Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
March-April 2024 Volume 4 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2024 Volume 4 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)

  • Authors:
    • Ercan Ozdemir
  • View Affiliations / Copyright

    Affiliations: Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey
    Copyright: © Ozdemir et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 20
    |
    Published online on: February 27, 2024
       https://doi.org/10.3892/mi.2024.144
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Epilepsy is a complex and common neurological disorder characterized by spontaneous and recurrent seizures, affecting ~75 million individuals worldwide. Numerous studies have been conducted to develop new pharmacological drugs for the effective treatment of epilepsy. In recent years, numerous experimental and clinical studies have focused on the role of the adrenergic receptor (AR) system in the regulation of epileptogenesis, seizure susceptibility and convulsions. α1‑ARs (α1A, α1B and α1D), α2‑ARs (α2A, α2B and α2C) and β‑ARs (β1, β2 and β3), known to have convulsant or anticonvulsant effects, have been isolated. Norepinephrine (NE), the key endogenous agonist of ARs, is considered to play a crucial role in the pathophysiology of epileptic seizures. However, the effects of NE on different ARs have not been fully elucidated. Although the activation of some AR subtypes produces conflicting results, the activation of α1, α2 and β receptor subtypes, in particular, produces anticonvulsant effects. The present review focuses on NE and ARs involved in epileptic seizure formation and discusses therapeutic approaches.
View Figures

Figure 1

Figure 2

View References

1 

Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P and Engel J Jr: Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia. 46:470–472. 2005.PubMed/NCBI View Article : Google Scholar

2 

McHugh JC and Delanty N: Epidemiology and classification of epilepsy: Gender comparisons. Int Rev Neurobiol. 83:11–26. 2008.PubMed/NCBI View Article : Google Scholar

3 

Weltha L, Reemmer J and Boison D: The role of adenosine in epilepsy. Brain Res Bull. 151:46–54. 2019.PubMed/NCBI View Article : Google Scholar

4 

Berkovic SF and Scheffer IE: Febrile seizures: Genetics and relationship to other epilepsy syndromes. Curr Opin Neurol. 11:129–134. 1998.PubMed/NCBI View Article : Google Scholar

5 

Bence AK, Worthen DR, Stables JP and Crooks PA: An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacol Biochem Behav. 74:771–775. 2003.PubMed/NCBI View Article : Google Scholar

6 

DiNuzzo M, Mangia S, Maraviglia B and Giove F: Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 108:995–1012. 2014.PubMed/NCBI View Article : Google Scholar

7 

Sahin B, Ozdemir E, Gumus E, Ergul M and Taskiran AS: The 5-HT7 receptor antagonist SB-269970 alleviates seizure activity and downregulates hippocampal c-Fos expression in pentylenetetrazole-induced kindled rats. Neurol Res. 44:786–796. 2022.PubMed/NCBI View Article : Google Scholar

8 

Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF and Devinsky O: Immunoreactivity of muscarinic acetylcholine M2 and serotonin 5-HT2B receptors, norepinephrine transporter and Kir channels in a model of epilepsy. Life (Basel). 11(276)2021.PubMed/NCBI View Article : Google Scholar

9 

Chen C, Zhu T, Gong L, Hu Z, Wei H, Fan J, Lin D, Wang X, Xu J, Dong X, et al: Trpm2 deficiency in microglia attenuates neuroinflammation during epileptogenesis by upregulating autophagy via the AMPK/mTOR pathway. Neurobiol Dis. 186(106273)2023.PubMed/NCBI View Article : Google Scholar

10 

Kuang X, Chen S and Ye Q: The role of histone deacetylases in NLRP3 inflammasomes-mediated epilepsy. Curr Mol Med 2023: doi: 10.2174/1566524023666230731095431, 2023.

11 

Rana A and Musto AE: The role of inflammation in the development of epilepsy. J Neuroinflammation. 15(144)2018.PubMed/NCBI View Article : Google Scholar

12 

Gunes H, Ozdemir E and Arslan G: Coenzyme Q10 increases absence seizures in WAG/Rij rats: The role of the nitric oxide pathway. Epilepsy Res. 154:69–73. 2019.PubMed/NCBI View Article : Google Scholar

13 

Taskıran AS, Ozdemir E, Gumus E and Ergul M: The effects of salmon calcitonin on epileptic seizures, epileptogenesis, and postseizure hippocampal neuronal damage in pentylenetetrazole-induced epilepsy model in rats. Epilepsy Behav. 13(107501)2020.PubMed/NCBI View Article : Google Scholar

14 

Strac DS, Pivac N, Smolders IJ, Fogel WA, Deurwaerdere PD and Giovanni GD: Monoaminergic mechanisms in epilepsy may offer innovative therapeutic opportunity for monoaminergic multi-target drugs. Front Neurosci. 10(492)2016.PubMed/NCBI View Article : Google Scholar

15 

Giorgi FS, Pizzanelli C, Biagioni F, Murri L and Fornai F: The role of norepinephrine in epilepsy: From the bench to the bedside. Neurosci Biobehav Rev. 28:507–524. 2004.PubMed/NCBI View Article : Google Scholar

16 

Foote SL and Berridge CW: New developments and future directions in understanding locus coeruleus-Norepinephrine (LC-NE) function. Brain Res. 1709:81–84. 2019.PubMed/NCBI View Article : Google Scholar

17 

Amaral-Silva L and Santin JM: Molecular profiling of CO2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp Biochem Physiol A Mol Integr Physiol. 283(111453)2023.PubMed/NCBI View Article : Google Scholar

18 

Clough RW, Browning RA, Maring ML, Statnick MA, Wang C and Jobe PC: Effects of intraventricular locus coeruleus transplants on seizure severity in genetically epilepsy-prone rats following depletion of brain norepinephrine. J Neural Transplant Plast. 5:65–79. 1994.PubMed/NCBI View Article : Google Scholar

19 

Larsen LE, Caestecker S, Stevens L, van Mierlo P, Carrette E, Boon P, Vonck K and Raedt R: Hippocampal seizures differentially modulate locus coeruleus activity and result in consistent time-locked release of noradrenaline in rat hippocampus. Neurobiol Dis. 189(106355)2023.PubMed/NCBI View Article : Google Scholar

20 

Brawek B, Löffler M, Dooley DJ, Weyerbrock A and Feuerstein TJ: Differential modulation of K(+)-evoked (3)H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn Schmiedebergs Arch Pharmacol. 376:301–307. 2008.PubMed/NCBI View Article : Google Scholar

21 

Choi TY, Kwon JE, Durrance ES, Jo SH, Choi SY and Kim KT: Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release. Brain Res. 4:34–42. 2014.PubMed/NCBI View Article : Google Scholar

22 

Briere R, Sherwin AL, Robitaille Y, Olivier A, Quesney LF and Reader TA: Alpha-1 adrenoceptors are decreased in human epileptic foci. Ann Neurol. 19:26–30. 1986.PubMed/NCBI View Article : Google Scholar

23 

Nicoletti F, Barbaccia ML, Iadarola MJ, Pozzi O and Laird HE II: Abnormality ofalpha 1-adrenergic receptors in the frontal cortex of epileptic rats. J Neurochem. 46:270–273. 1986.PubMed/NCBI View Article : Google Scholar

24 

McIntyre DC and Edson N: Effect of norepinephrine depletion on dorsal hippocampus kindling in rats. Exp Neuron. 77:700–704. 1982.PubMed/NCBI View Article : Google Scholar

25 

Kokaia M, Bengzon J, Kalen P and Lindvall O: Noradrenergic mechanisms in hippocampal kindling with rapidly recurring seizures. Brain Res. 491:398–402. 1989.PubMed/NCBI View Article : Google Scholar

26 

Dailey JW and Naritoku DK: Antidepressants and seizures: Clinical anecdotes overshadow neuroscience. Biochem Pharmacol. 52:1323–1329. 1996.PubMed/NCBI View Article : Google Scholar

27 

Fitzgerald PJ: Is elevated norepinephrine an etiological factor in some cases of epilepsy? Seizure. 19:311–318. 2010.PubMed/NCBI View Article : Google Scholar

28 

Chen J, Liang H, Miao M, Su X, Yang F, Thomsen RW, Yuan W and Li J: In utero beta-2-adrenergic agonists exposure and risk of epilepsy: A Danish nationwide population-based cohort study. Pharmacoepidemiol Drug Saf. 27:1200–1208. 2018.PubMed/NCBI View Article : Google Scholar

29 

Felippotti TT, dos Reis Ferreira CM, de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T and Coimbra NC: Paradoxical effect of noradrenaline-mediated neurotransmission in the antinociceptive phenomenon that accompanies tonic-clonic seizures: role of locus coeruleus neurons and α(2)- and β-noradrenergic receptors. Epilepsy Behav. 22:165–77. 2011.PubMed/NCBI View Article : Google Scholar

30 

Hillman KL, Lei S, Doze VA and Porter JE: Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res. 84:97–109. 2009.PubMed/NCBI View Article : Google Scholar

31 

Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, Murri L and Fornai F: Lack of alpha 1b-adrenergic receptor protects against epileptic seizures. Epilepsia. 50 (Suppl 1):S59–S64. 2009.PubMed/NCBI View Article : Google Scholar

32 

Shafaroodi H, Moezi L, Bahremand A and Dehpour AR: The role of α2-adrenoceptors in the anti-convulsant effects of cannabinoids on pentylenetetrazole-induced seizure threshold in mice. Eur J Pharmacol. 714:1–6. 2013.PubMed/NCBI View Article : Google Scholar

33 

Shouse MN, Scordato JC, Farber PR and de Lanerolle N: The alpha2 adrenoreceptor agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens. Brain Res. 1137:58–68. 2007.PubMed/NCBI View Article : Google Scholar

34 

Fletcher A and Forster EA: A proconvulsant action of selective alpha 2-adrenoceptor antagonists. Eur J Pharmacol. 151:27–34. 1988.PubMed/NCBI View Article : Google Scholar

35 

Payandemehr B, Bahremand A, Ebrahimi A, Nasrabady SE, Rahimian R, Bahremand T, Sharifzadeh M and Dehpour AR: Protective effects of lithium chloride on seizure susceptibility: Involvement of α2-adrenoceptor. Pharmacol Biochem Behav. 133:37–42. 2015.PubMed/NCBI View Article : Google Scholar

36 

Moezi L, Mansoori E, Niknahad H and Shafaroodi H: The role of alpha-2 adrenoceptors in the anticonvulsant effects of adenosine on pentylenetetrazole-induced seizure threshold in mice. Pharmacol Biochem Behav. 126:36–42. 2014.PubMed/NCBI View Article : Google Scholar

37 

Abraham PA, Xing G, Zhang L, Yu EZ, Post R, Gamble EH and Li H: beta1- and beta2-adrenoceptor induced synaptic facilitation in rat basolateral amygdala. Brain Res. 1209:65–73. 2008.PubMed/NCBI View Article : Google Scholar

38 

McIntyre DC and Roberts DCS: Long-term reduction in beta-adrenergic receptor binding after amygdala kindling in rats. Exp Neurol. 82:17–24. 1983.PubMed/NCBI View Article : Google Scholar

39 

Philipp M, Brede M and Hein L: Physiological significance of alpha(2)-adrenergic receptor subtype diversity: One receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 283:R287–R295. 2002.PubMed/NCBI View Article : Google Scholar

40 

Wu Y, Zeng L and Zhao S: Ligands of adrenergic receptors: A structural point of view. Biomolecules. 11(936)2021.PubMed/NCBI View Article : Google Scholar

41 

Perez DM: α1-Adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front Pharmacol. 11(581098)2020.PubMed/NCBI View Article : Google Scholar

42 

Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, et al: Decreased blood pressure response in mice deficient of the alpha1b adrenergic receptor. Proc Natl Acad Sci USA. 94:11589–11594. 1997.PubMed/NCBI View Article : Google Scholar

43 

Graham RM, Perez DM, Hwa J and Piascik MT: alpha1-adrenergic receptor subtypes: Molecular structure, function, and signaling. Circ Res. 78:737–749. 1996.PubMed/NCBI View Article : Google Scholar

44 

Perez DM and Doze VA: Cardiac and neuroprotection regulated by α(1)-adrenergic receptor Subtypes. J Recept Signal Transduct Res. 31:98–110. 2011.PubMed/NCBI View Article : Google Scholar

45 

Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA and Perez DM: Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: Alpha1aar is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol. 497:209–222. 2006.PubMed/NCBI View Article : Google Scholar

46 

Gupta MK, Papay RS, Jurgens CW, Gaivin RJ, Shi T, Doze VA and Perez DM: Alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol Pharmacol. 76:314–326. 2009.PubMed/NCBI View Article : Google Scholar

47 

Trendelenburg AU, Sutej I, Wahl CA, Molderings GJ, Rump LC and Starke K: A re-investigation of questionable subclassifications of presynaptic α2-autoreceptors: Rat vena cava, rat atria, human kidney and guinea-pig urethra. Naunyn Schmiedebergs Arch Pharmacol. 356:721–737. 1997.PubMed/NCBI View Article : Google Scholar

48 

Rump CL, Bohmann C, Schaible U, Schöllhorn J and Limberger N: Alpha 2C-adrenoceptor-modulated release of noradrenaline in human right atrium. Br J Pharmacol. 116:2617–2624. 1995.PubMed/NCBI View Article : Google Scholar

49 

Brodde O: Beta-1 and beta-2 adrenoceptor polymorphisms: Functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther. 117:1–29. 2008.PubMed/NCBI View Article : Google Scholar

50 

Leineweber K and Heusch G: Beta 1- and beta 2-adrenoceptor polymorphisms and cardiovascular diseases. Br J Pharmacol. 158:61–69. 2009.PubMed/NCBI View Article : Google Scholar

51 

Kume H, Nishiyama O, Isoya T, Higashimoto Y, Tohda Y and Noda Y: Involvement of allosteric effect and KCa channels in crosstalk between β2-adrenergic and muscarinic M2 receptors in airway smooth muscle. Int J Mol Sci. 19(1999)2018.PubMed/NCBI View Article : Google Scholar

52 

Sawa M and Harada H: Recent developments in the design of orally bioavailable beta3-adrenergic receptor agonists. Curr Med Chem. 13:25–37. 2006.PubMed/NCBI

53 

Ferrer-Lorente R, Cabot C, Fernández-López JA and Alemany M: Combined effects of oleoyl-estrone and a β3-adrenergic agonist (CL316,243) on lipid stores of diet-induced overweight male Wistar rats. Life Sci. 77:2051–2058. 2005.PubMed/NCBI View Article : Google Scholar

54 

Gundlach AL, Burazin TC, Jenkins TA and Berkovic SF: Spatiotemporal alterations of central alpha 1-adrenergic receptor binding sites following amygdaloid kindling seizures in the rat: Autoradiographic studies using (3H)prazosin. Brain Res. 672:214–227. 1995.PubMed/NCBI View Article : Google Scholar

55 

Jazrawi SP and Horton RW: Brain adrenoceptor binding sites in mice susceptible (DBA/2J) and resistant (C57 Bl/6) to audiogenic seizures. J Neurochem. 47:173–177. 1986.PubMed/NCBI View Article : Google Scholar

56 

Kulik A, Haentzsch A, Lückermann M, Reichelt W and Ballanyi K: Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glialcells in situ. J Neurosci. 19:8401–8408. 1999.PubMed/NCBI View Article : Google Scholar

57 

Terakado M: Adrenergic regulation of GABA release from presynaptic terminals in rat cerebral cortex. J Oral Sci. 56:49–57. 2014.PubMed/NCBI View Article : Google Scholar

58 

Rutecki PA: Noradrenergic modulation of epileptiform activity in the hippocampus. Epilepsy Res. 20:125–136. 1995.PubMed/NCBI View Article : Google Scholar

59 

Jurgens CWD, Knudson CA, Carr PA, Perez DM and Doze VA: a1 Adrenergic receptor regulation of interneuron function. FASEB J. 23 (Suppl 946)(4)2009.

60 

Knudson CA, Carr PA, Perez DM and Doze VA: Alpha-1A adrenergic receptor overexpression protects hippocampal interneurons. FASEB J. 21(A1209)2007.

61 

Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D and Perez DM: Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy. Nat Med. 6:1388–1394. 2000.PubMed/NCBI View Article : Google Scholar

62 

Kruse SW, Dayton KG, Purnell BS, Rosner JI and Buchanan GF: Effect of monoamine reuptake inhibition and α1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia. 60:495–507. 2019.PubMed/NCBI View Article : Google Scholar

63 

Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO and Najm IM: Systemic overexpression of the alpha 1B-adrenergic receptor in mice: An animal model of epilepsy. Epilepsia. 43:1324–1329. 2002.PubMed/NCBI View Article : Google Scholar

64 

Chen CR, Qu WM, Qiu MH, Xu XH, Yao MH, Urade Y and Huang ZL: Modafinil exerts a dose-dependent antiepileptic effect mediated by adrenergic alpha1 and histaminergic H1 receptors in mice. Neuropharmacology. 53:534–541. 2007.PubMed/NCBI View Article : Google Scholar

65 

Niitani K, Ito S, Wada S, Izumi S, Nishitani N, Deyama S and Kaneda K: Noradrenergic stimulation of α1 adrenoceptors in the medial prefrontal cortex mediates acute stress-induced facilitation of seizures in mice. Sci Rep. 19(8089)2023.PubMed/NCBI View Article : Google Scholar

66 

Ciltas AC, Ozdemir E, Gumus E, Taskiran AS, Gunes H and Arslan G: The anticonvulsant effects of alpha-2 adrenoceptor agonist dexmedetomidine on pentylenetetrazole-induced seizures in rats. Neurochem Res. 47:305–314. 2022.PubMed/NCBI View Article : Google Scholar

67 

Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE and Pitkänen A: Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res. 136:18–34. 2017.PubMed/NCBI View Article : Google Scholar

68 

Jurgens CW, Hammad HM, Lichter JA, Boese SJ, Nelson BW, Goldenstein BL, Davis KL, Xu K, Hillman KL, Porter JE and Doze VA: Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region. Mol Pharmacol. 71:1572–1581. 2007.PubMed/NCBI View Article : Google Scholar

69 

Szot P, Lester M, Laughlin ML, Palmiter RD, Liles LC and Weinshenker D: The anticonvulsant and proconvulsant effects of alpha2-adrenoreceptor agonists are mediated by distinct populations of alpha2A-adrenoreceptors. Neuroscience. 126:795–803. 2004.PubMed/NCBI View Article : Google Scholar

70 

Yavuz M, Aydın B, Çarçak N, Akman Ö, Yananlı HR and Onat F: Atipamezole, a specific α2A antagonist, suppresses spike-and-wave discharges and alters Ca2+/calmodulin-dependent protein kinase II in the thalamus of genetic absence epilepsy rats. Epilepsia. 61:2825–2835. 2020.PubMed/NCBI View Article : Google Scholar

71 

Ferraro L, Tanganelli S, Calo G, Antonelli T, Fabrizi A, Acciarri N, Bianchi C, Beani L and Simonato M: Noradrenergic modulation of gamma-aminobutyric acid outflow from the human cerebral cortex. Brain Res. 629:103–108. 1993.PubMed/NCBI View Article : Google Scholar

72 

Louis WJ, Papanicolaou J, Summers RJ and Vajda FJ: Role of central beta-adrenoceptors in the control of pentylenetetrazol-induced convulsions in rats. Br J Pharmacol. 75:441–446. 1982.PubMed/NCBI View Article : Google Scholar

73 

Nakamura T, Oda Y, Takahashi R, Tanaka K, Hase I and Asada A: Propranolol increases the threshold for lidocaine-induced convulsions in awake rats: A direct effect on the brain. Anesth Analg. 106:1450–1455. 2008.PubMed/NCBI View Article : Google Scholar

74 

Santana N and Artigas F: Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Front Neuroanat. 11:1–13. 2017.PubMed/NCBI View Article : Google Scholar

75 

Luo F, Tang H and Cheng ZY: Stimulation of α1-adrenoceptors facilitates GABAergic transmission onto pyramidal neurons in the medial prefrontal cortex. Neuroscience. 300:63–74. 2015.PubMed/NCBI View Article : Google Scholar

76 

Hillman KL, Knudson CA, Carr PA, Doze VA and Porter JE: Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Brain Res. 139:267–276. 2005.PubMed/NCBI View Article : Google Scholar

77 

Sapa J, Zygmunt M, Kulig K, Malawska B, Dudek M, Filipek B, Bednarski M, Kusak A and Nowak G: Evaluation of anticonvulsant activity of novel pyrrolidin-2-one derivatives. Pharmacol Rep. 66:708–711. 2014.PubMed/NCBI View Article : Google Scholar

78 

Clinckers R, Zgavc T, Vermoesen K, Meurs A, Michotte Y and Smolders I: Pharmacological and neurochemical characterization of the involvement of hippocampal adrenoreceptor subtypes in the modulation of acute limbic seizures. J Neurochem. 115:1595–1607. 2010.PubMed/NCBI View Article : Google Scholar

79 

Gellman RL, Kallianos JA and McNamara JO: Alpha-2 receptors mediateendogenous noradrenergic suppression of kindling development. J Pharmacol Exp Ther. 241:891–898. 1987.PubMed/NCBI

80 

Amabeoku GJ: The involvement of noradrenaline, 5-hydroxytryptamine and acetylcholine in imipramine-induced seizures in mice. Experientia. 49:859–864. 1993.PubMed/NCBI View Article : Google Scholar

81 

MacDonald E, Kobilka BK and Scheinin M: Gene targeting-homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci. 18:211–219. 1997.PubMed/NCBI View Article : Google Scholar

82 

Weinshenker D, Szot P, Miller NS and Palmiter RD: Alpha1 and beta2 adrenoreceptor agonists inhibit pentylenetetrazole-induced seizures in mice lacking norepinephrine. J Pharmacol Exp Ther. 298:1042–1048. 2001.PubMed/NCBI

83 

Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE and Lei S: Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2K+ channels. J Biol Chem. 284:10980–10991. 2009.PubMed/NCBI View Article : Google Scholar

84 

Sitnikova E, Pupikina M and Rutskova E: Alpha2 adrenergic modulation of spike-wave epilepsy: Experimental study of pro-epileptic and sedative effects of dexmedetomidine. Int J Mol Sci. 24(9445)2023.PubMed/NCBI View Article : Google Scholar

85 

Biggane JP, Xu K, Goldenstein BL, Davis KL, Luger EJ, Davis BA, Jurgens CWD, Perez DM, Porter JE and Doze VA: Pharmacological characterization of the α2A-adrenergic receptor inhibiting rat hippocampal CA3 epileptiform activity: Comparison of ligand efficacy and potency. J Recept Signal Transduct Res. 42:580–587. 2022.PubMed/NCBI View Article : Google Scholar

86 

Ahmadirad N, Fathollahi Y, Janahmadi M, Ghasemi Z, Shojaei A, Rezaei M, Barkley V and Mirnajafi-Zadeh J: The role of α adrenergic receptors in mediating the inhibitory effect of electrical brain stimulation on epileptiform activity in rat hippocampal slices. Brain Res. 1765(147492)2021.PubMed/NCBI View Article : Google Scholar

87 

Rezaei M, Ahmadirad N, Ghasemi Z, Shojaei A, Raoufy MR, Barkley V, Fathollahi Y and Mirnajafi-Zadeh J: Alpha adrenergic receptors have role in the inhibitory effect of electrical low frequency stimulation on epileptiform activity in rats. Int J Neurosci. 133:496–504. 2023.PubMed/NCBI View Article : Google Scholar

88 

Wu HQ, Tullii M, Samanin R and Vezzani A: Norepinephrine modulates seizures induced by quinolinic acid in rats: Selective and distinct roles of alpha adrenoceptor subtypes. Eur J Pharmacol. 138:309–318. 1987.PubMed/NCBI View Article : Google Scholar

89 

Eason MG, Kurose H, Holt BD, Raymond JR and Liggett SB: Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem. 267:15795–15801. 1992.PubMed/NCBI

90 

Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC and Salgado H: Locus ceruleus norepinephrine release: A central regulator of CNS spatio-temporal activation. Front Synaptic Neurosci. 8(25)2016.PubMed/NCBI View Article : Google Scholar

91 

Świąder M, Zakrocka I, Świąder K, Zawadzki A, Łuszczki JJ, Czuczwar SJ and Munir D: Influence of salbutamol on the anticonvulsant potency of the antiepileptic drugs in the maximal electroshock-induced seizures in mice. Pharmacol Rep. 71:466–472. 2019.PubMed/NCBI View Article : Google Scholar

92 

Gross RA and Ferrendelli JA: Relationships between norepinephrine and cyclic nucleotides in brain and seizure activity. Neuropharmacology. 21:655–661. 1982.PubMed/NCBI View Article : Google Scholar

93 

Anlezark G, Horton R and Meldrum B: The anticonvulsant action of the (-)- and (+)-enantiomers of propranolol. J Pharm Pharmacol. 31:482–483. 1979.PubMed/NCBI View Article : Google Scholar

94 

Levy A, Ngai SH, Finck AD, Kawashima K and Spector S: Disposition of propranolol isomers in mice. Eur J Pharmacol. 40:93–100. 1976.PubMed/NCBI View Article : Google Scholar

95 

Fischer W: Anticonvulsant profile and mechanism of action of propranolol and its two enantiomers. Seizure. 11:285–302. 2002.PubMed/NCBI View Article : Google Scholar

96 

Mueller AL and Dunwiddie TV: Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia. 24:57–64. 1983.PubMed/NCBI View Article : Google Scholar

97 

Lipski WJ and Grace AA: Activation and inhibition of neurons in the hippocampal ventral subiculum by norepinephrine and locus coeruleus stimulation. Neuropsychopharmacology. 38:285–292. 2013.PubMed/NCBI View Article : Google Scholar

98 

Fassio A, Rossi F, Bonanno G and Raiteri M: GABA induces norepinephrine exocytosis from hippocampal noradrenergic axon terminals by a dual mechanism involving different voltage-sensitive calcium channels. J Neurosci Res. 57:324–331. 1999.PubMed/NCBI

99 

Tully K, Li Y, Tsvetkov E and Bolshakov VY: Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci USA. 104:14146–14150. 2007.PubMed/NCBI View Article : Google Scholar

100 

Gellman RL and Aghajanian GK: Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600:63–73. 1993.PubMed/NCBI View Article : Google Scholar

101 

Bergles DE, Doze VA, Madison DV and Smith SJ: Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci. 16:572–585. 1996.PubMed/NCBI View Article : Google Scholar

102 

Braga MF, Aroniadou-Anderjaska V, Manion ST, Hough CJ and Li H: Stress impairs alpha(1A) adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology. 29:45–58. 2004.PubMed/NCBI View Article : Google Scholar

103 

Prager EM, Bergstrom HC, Wynn GH and Braga MFM: The basolateral amygdala -γ aminobutyric system in health and disease. J Neurosci Res. 94:548–567. 2016.PubMed/NCBI View Article : Google Scholar

104 

Dazzi L, Matzeu A and Biggio G: Role of ionotropic glutamate receptors in the regulation of hippocampal norepinephrine output in vivo. Brain Res. 1386:41–49. 2011.PubMed/NCBI View Article : Google Scholar

105 

Stanton PK: Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus. Epilepsy Res. 7:135–150. 1992.PubMed/NCBI

106 

Stanton PK, Jones RS, Mody I and Heinemann U: Epileptiform activity induced by lowering extracellular (Mg2+) in combined hippocampal-entorhinal cortex slices: Modulation by receptors for norepinephrine and N-methyl-D-aspartate. Epilepsy Res. 1:53–62. 1987.PubMed/NCBI View Article : Google Scholar

107 

Paladini CA, Fiorillo CD, Morikawa H and Williams JT: Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci. 4:275–281. 2001.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Ozdemir E: Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). Med Int 4: 20, 2024.
APA
Ozdemir, E. (2024). Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). Medicine International, 4, 20. https://doi.org/10.3892/mi.2024.144
MLA
Ozdemir, E."Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)". Medicine International 4.2 (2024): 20.
Chicago
Ozdemir, E."Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)". Medicine International 4, no. 2 (2024): 20. https://doi.org/10.3892/mi.2024.144
Copy and paste a formatted citation
x
Spandidos Publications style
Ozdemir E: Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). Med Int 4: 20, 2024.
APA
Ozdemir, E. (2024). Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). Medicine International, 4, 20. https://doi.org/10.3892/mi.2024.144
MLA
Ozdemir, E."Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)". Medicine International 4.2 (2024): 20.
Chicago
Ozdemir, E."Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)". Medicine International 4, no. 2 (2024): 20. https://doi.org/10.3892/mi.2024.144
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team