultz D, Synnestvedt M and Halpern AC: Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 81:1893–1904. 1989.PubMed/NCBI View Article : Google Scholar

108 

Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P and Cascinelli N: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 77:1303–1310. 1996.PubMed/NCBI View Article : Google Scholar

109 

Mandalà M and Massi D: Tissue prognostic biomarkers in primary cutaneous melanoma. Virchows Arch. 464:265–281. 2014.PubMed/NCBI View Article : Google Scholar

110 

Balch CM, Murad TM, Soong SJ, Ingalls AL, Halpern NB and Maddox WA: A multifactorial analysis of melanoma: Prognostic histopathological features comparing Clark's and Breslow's staging methods. Ann Surg. 188:732–742. 1978.PubMed/NCBI View Article : Google Scholar

111 

Lattanzi M, Lee Y, Simpson D, Moran U, Darvishian F, Kim RH, Hernando E, Polsky D, Hanniford D, Shapiro R, et al: Primary melanoma histologic subtype: Impact on survival and response to therapy. J Natl Cancer Inst. 111:180–188. 2019.PubMed/NCBI View Article : Google Scholar

112 

Robinson E, Kulkarni PM, Pradhan JS, Gartrell RD, Yang C, Acs B, Rohr B, Phelps R, Ferringer T, Horst B, et al: Prediction of distant melanoma recurrence from primary tumor digital H&E images using deep learning. J Clin Orthod. 37 (15 Suppl)(S9577)2019.

113 

Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmüller G and Johnson JP: Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res. 47:841–845. 1987.PubMed/NCBI

114 

Lei X, Guan CW, Song Y and Wang H: The multifaceted role of CD146/MCAM in the promotion of melanoma progression. Cancer Cell Int. 15(3)2015.PubMed/NCBI View Article : Google Scholar

115 

Pacifico MD, Grover R, Richman PI, Daley FM, Buffa F and Wilson GD: Development of a tissue array for primary melanoma with long-term follow-up: Discovering melanoma cell adhesion molecule as an important prognostic marker. Plast Reconstr Surg. 115:367–375. 2005.PubMed/NCBI View Article : Google Scholar

116 

Weinstein D, Leininger J, Hamby C and Safai B: Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol. 7:13–24. 2014.PubMed/NCBI

117 

Gimotty PA, Van Belle P, Elder DE, Murry T, Montone KT, Xu X, Hotz S, Raines S, Ming ME, Wahl P and Guerry D: Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J Clin Oncol. 23:8048–8056. 2005.PubMed/NCBI View Article : Google Scholar

118 

Ladstein RG, Bachmann IM, Straume O and Akslen LA: Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer. 10(140)2010.PubMed/NCBI View Article : Google Scholar

119 

Tu TJ, Ma MW, Monni S, Rose AE, Yee H, Darvishian F, Polsky D, Berman RS, Shapiro RL, Pavlick AC, et al: A high proliferative index of recurrent melanoma is associated with worse survival. Oncology. 80:181–187. 2011.PubMed/NCBI View Article : Google Scholar

120 

Kahn HJ, Bailey D and Marks A: Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pathol. 15:434–440. 2002.PubMed/NCBI View Article : Google Scholar

121 

Kahn HJ and Marks A: A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest. 82:1255–1257. 2002.PubMed/NCBI View Article : Google Scholar

122 

Niakosari F, Kahn HJ, McCready D, Ghazarian D, Rotstein LE, Marks A, Kiss A and From L: Lymphatic invasion identified by monoclonal antibody D2-40, younger age, and ulceration: Predictors of sentinel lymph node involvement in primary cutaneous melanoma. Arch Dermatol. 144:462–467. 2008.PubMed/NCBI View Article : Google Scholar

123 

Rittling SR and Chambers AF: Role of osteopontin in tumour progression. Br J Cancer. 90:1877–1881. 2004.PubMed/NCBI View Article : Google Scholar

124 

Rudland PS, Platt-Higgins A, El-Tanani M, Silva Rudland S, Barraclough R, Winstanley JH, Howitt R and West CR: Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 62:3417–3427. 2002.PubMed/NCBI

125 

Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, Sheu JC, Chen CL and Hsu HC: Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer. 98:119–127. 2003.PubMed/NCBI View Article : Google Scholar

126 

Rangel J, Nosrati M, Torabian S, Shaikh L, Leong SP, Haqq C, Miller JR II, Sagebiel RW and Kashani-Sabet M: Osteopontin as a molecular prognostic marker for melanoma. Cancer. 112:144–150. 2008.PubMed/NCBI View Article : Google Scholar

127 

Thomas NE, Edmiston SN, Alexander A, Groben PA, Parrish E, Kricker A, Armstrong BK, Anton-Culver H, Gruber SB, From L, et al: Association between NRAS and BRAF mutational status and melanoma-specific survival among patients with higher-risk primary melanoma. JAMA Oncol. 1:359–368. 2015.PubMed/NCBI View Article : Google Scholar

128 

Cirenajwis H, Lauss M, Ekedahl H, Törngren T, Kvist A, Saal LH, Olsson H, Staaf J, Carneiro A, Ingvar C, et al: NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol. 11:438–451. 2017.PubMed/NCBI View Article : Google Scholar

129 

Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015.PubMed/NCBI View Article : Google Scholar

130 

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, et al: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 350:207–211. 2015.PubMed/NCBI View Article : Google Scholar

131 

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 371:2189–2199. 2014.PubMed/NCBI View Article : Google Scholar

132 

Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019.PubMed/NCBI View Article : Google Scholar

133 

Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z, Iams WT, Colgan M, DeNoble S, Terry CR, et al: Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 3:288–295. 2015.PubMed/NCBI View Article : Google Scholar

134 

Johnson DB, Bordeaux J, Kim JY, Vaupel C, Rimm DL, Ho TH, Joseph RW, Daud AI, Conry RM, Gaughan EM, et al: Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma. Clin Cancer Res. 24:5250–2560. 2018.PubMed/NCBI View Article : Google Scholar

135 

Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, Vilgelm AE, Feld E, Johnson AS, Greenplate AR, et al: Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 7(10582)2016.PubMed/NCBI View Article : Google Scholar

136 

Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, Chang H, Lovitch SB, Horak C, Weber JS, et al: MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 10(eaar3342)2018.PubMed/NCBI View Article : Google Scholar

137 

Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, et al: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 359:582–587. 2018.PubMed/NCBI View Article : Google Scholar

138 

Sanlorenzo M, Vujic I, Floris A, Novelli M, Gammaitoni L, Giraudo L, Macagno M, Leuci V, Rotolo R, Donini C, et al: BRAF and MEK inhibitors increase PD-1-positive melanoma cells leading to a potential lymphocyte-independent synergism with anti-PD-1 antibody. Clin Cancer Res. 24:3377–3385. 2018.PubMed/NCBI View Article : Google Scholar

139 

Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, Haydon A, Lichinitser M, Khattak A, Carlino MS, et al: Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 378:1789–1801. 2018.PubMed/NCBI View Article : Google Scholar

140 

Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, Homer R, West WW, Wu H, Roden AC, et al: A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 3:1051–1058. 2017.PubMed/NCBI View Article : Google Scholar

141 

Rizk EM, Gartrell RD, Barker LW, Esancy CL, Finkel GG, Bordbar DD and Saenger YM: Prognostic and predictive immunohistochemistry-based biomarkers in cancer and immunotherapy. Hematol Oncol Clin North Am. 33:291–299. 2019.PubMed/NCBI View Article : Google Scholar

142 

Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, et al: Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 179:236–250.e18. 2019.PubMed/NCBI View Article : Google Scholar

143 

Zhou X, Yu S, Zhao DM, Harty JT, Badovinac VP and Xue HH: Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity. 33:229–240. 2010.PubMed/NCBI View Article : Google Scholar

144 

Kratchmarov R, Magun AM and Reiner SL: TCF1 expression marks self-renewing human CD8+ T cells. Blood Adv. 2:1685–1690. 2018.PubMed/NCBI View Article : Google Scholar

145 

Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016.PubMed/NCBI View Article : Google Scholar

146 

Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, et al: Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 175:998–1013.e20. 2018.PubMed/NCBI View Article : Google Scholar

147 

Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 165:35–44. 2016.PubMed/NCBI View Article : Google Scholar

148 

Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O'Neil BH, Mehnert JM, et al: T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 37:318–327. 2019.PubMed/NCBI View Article : Google Scholar

149 

Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017.PubMed/NCBI View Article : Google Scholar

150 

Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, Brock C, Power D, Hatcher O, Falconer A, et al: Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. 5:1774–1778. 2019.PubMed/NCBI View Article : Google Scholar

151 

Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, et al: Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 25:1428–1441. 2019.PubMed/NCBI View Article : Google Scholar

152 

Altan-Bonnet G and Mukherjee R: Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nat Rev Immunol. 19:205–217. 2019.PubMed/NCBI View Article : Google Scholar

153 

Eisenring M, vom Berg J, Kristiansen G, Saller E and Becher B: IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol. 11:1030–1038. 2010.PubMed/NCBI View Article : Google Scholar

154 

Cristiani CM, Capone M, Garofalo C, Madonna G, Mallardo D, Tuffanelli M, Vanella V, Greco M, Foti DP, Viglietto G, et al: Altered frequencies and functions of innate lymphoid cells in melanoma patients are modulated by immune checkpoints inhibitors. Front Immunol. 13(811131)2002.PubMed/NCBI View Article : Google Scholar

155 

Joshi K, Atwal D, Ravilla R, Pandey Y, Yarlagadda N, Kakadia S, Makhoul I, Hutchins L and Mahmoud F: Immunotherapy outcomes in advanced melanoma in relation to age. Perm J. 24(19.093)2020.PubMed/NCBI View Article : Google Scholar

156 

Seidel JA, Otsuka A and Kabashima K: Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol. 8(86)2018.PubMed/NCBI View Article : Google Scholar

157 

Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018.PubMed/NCBI View Article : Google Scholar

158 

Jang SR, Nikita N, Banks J, Keith SW, Johnson JM, Wilson M and Lu-Yao G: Association between sex and immune checkpoint inhibitor outcomes for patients with melanoma. JAMA Netw Open. 4(e2136823)2021.PubMed/NCBI View Article : Google Scholar

159 

Anstadt EJ, Chu B, Yegya-Raman N, Han X, Doucette A, Poirier K, Mohiuddin JJ, Maity A, Facciabene A, Amaravadi RK, et al: Moderate colitis not requiring intravenous steroids is associated with improved survival in stage IV melanoma after anti-CTLA4 monotherapy, but not combination therapy. Oncologist. 27:799–808. 2022.PubMed/NCBI View Article : Google Scholar

160 

Jansen YJL, Rozeman EA, Mason R, Goldinger SM, Geukes Foppen MH, Hoejberg L, Schmidt H, van Thienen JV, Haanen JBAG, Tiainen L, et al: Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: Clinical outcomes in advanced melanoma. Ann Oncol. 30:1154–1161. 2019.PubMed/NCBI View Article : Google Scholar

161 

Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, Hwu WJ, Weber JS, Gangadhar TC, Joseph RW, et al: Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Orthod. 36:1668–1674. 2018.PubMed/NCBI View Article : Google Scholar

162 

Betof Warner A, Palmer JS, Shoushtari AN, Goldman DA, Panageas KS, Hayes SA, Bajwa R, Momtaz P, Callahan MK, Wolchok JD, et al: Long-term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. J Clin Oncol. 38:1655–1663. 2020.PubMed/NCBI View Article : Google Scholar

163 

Waterhouse DM, Garon EB, Chandler J, McCleod M, Hussein M, Jotte R, Horn L, Daniel DB, Keogh G, Creelan B, et al: Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153. J Clin Orthod. 38:3863–3873. 2020.PubMed/NCBI View Article : Google Scholar

164 

Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW, Liu N and Yan CX: Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: A meta-analysis. Front Pharmacol. 8(730)2017.PubMed/NCBI View Article : Google Scholar

165 

Santini FC, Rizvi H, Plodkowski AJ, Ni A, Lacouture ME, Gambarin-Gelwan M, Wilkins O, Panora E, Halpenny DF, Long NM, et al: Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol Res. 6:1093–1099. 2018.PubMed/NCBI View Article : Google Scholar

166 

Lebbé C, Meyer N, Mortier L, Marquez-Rodas I, Robert C, Rutkowski P, Menzies AM, Eigentler T, Ascierto PA, Smylie M, et al: Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: Results from the phase IIIb/IV CheckMate 511 trial. J Clin Oncol. 37:867–875. 2019.PubMed/NCBI View Article : Google Scholar

167 

Tarhini AA, Lee SJ, Hodi FS, Rao UNM, Cohen GI, Hamid O, Hutchins LF, Sosman JA, Kluger HM, Eroglu Z, et al: Phase III study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon alfa-2b for resected high-risk melanoma: North American intergroup E1609. J Clin Oncol. 38:567–575. 2020.PubMed/NCBI View Article : Google Scholar

168 

Betof AS, Nipp RD, Giobbie-Hurder A, Johnpulle RAN, Rubin K, Rubinstein SM, Flaherty KT, Lawrence DP, Johnson DB and Sullivan RJ: Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist. 22:963–971. 2017.PubMed/NCBI View Article : Google Scholar

169 

Zamami Y, Niimura T, Okada N, Koyama T, Fukushima K, Izawa-Ishizawa Y and Ishizawa K: Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 5:1635–1637. 2019.PubMed/NCBI View Article : Google Scholar

170 

Tan MH, Iyengar R, Mizokami-Stout K, Yentz S, MacEachern MP, Shen LY, Redman B and Gianchandani R: Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: A scoping review of case reports. Clin Diabetes Endocrinol. 5(1)2019.PubMed/NCBI View Article : Google Scholar

171 

Wright JJ, Powers AC and Johnson DB: Endocrine toxicities of immune checkpoint inhibitors. Nat Rev Endocrinol. 17:389–399. 2021.PubMed/NCBI View Article : Google Scholar

172 

Minkis K, Garden BC, Wu S, Pulitzer MP and Lacouture ME: The risk of rash associated with ipilimumab in patients with cancer: A systematic review of the literature and meta-analysis. J Am Acad Dermatol. 69:e121–e128. 2013.PubMed/NCBI View Article : Google Scholar

173 

Coleman E, Ko C, Dai F, Tomayko MM, Kluger H and Leventhal JS: Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J Am Acad Dermatol. 80:990–997. 2019.PubMed/NCBI View Article : Google Scholar

174 

Sibaud V, Meyer N, Lamant L, Vigarios E, Mazieres J and Delord JP: Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr Opin Oncol. 28:254–263. 2016.PubMed/NCBI View Article : Google Scholar

175 

Sibaud V: Dermatologic reactions to immune checkpoint inhibitors: Skin toxicities and immunotherapy. Am J Clin Dermatol. 19:345–361. 2018.PubMed/NCBI View Article : Google Scholar

176 

Inno A, Metro G, Bironzo P, Grimaldi AM, Grego E, Di Nunno V, Picasso V, Massari F and Gori S: Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori. 103:405–421. 2017.PubMed/NCBI View Article : Google Scholar

177 

Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P and Chandra AB: Current diagnosis and management of immune related adverse events (irAEs) Induced by immune checkpoint inhibitor therapy. Front Pharmacol. 8(49)2017.PubMed/NCBI View Article : Google Scholar

178 

Bryce J and Boers-Doets CB: Non-rash dermatologic adverse events related to targeted therapies. Semin Oncol Nurs. 30:155–168. 2014.PubMed/NCBI View Article : Google Scholar

179 

Geisler AN, Phillips GS, Barrios DM, Wu J, Leung DYM, Moy AP, Kern JA and Lacouture ME: Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol. 83:1255–1268. 2020.PubMed/NCBI View Article : Google Scholar

180 

Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR, Bender TP, Tung KS, Vella AT, et al: Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 120:4772–4782. 2012.PubMed/NCBI View Article : Google Scholar

181 

Sano T, Uhara H, Mikoshiba Y, Kobayashi A, Uchiyama R, Tateishi K, Yamamoto H and Okuyama R: Nivolumab-induced organizing pneumonia in a melanoma patient. Jpn J Clin Oncol. 46:270–272. 2016.PubMed/NCBI View Article : Google Scholar

182 

Nakashima K, Naito T, Omori S, Yoshikawa S, Endo M, Kiyohara Y and Takahashi T: Organizing pneumonia induced by nivolumab in a patient with metastatic melanoma. J Thorac Oncol. 11:432–433. 2016.PubMed/NCBI View Article : Google Scholar

183 

Koelzer VH, Rothschild SI, Zihler D, Wicki A, Willi B, Willi N, Voegeli M, Cathomas G, Zippelius A and Mertz KD: Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J Immunother Cancer. 4(13)2016.PubMed/NCBI View Article : Google Scholar

184 

Watanabe S, Kimura H, Takato H, Waseda Y, Hara J, Sone T, Abo M, Maeda S, Matsushita T and Kasahara K: Severe pneumonitis after nivolumab treatment in a patient with melanoma. Allergol Int. 65:487–489. 2016.PubMed/NCBI View Article : Google Scholar

185 

Nishino M, Sholl LM, Hatabu H, Ramaiya NH and Hodi FS: Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 373:288–290. 2015.PubMed/NCBI View Article : Google Scholar

186 

Mir MA: T-cell costimulation and its applications in diseases. Dev Costimulatory Mol Immunother Dis. 29:255–292. 2015.

187 

Tarazona R, Duran E and Solana R: Natural killer cell recognition of melanoma: New clues for a more effective immunotherapy. Front Immunol. 6(649)2015.PubMed/NCBI View Article : Google Scholar

188 

Rieth J and Subramanian S: Mechanisms of intrinsic tumor resistance to immunotherapy. Int J Mol Sci. 19(1340)2018.PubMed/NCBI View Article : Google Scholar

189 

Fisher DT, Appenheimer MM and Evans SS: The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26:38–47. 2014.PubMed/NCBI View Article : Google Scholar

190 

O'Donnell JS, Long GV, Scolyer RA, Teng MWL and Smyth MJ: Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 52:71–81. 2017.PubMed/NCBI View Article : Google Scholar

191 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar

192 

Ahn CS and Metallo CM: Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3(1)2015.PubMed/NCBI View Article : Google Scholar

193 

O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019.PubMed/NCBI View Article : Google Scholar

194 

DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2(e1600200)2016.PubMed/NCBI View Article : Google Scholar

195 

Robey IF, Lien AD, Welsh SJ, Baggett BK and Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia. 7:324–330. 2005.PubMed/NCBI View Article : Google Scholar

196 

Franco F, Jaccard A, Romero P, Yu YR and Ho PC: Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2:1001–1012. 2020.PubMed/NCBI View Article : Google Scholar

197 

Jiang Y, Li Y and Zhu B: T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6(e1792)2015.PubMed/NCBI View Article : Google Scholar

198 

Sirico M, D'Angelo A, Gianni C, Casadei C, Merloni F and De Giorgi U: Current state and future challenges for PI3K inhibitors in cancer therapy. Cancers (Basel). 15(703)2023.PubMed/NCBI View Article : Google Scholar

199 

Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016.PubMed/NCBI View Article : Google Scholar

200 

Li X, Wenes M, Romero P, Huang SCC, Fendt SM and Ho PC: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019.PubMed/NCBI View Article : Google Scholar

201 

Marin-Acevedo JA, Kimbrough EO and Lou Y: Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 14(45)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Shah V, Panchal V, Shah A, Vyas B, Agrawal S and Bharadwaj S: Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int 4: 13, 2024.
APA
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., & Bharadwaj, S. (2024). Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Medicine International, 4, 13. https://doi.org/10.3892/mi.2024.137
MLA
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., Bharadwaj, S."Immune checkpoint inhibitors in metastatic melanoma therapy (Review)". Medicine International 4.2 (2024): 13.
Chicago
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., Bharadwaj, S."Immune checkpoint inhibitors in metastatic melanoma therapy (Review)". Medicine International 4, no. 2 (2024): 13. https://doi.org/10.3892/mi.2024.137
Copy and paste a formatted citation
x
Spandidos Publications style
Shah V, Panchal V, Shah A, Vyas B, Agrawal S and Bharadwaj S: Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int 4: 13, 2024.
APA
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., & Bharadwaj, S. (2024). Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Medicine International, 4, 13. https://doi.org/10.3892/mi.2024.137
MLA
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., Bharadwaj, S."Immune checkpoint inhibitors in metastatic melanoma therapy (Review)". Medicine International 4.2 (2024): 13.
Chicago
Shah, V., Panchal, V., Shah, A., Vyas, B., Agrawal, S., Bharadwaj, S."Immune checkpoint inhibitors in metastatic melanoma therapy (Review)". Medicine International 4, no. 2 (2024): 13. https://doi.org/10.3892/mi.2024.137
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team