|
1
|
Lee HJ: Additional stories of microRNAs.
Exp Biol Med (Maywood). 239:1275–1279. 2014.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Alles J, Fehlmann T, Fischer U, Backes C,
Galata V, Minet M, Hart M, Abu-Halima M, Grässer FA, Lenhof HP, et
al: An estimate of the total number of true human miRNAs. Nucleic
Acids Res. 47:3353–3364. 2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Horvitz HR and Sulston JE: Isolation and
genetic characterization of cell-lineage mutants of the nematode
Caenorhabditis elegans. Genetics. 96:435–454.
1980.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Denli AM, Tops BB, Plasterk RH, Ketting RF
and Hannon GJ: Processing of primary microRNAs by the
Microprocessor complex. Nature. 432:231–235. 2004.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Gregory RI, Yan KP, Amuthan G, Chendrimada
T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor
complex mediates the genesis of microRNAs. Nature. 432:235–240.
2004.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee
JK, Sohn SY, Cho Y, Zhang BT and Kim VN: Molecular basis for the
recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell.
125:887–901. 2006.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Okada C, Yamashita E, Lee SJ, Shibata S,
Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution
structure of the pre-microRNA nuclear export machinery. Science.
326:1275–1279. 2009.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chendrimada TP, Gregory RI, Kumaraswamy E,
Norman J, Cooch N, Nishikura K and Shiekhattar R: TRBP recruits the
Dicer complex to Ago2 for microRNA processing and gene silencing.
Nature. 436:740–744. 2005.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Lee Y, Hur I, Park SY, Kim YK, Suh MR and
Kim VN: The role of PACT in the RNA silencing pathway. EMBO J.
25:522–532. 2006.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Khvorova A, Reynolds A and Jayasena SD:
Functional siRNAs and miRNAs exhibit strand bias. Cell.
115:209–216. 2003.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Schwarz DS, Hutvagner G, Du T, Xu Z,
Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi
enzyme complex. Cell. 115:199–208. 2003.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kilikevicius A, Meister G and Corey DR:
Reexamining assumptions about miRNA-guided gene silencing. Nucleic
Acids Res. 50:617–634. 2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Samad AFA and Kamaroddin MF: Innovative
approaches in transforming microRNAs into therapeutic tools. Wiley
Interdiscip Rev RNA. 14(e1768)2023.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Van Rooij E and Olson EN: MicroRNA
therapeutics for cardiovascular disease: Opportunities and
obstacles. Nat Rev Drug Discov. 11:860–872. 2012.PubMed/NCBI View
Article : Google Scholar
|
|
18
|
Forterre A, Komuro H, Aminova S and Harada
M: A comprehensive review of cancer MicroRNA therapeutic delivery
strategies. Cancers (Basel). 12(1852)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Nordenvall AS, Frisen L, Nordenstrom A,
Lichtenstein P and Nordenskjold A: Population based nationwide
study of hypospadias in Sweden, 1973 to 2009: Incidence and risk
factors. J Urol. 191:783–789. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Van der Horst HJ and de Wall LL:
Hypospadias, all there is to know. Eur J Pediatr. 176:435–441.
2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Fredell L, Lichtenstein P, Pedersen NL,
Svensson J and Nordenskjold A: Hypospadias is related to birth
weight in discordant monozygotic twins. J Urol. 160:2197–2199.
1998.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Blaschko SD, Cunha GR and Baskin LS:
Molecular mechanisms of external genitalia development.
Differentiation. 84:261–268. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Van der Zanden LF, van Rooij IA, Feitz WF,
Franke B, Knoers NV and Roeleveld N: Aetiology of hypospadias: A
systematic review of genes and environment. Hum Reprod Update.
18:260–283. 2012.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Bouty A, Ayers KL, Pask A, Heloury Y and
Sinclair AH: The genetic and environmental factors underlying
hypospadias. Sex Dev. 9:239–259. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Huang J, Su C, Lu P, Zhao X, Liu Y, Xie Q
and Chen C: hsa_circ_0000417 downregulation suppresses androgen
receptor expression and apoptotic signals in human foreskin
fibroblasts via sponging miR-6756-5p. Mol Biol Rep. 50:6769–6781.
2023.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Deng F, Zhao J, Jia W, Fu K, Zuo X, Huang
L, Wang N, Xia H, Zhang Y, Fu W and Liu G: Increased hypospadias
risk by GREM1 rs3743104[G] in the southern Han Chinese population.
Aging (Albany NY). 13:13898–13908. 2021.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Elias FM, Nishi MY, Sircili MHP, Bastista
RL, Gomes NL, Ferrari MTM, Costa EMF, Denes FT, Mendonca BB and
Domenice S: Elevated plasma miR-210 expression is associated with
atypical genitalia in patients with 46,XY differences in sex
development. Mol Genet Genomic Med. 10(e2084)2022.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Peng QL, Zhao YW and Tian W: Testosterone
promotes human foreskin fibroblast growth through miR-143-3p
targeting IGFBP-3. J Men's Health. 19:15–25. 2023.
|
|
29
|
Chen J, Cui X, Li A, Li G and Sun F:
Association of a GATA Binding protein 4 polymorphism with the risk
of hypospadias in the Chinese children. Urol Int. 105:1018–1023.
2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Shang Y, Kang Y, Sun J, Wei P, Yang J and
Zhang H: MiR-145-modulated SOX9-mediated hypospadias through acting
on mitogen-activated protein kinase signaling pathway. J Cell
Physiol. 234:10397–10410. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Tian RH, Guo KM, Han GH and Bai Y:
Downregulation of MicroRNA-494 inhibits the TGF-beta1/Smads
signaling pathway and prevents the development of hypospadias
through upregulating Nedd4L. Exp Mol Pathol.
115(104452)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Qian C, Dang X, Wang X, Xu W, Pang G, Chen
Y and Liu C: Molecular mechanism of MicroRNA-200c regulating
transforming growth factor-β (TGF-β)/SMAD family member 3 (SMAD3)
pathway by targeting zinc finger E-Box binding homeobox 1 (ZEB1) in
hypospadias in rats. Med Sci Monit. 22:4073–4081. 2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chen Y, Hu J, Peng L and Zhao Y:
MicroR-1199-5p targeting SRD5A2 promotes the biological behavior
and EMT of hypospadias cells. Cell Mol Biol (Noisy-le-Grand).
70:122–128. 2024.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Lan YF, Chen HH, Lai PF, Cheng CF, Huang
YT, Lee YC, Chen TW and Lin H: MicroRNA-494 reduces ATF3 expression
and promotes AKI. J Am Soc Nephrol. 23:2012–2023. 2012.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gollavilli PN, Parma B, Siddiqui A, Yang
H, Ramesh V, Napoli F, Schwab A, Natesan R, Mielenz D and Asangani
IA: The role of miR-200b/c in balancing EMT and proliferation
revealed by an activity reporter. Oncogene. 40:2309–2322.
2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Hu D, Ge Y, Xi Y, Chen J, Wang H, Zhang C,
Cui Y, He L, Su Y, Chen J, et al: MicroRNA-145 gene modification
enhances the retention of bone marrow-derived mesenchymal stem
cells within corpus cavernosum by targeting kruppel-like factor 4.
World J Mens Health. 42:638–649. 2024.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zheng W, Li T, Wei J, Zhang Y, Zuo Q and
Lin Y: Identification of miR-145 as a regulator of the
cardiomyocyte inflammatory response and oxidative stress under
hyperglycemia. Exp Ther Med. 21(467)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Liu X, He DW, Zhang DY, Lin T and Wei GH:
Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth
factor-beta1 expression in fetal mouse genital tubercles. J Toxicol
Environ Health A. 71:1289–1294. 2008.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Willingham E and Baskin LS: Candidate
genes and their response to environmental agents in the etiology of
hypospadias. Nat Clin Pract Urol. 4:270–279. 2007.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Baskin LS, Hayward SW, Sutherland RA,
DiSandro MS, Thomson AA and Cunha GR: Cellular signaling in the
bladder. Front Biosci. 2:d592–d595. 1997.PubMed/NCBI View
Article : Google Scholar
|
|
41
|
Tomlinson DC, Freestone SH, Grace OC and
Thomson AA: Differential effects of transforming growth
factor-beta1 on cellular proliferation in the developing prostate.
Endocrinology. 145:4292–4300. 2004.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Tian YC, Chen YC, Chang CT, Hung CC, Wu
MS, Phillips A and Yang CW: Epidermal growth factor and
transforming growth factor-beta1 enhance HK-2 cell migration
through a synergistic increase of matrix metalloproteinase and
sustained activation of ERK signaling pathway. Exp Cell Res.
313:2367–2377. 2007.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Sanchez-Capelo A: Dual role for TGF-beta1
in apoptosis. Cytokine Growth Factor Rev. 16:15–34. 2005.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhou Y, Liu X, Huang F, Liu Y, Cao X, Shen
L, Long C, He D, Lin T and Wei G: Epithelial-mesenchymal
transformation and apoptosis in rat urethra development. Pediatr
Res. 82:1073–1079. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Baskin LS, Erol A, Jegatheesan P, Li Y,
Liu W and Cunha GR: Urethral seam formation and hypospadias. Cell
Tissue Res. 305:379–387. 2001.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhou Y, Huang F, Liu Y, Li D, Zhou Y, Shen
L, Long C, Liu X and Wei G: TGF-β1 relieves epithelial-mesenchymal
transition reduction in hypospadias induced by DEHP in rats.
Pediatr Res. 87:639–646. 2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kubiczkova L, Sedlarikova L, Hajek R and
Sevcikova S: TGF-β-an excellent servant but a bad master. J Transl
Med. 10(183)2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Chen T, Li Q, Xu J, Ding K, Wang Y, Wang
W, Li S and Shen Y: Mutation screening of BMP4, BMP7, HOXA4 and
HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet.
15:23–28. 2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yang Y, Zhang Y, Lin Z, Wu K, He Z, Zhu D,
Zhao J, Zhang C and Fan Y: Silencing of histone deacetylase 3
suppresses the development of esophageal squamous cell carcinoma
through regulation of miR-494-mediated TGIF1. Cancer Cell Int.
22(191)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zhang J, Zhu Y, Hu L, Yan F and Chen J:
miR-494 induces EndMT and promotes the development of HCC
(Hepatocellular Carcinoma) by targeting SIRT3/TGF-β/SMAD signaling
pathway. Sci Rep. 9(7213)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Maharati A, Akhlaghipour I, Taghehchian N,
Farshchian Yazdi Z and Moghbeli M: Role of microRNA-494 in tumor
progression. Am J Transl Res. 15:6342–6361. 2023.PubMed/NCBI
|
|
52
|
Gao S, Alarcon C, Sapkota G, Rahman S,
Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P and
Massagué J: Ubiquitin ligase Nedd4L targets activated Smad2/3 to
limit TGF-beta signaling. Mol Cell. 36:457–468. 2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Chu MQ, Zhang LC, Yuan Q, Zhang TJ and
Zhou JD: Distinct associations of NEDD4L expression with genetic
abnormalities and prognosis in acute myeloid leukemia. Cancer Cell
Int. 21(615)2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Xu N, Papagiannakopoulos T, Pan G, Thomson
JA and Kosik KS: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and
represses pluripotency in human embryonic stem cells. Cell.
137:647–658. 2009.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kang YJ, Lees M, Matthews LC, Kimber SJ,
Forbes K and Aplin JD: MiR-145 suppresses embryo-epithelial
juxtacrine communication at implantation by modulating maternal
IGF1R. J Cell Sci. 128:804–814. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang Z, Zhang X, Yang Z, Du H, Wu Z, Gong
J, Yan J and Zheng Q: MiR-145 regulates PAK4 via the MAPK pathway
and exhibits an antitumor effect in human colon cells. Biochem
Biophys Res Commun. 427:444–449. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yamaguchi K, Ishikawa T, Kondo Y and
Fujisawa M: Cisplatin regulates Sertoli cell expression of
transferrin and interleukins. Mol Cell Endocrinol. 283:68–75.
2008.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang Y, Li Q, Xu J, Liu Q, Wang W, Lin Y,
Ma F, Chen T, Li S and Shen Y: Mutation analysis of five candidate
genes in Chinese patients with hypospadias. Eur J Hum Genet.
12:706–712. 2004.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Vidal VP, Chaboissier MC, de Rooij DG and
Schedl A: Sox9 induces testis development in XX transgenic mice.
Nat Genet. 28:216–217. 2001.PubMed/NCBI View
Article : Google Scholar
|
|
60
|
Olney PN, Kean LS, Graham D, Elsas LJ and
May KM: Campomelic syndrome and deletion of SOX9. Am J Med Genet.
84:20–24. 1999.PubMed/NCBI
|
|
61
|
Zeinali T, Karimi L, Hosseinahli N,
Shanehbandi D, Mansoori B, Mohammadi A, Hajiasgharzadeh K, Babaloo
Z, Majidi-Zolbanin J and Baradaran B: Overexpression of miRNA-145
induces apoptosis and prevents proliferation and migration of
MKN-45 gastric cancer cells. EXCLI J. 19:1446–1458. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Ye D, Shen Z and Zhou S: Function of
microRNA-145 and mechanisms underlying its role in malignant tumor
diagnosis and treatment. Cancer Manag Res. 11:969–979.
2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Manvati S, Mangalhara KC, Kalaiarasan P,
Chopra R, Agarwal G, Kumar R, Saini SK, Kaushik M, Arora A, Kumari
U, et al: miR-145 supports cancer cell survival and shows
association with DDR genes, methylation pattern, and epithelial to
mesenchymal transition. Cancer Cell Int. 19(230)2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zhang J, Guo H, Qian G, Ge S, Ji H, Hu X
and Chen W: MiR-145, a new regulator of the DNA fragmentation
factor-45 (DFF45)-mediated apoptotic network. Mol Cancer.
9(211)2010.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Suzuki YJ: Cell signaling pathways for the
regulation of GATA4 transcription factor: Implications for cell
growth and apoptosis. Cell Signal. 23:1094–1099. 2011.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Grepin C, Nemer G and Nemer M: Enhanced
cardiogenesis in embryonic stem cells overexpressing the GATA-4
transcription factor. Development. 124:2387–2395. 1997.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Silva TS, Richeti F, Cunha DP, Amarante
AC, de Souza Leao JQ and Longui CA: Androgen receptor mRNA measured
by quantitative real time PCR is decreased in the urethral mucosa
of patients with middle idiopathic hypospadias. Horm Metab Res.
45:495–500. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Pichler R, Djedovic G, Klocker H,
Heidegger I, Strasak A, Loidl W, Bektic J, Skradski V, Horninger W
and Oswald J: Quantitative measurement of the androgen receptor in
prepuces of boys with and without hypospadias. BJU Int.
112:265–270. 2013.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Allera A, Herbst MA, Griffin JE, Wilson
JD, Schweikert HU and McPhaul MJ: Mutations of the androgen
receptor coding sequence are infrequent in patients with isolated
hypospadias. J Clin Endocrinol Metab. 80:2697–2699. 1995.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Batista RL, Costa EMF, Rodrigues AS, Gomes
NL, Faria JA Jr, Nishi MY, Arnhold IJP, Domenice S and Mendonca BB:
Androgen insensitivity syndrome: A review. Arch Endocrinol Metab.
62:227–235. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wang Y, Li H, Shi Y, Wang S, Xu Y, Li H
and Liu D: miR-143-3p impacts on pulmonary inflammatory factors and
cell apoptosis in mice with mycoplasmal pneumonia by regulating
TLR4/MyD88/NF-κB pathway. Biosci Rep.
40(BSR20193419)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Jiang B, Yuan C, Han J, Shen M, Zhou X and
Zhou L: miR-143-3p inhibits the differentiation of osteoclast
induced by synovial fibroblast and monocyte coculture in
adjuvant-induced arthritic rats. Biomed Res Int.
2021(5565973)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Tang J, Pan H, Wang W, Qi C, Gu C, Shang A
and Zhu J: MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the
development of cervical cancer. Clin Transl Oncol. 23:2323–2334.
2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhang G, Liu Z, Zhong J and Lin L:
Circ-ACAP2 facilitates the progression of colorectal cancer through
mediating miR-143-3p/FZD4 axis. Eur J Clin Invest.
51(e13607)2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Long Z, Gong F, Li Y, Fan Z and Li J:
Circ_0000285 regulates proliferation, migration, invasion and
apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Cancer Cell
Int. 20(481)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Zielinska HA, Daly CS, Alghamdi A, Bahl A,
Sohail M, White P, Dean SR, Holly JMP and Perks CM: Interaction
between GRP78 and IGFBP-3 affects tumourigenesis and prognosis in
breast cancer patients. Cancers (Basel). 12(3821)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Cai Q, Dozmorov M and Oh Y:
IGFBP-3/IGFBP-3 receptor system as an anti-tumor and
anti-metastatic signaling in cancer. Cells. 9(1261)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kerr A and Baxter RC: Noncoding RNA
actions through IGFs and IGF binding proteins in cancer. Oncogene.
41:3385–3393. 2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Li CL, Liu B, Wang ZY, Xie F, Qiao W,
Cheng J, Kuang JY, Wang Y, Zhang MX and Liu DS: Salvianolic acid B
improves myocardial function in diabetic cardiomyopathy by
suppressing IGFBP3. J Mol Cell Cardiol. 139:98–112. 2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tao A, Wang X and Li C: Effect of lycopene
on oral squamous cell carcinoma cell growth by inhibiting IGF1
pathway. Cancer Manag Res. 13:723–732. 2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Xie F, Li Y, Wang M, Huang C, Tao D, Zheng
F, Zhang H, Zeng F, Xiao X and Jiang G: Circular RNA BCRC-3
suppresses bladder cancer proliferation through miR-182-5p/p27
axis. Mol Cancer. 17(144)2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ding C, Ding X, Zheng J, Wang B, Li Y,
Xiang H, Dou M, Qiao Y, Tian P and Xue W: miR-182-5p and
miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell
Death Dis. 11(929)2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Barbu MG, Thompson DC, Suciu N, Voinea SC,
Cretoiu D and Predescu DV: The roles of MicroRNAs in male
infertility. Int J Mol Sci. 22(2910)2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Lian J, Zhang X, Tian H, Liang N, Wang Y,
Liang C, Li X and Sun F: Altered microRNA expression in patients
with non-obstructive azoospermia. Reprod Biol Endocrinol.
7(13)2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Redman CW and Staff AC: Preeclampsia,
biomarkers, syncytiotrophoblast stress, and placental capacity. Am
J Obstet Gynecol. 213 (4 Suppl):S9.e1, S9–S11. 2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sheriff FR, Lopez A, Lupo PJ, Seth A,
Jorgez C and Agopian AJ: Maternal hypertension and hypospadias in
offspring: A systematic review and meta-analysis. Birth Defects
Res. 111:9–15. 2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Gunel T, Zeybek YG, Akcakaya P, Kalelioglu
I, Benian A, Ermis H and Aydınlı K: Serum microRNA expression in
pregnancies with preeclampsia. Genet Mol Res. 10:4034–4040.
2011.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Jaszczuk I, Koczkodaj D, Kondracka A,
Kwasniewska A, Winkler I and Filip A: The role of miRNA-210 in
pre-eclampsia development. Ann Med. 54:1350–1356. 2022.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Ackerman D and Gems D: Insulin/IGF-1 and
hypoxia signaling act in concert to regulate iron homeostasis in
Caenorhabditis elegans. PLoS Genet.
8(e1002498)2012.PubMed/NCBI View Article : Google Scholar
|