Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
July-August 2024 Volume 4 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-August 2024 Volume 4 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Uses of artificial intelligence in glioma: A systematic review

  • Authors:
    • Adham Al‑Rahbi
    • Omar Al-Mahrouqi
    • Tariq Al‑Saadi
  • View Affiliations / Copyright

    Affiliations: College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman, Department of Neurosurgery, Khoula Hospital, Muscat 123, Sultanate of Oman
    Copyright: © Al‑Rahbi et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 40
    |
    Published online on: May 20, 2024
       https://doi.org/10.3892/mi.2024.164
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low‑grade glioma (LGG) and high‑grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post‑operative care. 
View Figures

Figure 1

View References

1 

Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 19 (suppl_5):v1–v88. 2017.PubMed/NCBI View Article : Google Scholar

2 

Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al: Response to ‘the epidemiology of glioma in adults: A ‘state of the science’ review’. Neuro Oncol. 17:624–626. 2018.

3 

Ostrom QT, Gittleman H, Stetson L, Virk SM and Barnholtz-Sloan JS: Epidemiology of gliomas. Cancer Treat Res. 163:1–14. 2015.PubMed/NCBI View Article : Google Scholar

4 

Ostrom QT, Cote DJ, Ascha M, Kruchko C and Barnholtz-Sloan JS: Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 4:1254–1262. 2018.PubMed/NCBI View Article : Google Scholar

5 

Cho HH, Lee SH, Kim J and Park H: Classification of the glioma grading using radiomics analysis. PeerJ. 6(e5982)2018.PubMed/NCBI View Article : Google Scholar

6 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016.PubMed/NCBI View Article : Google Scholar

7 

Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R and Wrensch M: Survival and low-grade glioma: The emergence of genetic information. Neurosurg Focus. 38(E6)2015.PubMed/NCBI View Article : Google Scholar

8 

Fisher JP and Adamson DC: Current FDA-approved therapies for high-grade malignant gliomas. Biomedicines. 9(324)2021.PubMed/NCBI View Article : Google Scholar

9 

WHO. (2022, February 15). Central nervous system tumours: Who classification of tumours (5th ed.). WHO. http://books.google.ie/books?id=JXjDzgEACAAJ&dq=ISBN-13+978-92-832-4508-7&hl=&cd=1&source=gbs_api.

10 

Al-Saadi TD and Diaz RJ: (2023). Noncanonical (Non-R132H) IDH-mutated gliomas. Glioblastoma-current evidence. https://doi.org/10.5772/intechopen.105469.

11 

Sejda A, Grajkowska W, Trubicka J, Szutowicz E, Wojdacz T, Kloc W and Iżycka-Świeszewska E: WHO CNS5 2021 classification of gliomas: A practical review and road signs for diagnosing pathologists and proper patho-clinical and neuro-oncological cooperation. Folia Neuropathol. 60:137–152. 2022.PubMed/NCBI View Article : Google Scholar

12 

Valdebenito J and Medina F: Machine learning approaches to study glioblastoma: A review of the last decade of applications. Cancer Rep (Hoboken). 2(e1226)2019.PubMed/NCBI View Article : Google Scholar

13 

Ehret F, Kaul D, Clusmann H, Delev D and Kernbach JM: Machine learning-based radiomics in neuro-oncology. Acta Neurochir Suppl. 134:139–151. 2022.PubMed/NCBI View Article : Google Scholar

14 

Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, et al: Automatic assessment of glioma burden: A deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol. 21:1412–1422. 2019.PubMed/NCBI View Article : Google Scholar

15 

Shaver MM, Kohanteb PA, Chiou C, Bardis MD, Chantaduly C, Bota D, Filippi CG, Weinberg B, Grinband J, Chow D and Chang PD: Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging. Cancers (Basel). 11(829)2019.PubMed/NCBI View Article : Google Scholar

16 

Rajagopal R: Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features. Int J Imag Syst Tech. 29:353–359. 2019.

17 

Alqazzaz S, Sun X, Yang X and Nokes L: Automated brain tumor segmentation on multi-modal mr image using segnet. Computational Visual Media. 5:209–219. 2019.

18 

Reddy KR and Dhuli R: Segmentation and classification of brain tumors from MRI images based on adaptive mechanisms and ELDP feature descriptor. Biomed Signal Proc Control. 76(103704)2022.

19 

Mathiyalagan G and Devaraj D: A machine learning classification approach based glioma brain tumor detection. Int J Imag Syst Tech. 31:1424–1436. 2021.

20 

Subramanian H, Dey R, Brim WR, Tillmanns N, Petersen GC, Brackett A, Mahajan A, Johnson M, Malhotra A and Aboian M: Trends in development of novel machine learning methods for the identification of gliomas in datasets that include Non-Glioma images: A systematic review. Front Oncol. 11(788819)2021.PubMed/NCBI View Article : Google Scholar

21 

Jekel L, Brim WR, von Reppert M, Staib L, Petersen GC, Merkaj S, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, et al: Machine learning applications for differentiation of glioma from brain metastasis-a systematic review. Cancers (Basel). 14(1369)2022.PubMed/NCBI View Article : Google Scholar

22 

Fekonja LS, Wang Z, Cacciola A, Roine T, Aydogan DB, Mewes D, Vellmer S, Vajkoczy P and Picht T: Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol. 23(258)2022.PubMed/NCBI View Article : Google Scholar

23 

Park JE, Kickingereder P and Kim HS: Radiomics and deep learning from research to clinical workflow: Neuro-oncologic imaging. Korean J Radiol. 21:1126–1137. 2020.PubMed/NCBI View Article : Google Scholar

24 

Artzi M, Bressler I and Bashat DB: Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 50:519–528. 2019.PubMed/NCBI View Article : Google Scholar

25 

Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, Li S, Tang K, Zhang C, Fan X, et al: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 451:128–135. 2019.PubMed/NCBI View Article : Google Scholar

26 

Kang D, Park JE, Kim YH, Kim JH, Oh JY, Kim J, Kim Y, Kim ST and Kim HS: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: Development and multicenter external validation. Neuro Oncol. 20:1251–1261. 2018.PubMed/NCBI View Article : Google Scholar

27 

Verma RK, Wiest R, Locher C, Heldner MR, Schucht P, Raabe A, Gralla J, Kamm CP, Slotboom J and Kellner-Weldon F: Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study. Med Phys. 44:4000–4008. 2017.PubMed/NCBI View Article : Google Scholar

28 

Gore S, Chougule T, Jagtap J, Saini J and Ingalhalikar M: A review of Radiomics and deep predictive modeling in glioma characterization. Acad Radiol. 28:1599–1621. 2021.PubMed/NCBI View Article : Google Scholar

29 

Rathore S, Akbari H, Bakas S, Pisapia JM, Shukla G, Rudie JD, Da X, Davuluri RV, Dahmane N, O'Rourke DM and Davatzikos C: Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients. Front Comput Neurosci. 13(81)2019.PubMed/NCBI View Article : Google Scholar

30 

Zlochower A, Chow DS, Chang P, Khatri D, Boockvar JA and Filippi CG: Deep learning AI applications in the imaging of Glioma. Top Magn Reson Imaging. 29:115–110. 2020.PubMed/NCBI View Article : Google Scholar

31 

Zhuge Y, Ning H, Mathen P, Cheng JY, Krauze AV, Camphausen K and Miller RW: Automated glioma grading on conventional MRI images using deep convolutional neural networks. Med Phys. 47:3044–3053. 2020.PubMed/NCBI View Article : Google Scholar

32 

Tian Q, Yan LF, Zhang X, Zhang X, Hu YC, Han Y, Liu ZC, Nan HY, Sun Q, Sun YZ, et al: Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging. 48:1518–1528. 2018.PubMed/NCBI View Article : Google Scholar

33 

Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y, Sun YZ, Liu ZC, Tian Q, Han ZY, et al: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget. 8:47816–47830. 2017.PubMed/NCBI View Article : Google Scholar

34 

Hedyehzadeh M, Maghooli K and MomenGharibvand M: Glioma grade detection using grasshopper optimization algorithm-optimized machine learning methods: The cancer imaging archive study. Int J Imaging Syst Tech. 31:1670–1677. 2021.

35 

Sengupta A, Ramaniharan AK, Gupta RK, Agarwal S and Singh A: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components. J Magn Reson Imaging. 50:1295–1306. 2019.PubMed/NCBI View Article : Google Scholar

36 

Hsu WW, Guo JM, Pei L, Chiang LA, Li YF, Hsiao JC, Colen R and Liu P: A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs. Sci Rep. 12(6111)2022.PubMed/NCBI View Article : Google Scholar

37 

Hagiwara A, Tatekawa H, Yao J, Raymond C, Everson R, Patel K, Mareninov S, Yong WH, Salamon N, Pope WB, et al: Visualization of tumor heterogeneity and prediction of isocitrate dehydrogenase mutation status for human gliomas using multiparametric physiologic and metabolic MRI. Sci Rep. 12(1078)2022.PubMed/NCBI View Article : Google Scholar

38 

Ozturk-Isik E, Cengiz S, Ozcan A, Yakicier C, Danyeli AE, Pamir MN, Özduman K and Dincer A: Identification of IDH and TERTp mutation status using 1 H-MRS in 112 hemispheric diffuse gliomas. J Magn Reson Imaging. 51:1799–1809. 2020.PubMed/NCBI View Article : Google Scholar

39 

Yogananda CG, Shah BR, Vejdani-Jahromi M, Nalawade SS, Murugesan GK, Yu FF and Pinho MC: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol. 22:402–411. 2020.PubMed/NCBI View Article : Google Scholar

40 

Nalawade S, Murugesan GK, Vejdani-Jahromi M, Fisicaro RA, Yogananda CG, Wagner B, Mickey B, Maher E, Pinho MC, Fei B, et al: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning. J Med Imaging (Bellingham). 6(046003)2019.PubMed/NCBI View Article : Google Scholar

41 

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352:997–1003. 2005.PubMed/NCBI View Article : Google Scholar

42 

Levner I, Drabycz S, Roldan G, De Robles P, Cairncross JG and Mitchell R: Predicting MGMT methylation status of glioblastomas from MRI texture. Med Image Comput Comput Assist Interv. 12(Pt2):522–530. 2009.PubMed/NCBI View Article : Google Scholar

43 

Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC and Erickson BJ: Residual deep convolutional neural network predicts MGMT methylation status. J Dig Imaging. 30:622–628. 2017.PubMed/NCBI View Article : Google Scholar

44 

Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, et al: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol. 39:1201–1207. 2018.PubMed/NCBI View Article : Google Scholar

45 

Zhang S, Sun H, Su X, Yang X, Wang W, Wan X, Tan Q, Chen N, Yue Q and Gong Q: Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas. J Magn Reson Imaging. 54:197–205. 2021.PubMed/NCBI View Article : Google Scholar

46 

Jovčevska I: Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma. Front Oncol. 10(798)2020.PubMed/NCBI View Article : Google Scholar

47 

Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y, Chen Y, Liang C and Zheng H: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study. Eur Radiol. 28:3640–3650. 2020.PubMed/NCBI View Article : Google Scholar

48 

Xi YB, Guo F, Xu ZL, Li C, Wei W, Tian P, Liu TT, Liu L, Chen G, Ye J, et al: Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Resonan Imaging. 47:1380–1387. 2021.PubMed/NCBI View Article : Google Scholar

49 

Kong Z, Lin Y, Jiang C, Li L, Liu Z, Wang Y, Dai C, Liu D, Qin X, Wang Y, et al: 18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma. Cancer Imaging. 19(58)2019.PubMed/NCBI View Article : Google Scholar

50 

Razek AA, Alksas A, Shehata M, AbdelKhalek A, Baky KA, El-Baz A and Helmy E: Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging. 12(152)2021.PubMed/NCBI View Article : Google Scholar

51 

Shofty B, Artzi M, Bashat DB, Liberman G, Haim O, Kashanian A, Bokstein F, Blumenthal DT, Ram Z and Shahar T: MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg. 13:563–571. 2018.PubMed/NCBI View Article : Google Scholar

52 

Ge C, Gu IYH, Jakola AS and Yang J: Deep learning and multi-sensor fusion for glioma classification using multistream 2d convolutional networks. Ann Int Conf IEEE Eng Med Biol Soc. 2018:5894–5897. 2018.PubMed/NCBI View Article : Google Scholar

53 

Han Y, Xie Z, Zang Y, Zhang S, Gu D, Zhou M, Gevaert O, Wei J, Li C, Chen H, et al: Non-invasive genotype prediction of chromosome 1p/19Q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. J Neurooncol. 140:297–306. 2018.PubMed/NCBI View Article : Google Scholar

54 

Akkus Z, Ali I, Sedlář J, Agrawal JP, Parney IF, Giannini C and Erickson BJ: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 30:469–476. 2017.PubMed/NCBI View Article : Google Scholar

55 

Chen H, Li C, Zheng L, Lu W, Li Y and Wei Q: A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters. Cancer Med. 10:2774–2786. 2021.PubMed/NCBI View Article : Google Scholar

56 

Nie D, Zhang H, Adeli E, Liu L and Shen D: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Med Image Comput Comput Assist Interv. 9901:212–220. 2016.PubMed/NCBI View Article : Google Scholar

57 

Chato L and Latifi S: Machine learning and radiomic features to predict overall survival time for glioblastoma patients. J Pers Med. 11(1336)2021.PubMed/NCBI View Article : Google Scholar

58 

Das S, Bose S, Nayak GK, Satapathy SC and Saxena S: Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features. Concurrency Computat Pract Exper. 34(e6501)2021.

59 

Xu Y, He X, Li Y, Pang P, Shu Z and Gong X: The nomogram of MRI based radiomics with complementary visual features by machine learning improves stratification of glioblastoma patients: A multicenter study. J Magn Reson Imaging. 54:571–583. 2021.PubMed/NCBI View Article : Google Scholar

60 

Peeken JC, Goldberg T, Pyka T, Bernhofer M, Wiestler B, Kessel KA, Tafti PD, Nüsslin F, Braun AE, Zimmer C, et al: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme. Cancer Med. 8:128–136. 2019.PubMed/NCBI View Article : Google Scholar

61 

Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch A and Bonekamp D: Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology. 280:880–889. 2016.PubMed/NCBI View Article : Google Scholar

62 

Xiang CX, Liu XG, Zhou DQ, Zhou Y, Wang X and Chen F: Identification of a glioma functional network from Gene Fitness data using machine learning. J Cell Mol Med. 26:1253–1263. 2022.PubMed/NCBI View Article : Google Scholar

63 

Akbari H, Rathore S, Bakas S, Nasrallah MLP, Shukla G, Mamourian E, Rozycki M, Bagley SJ, Rudie JD, Flanders AE, et al: Histopathology-Validated machine learning radiographic Biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. Cancer. 126:2625–2636. 2020.PubMed/NCBI View Article : Google Scholar

64 

Valdebenito S, D'Amico D and Eugenin E: Novel approaches for glioblastoma treatment: Focus on tumor heterogeneity, treatment resistance, and computational tools. Cancer Rep (Hoboken). 2(e1220)2019.PubMed/NCBI View Article : Google Scholar

65 

Alhasan AS: Clinical applications of artificial intelligence, machine learning, and deep learning in the imaging of gliomas: A systematic review. Cureus. 14(e19580)2021.PubMed/NCBI View Article : Google Scholar

66 

Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C and Mohan S: Emerging applications of artificial intelligence in neuro-oncology. Radiology. 290:607–618. 2019.PubMed/NCBI View Article : Google Scholar

67 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372(n71)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Al‑Rahbi A, Al-Mahrouqi O and Al‑Saadi T: Uses of artificial intelligence in glioma: A systematic review. Med Int 4: 40, 2024.
APA
Al‑Rahbi, A., Al-Mahrouqi, O., & Al‑Saadi, T. (2024). Uses of artificial intelligence in glioma: A systematic review. Medicine International, 4, 40. https://doi.org/10.3892/mi.2024.164
MLA
Al‑Rahbi, A., Al-Mahrouqi, O., Al‑Saadi, T."Uses of artificial intelligence in glioma: A systematic review". Medicine International 4.4 (2024): 40.
Chicago
Al‑Rahbi, A., Al-Mahrouqi, O., Al‑Saadi, T."Uses of artificial intelligence in glioma: A systematic review". Medicine International 4, no. 4 (2024): 40. https://doi.org/10.3892/mi.2024.164
Copy and paste a formatted citation
x
Spandidos Publications style
Al‑Rahbi A, Al-Mahrouqi O and Al‑Saadi T: Uses of artificial intelligence in glioma: A systematic review. Med Int 4: 40, 2024.
APA
Al‑Rahbi, A., Al-Mahrouqi, O., & Al‑Saadi, T. (2024). Uses of artificial intelligence in glioma: A systematic review. Medicine International, 4, 40. https://doi.org/10.3892/mi.2024.164
MLA
Al‑Rahbi, A., Al-Mahrouqi, O., Al‑Saadi, T."Uses of artificial intelligence in glioma: A systematic review". Medicine International 4.4 (2024): 40.
Chicago
Al‑Rahbi, A., Al-Mahrouqi, O., Al‑Saadi, T."Uses of artificial intelligence in glioma: A systematic review". Medicine International 4, no. 4 (2024): 40. https://doi.org/10.3892/mi.2024.164
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team