|
1
|
Zhou YX, Cao XY and Peng C: Antimicrobial
activity of natural products against MDR bacteria: A scientometric
visualization analysis. Front Pharmacol. 13(1000974)2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Arrigoni R, Ballini A, Topi S, Bottalico
L, Jirillo E and Santacroce L: Antibiotic resistance to
mycobacterium tuberculosis and potential use of natural and
biological products as alternative anti-mycobacterial agents.
Antibiotics (Basel). 11(1431)2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y,
Dong D and Xiang H: Success stories of natural product-derived
compounds from plants as multidrug resistance modulators in
microorganisms. RSC Adv. 13:7798–7817. 2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Ajebli M and Eddouks M: The promising role
of plant tannins as bioactive antidiabetic agents. Curr Med Chem.
26:4852–4884. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Serafini M, Peluso I and Raguzzini A:
Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 69:273–278.
2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Tessema FB, Gonfa YH, Asfaw TB, Tadesse
TG, Tadesse MG, Bachheti A, Pandey DP, Wabaidur SM, Dahlous KA,
Širić I, et al: Flavonoids and phenolic acids from aerial part of
ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-shigellosis
activity and in silico molecular docking studies. Molecules.
28(1111)2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk
A, Azim MM, Lokhat D, Rafatullah M, Ganash M, Kamal MA and Ashraf
GM: Essential oils: Extraction techniques, pharmaceutical and
therapeutic potential-a review. Curr Drug Metab. 19:1100–1110.
2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Güçlü-Ustündağ O and Mazza G: Saponins:
Properties, applications and processing. Crit Rev Food Sci Nutr.
47:231–258. 2007.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Bergman ME, Davis B and Phillips MA:
Medically useful plant terpenoids: Biosynthesis, occurrence, and
mechanism of action. Molecules. 24(3961)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Bhattarai N, Kumbhar AA, Pokharel YR and
Yadav PN: Anticancer potential of coumarin and its derivatives.
Mini Rev Med Chem. 21:2996–3029. 2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Tchegnitegni Toussie B, Nguengang RT,
Mawabo IK, Teponno RB, Kezetas Bankeu JJ, Chouna JR, Nkenfou CN,
Tapondjou LA, Sewald N and Lenta BN: Bioactive arylnaphthalide
lignans from justicia depauperata. J Nat Prod. 85:2731–2739.
2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Barbieri M and Heard CM: Isolation of
punicalagin from Punica granatum rind extract using mass-directed
semi-preparative ESI-AP single quadrupole LC-MS. J Pharm Biomed
Anal. 166:90–94. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hassan MHU, Shahbaz M, Momal U, Naeem H,
Imran M, Abdelgawad MA, Ghoneim MM, Mostafa EM, El-Ghorab AH,
Alsagaby SA, et al: Exploring punicalagin potential against
cancers: A comprehensive review. Food Sci Nutr.
13(e70072)2025.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Abu-Elfotuh K, Abbas AN, Najm MAA, Qasim
QA, Hamdan AME, Abdelrehim AB, Gowifel AMH, Al-Najjar AH, Atwa AM,
Kozman MR, et al: Neuroprotective effects of punicalagin and/or
micronized zeolite clinoptilolite on manganese-induced Parkinson's
disease in a rat model: Involvement of multiple pathways. CNS
Neurosci Ther. 30(e70008)2024.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zoofeen U, Shah M, Sultan S, Ehtesham E,
Shah I, Sharif N, Khan M and Shah FA: Punicalagin improves
inflammation and oxidative stress in rat model of pelvic
inflammatory disease. Nat Prod Res. 39:2780–2786. 2025.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Siddiqui N, Saifi A, Chaudhary A, Tripathi
PN, Chaudhary A and Sharma A: Multifaceted neuroprotective role of
punicalagin: A review. Neurochem Res. 49:1427–1436. 2024.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Alalawi S, Albalawi F and Ramji DP: The
role of punicalagin and its metabolites in atherosclerosis and risk
factors associated with the disease. Int J Mol Sci.
24(8476)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Venusova E, Kolesarova A, Horky P and
Slama P: Physiological and immune functions of punicalagin.
Nutrients. 13(2150)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk
NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P,
Abdou NS, et al: Punicalagin's protective effects on Parkinson's
progression in socially isolated and socialized rats: insights into
multifaceted pathway. Pharmaceutics. 15(2420)2023.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Al-Khawalde AAA, Abukhalil MH, Jghef MM,
Alfwuaires MA, Alaryani FS, Aladaileh SH, Algefare AI, Karimulla S,
Alasmari F, Aldal'in HK, et al: Punicalagin protects against the
development of methotrexate-induced hepatotoxicity in mice via
activating Nrf2 signaling and decreasing oxidative stress,
inflammation, and cell death. Int J Mol Sci.
23(12334)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Xu W, Zhang T, Wang Z, Liu T, Liu Y, Cao Z
and Sui Z: Two potent cytochrome P450 2D6 inhibitors found in
Rhodiola rosea. Pharmazie. 68:974–976. 2013.PubMed/NCBI
|
|
22
|
Liu F, Smith AD, Wang TTY, Pham Q, Yang H
and Li RW: Multi-omics analysis detected multiple pathways by which
pomegranate punicalagin exerts its biological effects in modulating
host-microbiota interactions in murine colitis models. Food Funct.
14:3824–3837. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Liu F, Smith AD, Wang TTY, Pham Q, Yang H
and Li RW: Ellagitannin punicalagin disrupts the pathways related
to bacterial growth and affects multiple pattern recognition
receptor signaling by acting as a selective histone deacetylase
inhibitor. J Agric Food Chem. 71:5016–5026. 2023.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yaidikar L and Thakur S: Punicalagin
attenuated cerebral ischemia-reperfusion insult via inhibition of
proinflammatory cytokines, up-regulation of Bcl-2, down-regulation
of Bax, and caspase-3. Mol Cell Biochem. 402:141–148.
2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Kim JH, Kwack MH and Lee WJ: Effects of
antioxidants on skin hydration, inflammatory cytokines, and
keratinocyte differentiation markers in a PM(10)-exposed skin
barrier-disrupted mouse model. Int J Immunopathol Pharmacol.
38(3946320241303860)2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
An X, Zhang Y, Cao Y, Chen J, Qin H and
Yang L: Punicalagin protects diabetic nephropathy by inhibiting
pyroptosis based on TXNIP/NLRP3 pathway. Nutrients.
12(1516)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Berdowska I, Matusiewicz M and Fecka I:
Punicalagin in cancer prevention-via signaling pathways targeting.
Nutrients. 13(2733)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Xu J, Cao K, Liu X, Zhao L, Feng Z and Liu
J: Punicalagin regulates signaling pathways in
inflammation-associated chronic diseases. Antioxidants (Basel).
11(29)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
da Silva RA, Ishikiriama BLC, Ribeiro
Lopes MM, de Castro RD, Garcia CR, Porto VC, Santos CF,
Neppelenbroek KH and Lara VS: Antifungal activity of
Punicalagin-nystatin combinations against Candida albicans. Oral
Dis. 26:1810–1819. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Kiran S, Tariq A, Iqbal S, Naseem Z,
Siddique W, Jabeen S, Bashir R, Hussain A, Rahman M, Habib FE, et
al: Punicalagin, a pomegranate polyphenol sensitizes the activity
of antibiotics against three MDR pathogens of the
Enterobacteriaceae. BMC Complement Med Ther. 24(93)2024.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Mandal A and Hazra B: Medicinal plant
molecules against hepatitis C virus: Current status and future
prospect. Phytother Res. 37:4353–4374. 2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Ismat F, Tariq A, Shaheen A, Ullah R,
Raheem K, Muddassar M, Mahboob S, Abbas W, Iqbal M and Rahman M:
Inhibition of NS2B-NS3 protease from all four serotypes of dengue
virus by punicalagin, punicalin and ellagic acid identified from
Punica granatum. J Biomol Struct Dyn: Feb 19, 2024 (Epub ahead of
print).
|
|
33
|
Song W, Wang L, Jin M, Guo X, Wang X, Guan
J and Zhao Y: Punicalagin, an inhibitor of sortase a, is a
promising therapeutic drug to combat methicillin-resistant
staphylococcus aureus infections. Antimicrob Agents Chemother.
66(e0022422)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu H, Zhu W, Zou Y and Xia X:
Antimicrobial activity and mechanisms of punicalagin against Vibrio
parahaemolyticus. Foods. 13(1366)2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gosset-Erard C, Zhao M, Lordel-Madeleine S
and Ennahar S: Identification of punicalagin as the bioactive
compound behind the antimicrobial activity of pomegranate (Punica
granatum L.) peels. Food Chem. 352(129396)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Taguri T, Tanaka T and Kouno I:
Antimicrobial activity of 10 different plant polyphenols against
bacteria causing food-borne disease. Biol Pharm Bull. 27:1965–1969.
2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Li G, Yan C, Xu Y, Feng Y, Wu Q, Lv X,
Yang B, Wang X and Xia X: Punicalagin inhibits Salmonella virulence
factors and has anti-quorum-sensing potential. Appl Environ
Microbiol. 80:6204–6211. 2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Xu Y, Shi C, Wu Q, Zheng Z, Liu P, Li G,
Peng X and Xia X: Antimicrobial activity of punicalagin against
staphylococcus aureus and its effect on biofilm formation.
Foodborne Pathog Dis. 14:282–287. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Li G, Xu Y, Pan L and Xia X: Punicalagin
damages the membrane of salmonella typhimurium. J Food Prot.
83:2102–2106. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cai X, Zheng W and Li Z: High-throughput
screening strategies for the development of anti-virulence
inhibitors against staphylococcus aureus. Curr Med Chem.
26:2297–2312. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Mühlen S and Dersch P: Anti-virulence
strategies to target bacterial infections. Curr Top Microbiol
Immunol. 398:147–183. 2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Rasko DA and Sperandio V: Anti-virulence
strategies to combat bacteria-mediated disease. Nat Rev Drug
Discov. 9:117–128. 2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Goodyear CS and Silverman GJ: Death by a B
cell superantigen: In vivo VH-targeted apoptotic supraclonal B cell
deletion by a Staphylococcal Toxin. J Exp Med. 197:1125–1139.
2003.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Falugi F, Kim HK, Missiakas DM and
Schneewind O: Role of protein A in the evasion of host adaptive
immune responses by Staphylococcus aureus. mBio. 4:e00575–00513.
2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Mun SH, Kong R, Seo YS, Zhou T, Kang OH,
Shin DW and Kwon DY: Subinhibitory concentrations of punicalagin
reduces expression of virulence-related exoproteins by
Staphylococcus aureus. FEMS Microbiol Lett.
363(fnw253)2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Qiu J, Wang J, Luo H, Du X, Li H, Luo M,
Dong J, Chen Z and Deng X: The effects of subinhibitory
concentrations of costus oil on virulence factor production in
Staphylococcus aureus. J Appl Microbiol. 110:333–340.
2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Flemming HC and Wingender J: The biofilm
matrix. Nat Rev Microbiol. 8:623–633. 2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Xu S, Kang A, Tian Y, Li X, Qin S, Yang R
and Guo Y: Plant flavonoids with antimicrobial activity against
methicillin-resistant staphylococcus aureus (MRSA). ACS Infect Dis.
10:3086–3097. 2024.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Singh S, Singh SK, Chowdhury I and Singh
R: Understanding the mechanism of bacterial biofilms resistance to
antimicrobial agents. Open Microbiol J. 11:53–62. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rumbaugh KP and Sauer K: Biofilm
dispersion. Nat Rev Microbiol. 18:571–586. 2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Xu Y, Guo W, Luo D, Li P, Xiang J, Chen J,
Xia X and Xie Q: Antibiofilm effects of punicalagin against
Staphylococcus aureus in vitro. Front Microbiol.
14(1175912)2023.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Ultee A, Kets EP and Smid EJ: Mechanisms
of action of carvacrol on the food-borne pathogen Bacillus cereus.
Appl Environ Microbiol. 65:4606–4610. 1999.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Azimi S, Klementiev AD, Whiteley M and
Diggle SP: Bacterial quorum sensing during infection. Annu Rev
Microbiol. 74:201–219. 2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Garg N, Manchanda G and Kumar A: Bacterial
quorum sensing: Circuits and applications. Antonie Van Leeuwenhoek.
105:289–305. 2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Abisado RG, Benomar S, Klaus JR, Dandekar
AA and Chandler JR: Bacterial quorum sensing and microbial
community interactions. mBio. 9:e02331–17. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Miller MB and Bassler BL: Quorum sensing
in bacteria. Annu Rev Microbiol. 55:165–199. 2001.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Finch RG, Pritchard DI, Bycroft BW,
Williams P and Stewart GS: Quorum sensing: a novel target for
anti-infective therapy. J Antimicrob Chemother. 42:569–571.
1998.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hentzer M and Givskov M: Pharmacological
inhibition of quorum sensing for the treatment of chronic bacterial
infections. J Clin Invest. 112:1300–1307. 2003.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Rudkin JK, Laabei M, Edwards AM, Joo HS,
Otto M, Lennon KL, O'Gara JP, Waterfield NR and Massey RC:
Oxacillin alters the toxin expression profile of
community-associated methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 58:1100–1107. 2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Gonzales PR, Pesesky MW, Bouley R, Ballard
A, Biddy BA, Suckow MA, Wolter WR, Schroeder VA, Burnham CA,
Mobashery S, et al: Synergistic, collaterally sensitive β-lactam
combinations suppress resistance in MRSA. Nat Chem Biol.
11:855–861. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Taylor PW: Alternative natural sources for
a new generation of antibacterial agents. Int J Antimicrob Agents.
42:195–201. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Mun SH, Kang OH, Kong R, Zhou T, Kim SA,
Shin DW and Kwon DY: Punicalagin suppresses methicillin resistance
of Staphylococcus aureus to oxacillin. J Pharmacol Sci.
137:317–323. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chusri S, Villanueva I, Voravuthikunchai
SP and Davies J: Enhancing antibiotic activity: A strategy to
control Acinetobacter infections. J Antimicrob Chemother.
64:1203–1211. 2009.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Chan JF, Yuan S, Kok KH, To KK, Chu H,
Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster
of pneumonia associated with the 2019 novel coronavirus indicating
person-to-person transmission: A study of a family cluster. Lancet.
395:514–523. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W,
Gao GF and Wu G: A novel coronavirus genome identified in a cluster
of pneumonia cases - Wuhan, China 2019-2020. China CDC Wkly.
2:61–62. 2020.PubMed/NCBI
|
|
66
|
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song
ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al: A new coronavirus
associated with human respiratory disease in China. Nature.
579:265–269. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Lin LT, Chen TY, Lin SC, Chung CY, Lin TC,
Wang GH, Anderson R, Lin CC and Richardson CD: Broad-spectrum
antiviral activity of chebulagic acid and punicalagin against
viruses that use glycosaminoglycans for entry. BMC Microbiol.
13(187)2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Chen HF, Wang WJ, Chen CY, Chang WC, Hsueh
PR, Peng SL, Wu CS, Chen Y, Huang HY, Shen WJ, et al: The natural
tannins oligomeric proanthocyanidins and punicalagin are potent
inhibitors of infection by SARS-CoV-2. Elife.
12(e84899)2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lu L, Peng Y, Yao H, Wang Y, Li J, Yang Y
and Lin Z: Punicalagin as an allosteric NSP13 helicase inhibitor
potently suppresses SARS-CoV-2 replication in vitro. Antiviral Res.
206(105389)2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Saadh MJ, Almaaytah AM, Alaraj M, Dababneh
MF, Sa'adeh I, Aldalaen SM, Kharshid AM, Alboghdadly A, Hailat M,
Khaleel A, et al: Punicalagin and zinc (II) ions inhibit the
activity of SARS-CoV-2 3CL-protease in vitro. Eur Rev Med Pharmacol
Sci. 25:3908–3913. 2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Du R, Cooper L, Chen Z, Lee H, Rong L and
Cui Q: Discovery of chebulagic acid and punicalagin as novel
allosteric inhibitors of SARS-CoV-2 3CL(pro). Antiviral Res.
190(105075)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Liu B, Jiao XQ, Dong XF, Guo P, Wang SB
and Qin ZH: Saikosaponin B2, punicalin, and punicalagin in vitro
block cellular entry of feline herpesvirus-1. Viruses.
16(231)2024.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Sanna C, Marengo A, Acquadro S, Caredda A,
Lai R, Corona A, Tramontano E, Rubiolo P and Esposito F: In Vitro
Anti-HIV-1 reverse transcriptase and integrase properties of punica
granatum L. Leaves, bark, and peel extracts and their main
compounds. Plants (Basel). 10(2124)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Salles TS, Meneses MDF, Caldas LA,
Sá-Guimarães TE, de Oliveira DM, Ventura JA, Azevedo RC, Kuster RM,
Soares MR and Ferreira DF: Virucidal and antiviral activities of
pomegranate (Punica granatum) extract against the mosquito-borne
Mayaro virus. Parasit Vectors. 14(443)2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Li P, Du R, Chen Z, Wang Y, Zhan P, Liu X,
Kang D, Chen Z, Zhao X, Wang L, et al: Punicalagin is a
neuraminidase inhibitor of influenza viruses. J Med Virol.
93:3465–3472. 2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Javadi-Farsani F, Karimi A, Razavi Nikoo
H, Moradi MT and Tabarraei A: An in vitro antiviral evaluation of
punicalagin toward influenza A virus. Avicenna J Phytomed.
14:496–504. 2024.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Lin LT, Chen TY, Chung CY, Noyce RS,
Grindley TB, McCormick C, Lin TC, Wang GH, Lin CC and Richardson
CD: Hydrolyzable tannins (chebulagic acid and punicalagin) target
viral glycoprotein-glycosaminoglycan interactions to inhibit herpes
simplex virus 1 entry and cell-to-cell spread. J Virol.
85:4386–4398. 2011.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Li ZJ, Zhang HY, Ren LL, Lu QB, Ren X,
Zhang CH, Wang YF, Lin SH, Zhang XA, Li J, et al: Etiological and
epidemiological features of acute respiratory infections in China.
Nat Commun. 12(5026)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wang X, Xia S, Wang Q, Xu W, Li W, Lu L
and Jiang S: Broad-spectrum coronavirus fusion inhibitors to combat
COVID-19 and other emerging coronavirus diseases. Int J Mol Sci.
21(3843)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Invernizzi L, Moyo P, Cassel J, Isaacs FJ,
Salvino JM, Montaner LJ, Tietjen I and Maharaj V: Use of hyphenated
analytical techniques to identify the bioactive constituents of
Gunnera perpensa L., a South African medicinal plant, which
potently inhibit SARS-CoV-2 spike glycoprotein-host ACE2 binding.
Anal Bioanal Chem. 414:3971–3985. 2022.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Inniss NL, Rzhetskaya M, Ling-Hu T,
Lorenzo-Redondo R, Bachta KE, Satchell KJF and Hultquist JF:
Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C
variant using RNA duplex unwinding assays. SLAS Discov.
29(100145)2024.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou
CC, Ko TP, Shr HL, Chang GG, Wang AH and Liang PH: Mechanism of the
maturation process of SARS-CoV 3CL protease. J Biol Chem.
280:31257–31266. 2005.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kim Y, Mandadapu SR, Groutas WC and Chang
KO: Potent inhibition of feline coronaviruses with peptidyl
compounds targeting coronavirus 3C-like protease. Antiviral Res.
97:161–168. 2013.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Qiao J, Li YS, Zeng R, Liu FL, Luo RH,
Huang C, Wang YF, Zhang J, Quan B, Shen C, et al: SARS-CoV-2 M(pro)
inhibitors with antiviral activity in a transgenic mouse model.
Science. 371:1374–1378. 2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Rut W, Groborz K, Zhang L, Sun X,
Zmudzinski M, Pawlik B, Wang X, Jochmans D, Neyts J, Młynarski W,
et al: SARS-CoV-2 M(pro) inhibitors and activity-based probes for
patient-sample imaging. Nat Chem Biol. 17:222–228. 2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu
Y, Zhu Y, Zhu C, Hu T, Du X, et al: Structural basis for the
inhibition of SARS-CoV-2 main protease by antineoplastic drug
carmofur. Nat Struct Mol Biol. 27:529–532. 2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Li P, Cui Q, Wang L, Zhao X, Zhang Y,
Manicassamy B, Yang Y, Rong L and Du R: A simple and robust
approach for evaluation of antivirals using a recombinant influenza
virus expressing gaussia luciferase. Viruses.
10(325)2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Shao W, Li X, Goraya MU, Wang S and Chen
JL: Evolution of influenza a virus by mutation and re-assortment.
Int J Mol Sci. 18(1650)2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Li P, Du R, Wang Y, Hou X, Wang L, Zhao X,
Zhan P, Liu X, Rong L and Cui Q: Identification of chebulinic acid
and chebulagic acid as novel influenza viral neuraminidase
inhibitors. Front Microbiol. 11(182)2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhao X, Wang Y, Cui Q, Li P, Wang L, Chen
Z, Rong L and Du R: A parallel phenotypic versus target-based
screening strategy for RNA-Dependent RNA polymerase inhibitors of
the influenza a virus. Viruses. 11(826)2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Haidari M, Ali M, Ward Casscells S III and
Madjid M: Pomegranate (Punica granatum) purified polyphenol extract
inhibits influenza virus and has a synergistic effect with
oseltamivir. Phytomedicine. 16:1127–1136. 2009.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ
and Solomon T: Clinical features, diagnosis, and management of
enterovirus 71. Lancet Neurol. 9:1097–1105. 2010.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Huang WC, Huang LM, Lu CY, Cheng AL and
Chang LY: Atypical hand-foot-mouth disease in children: A
hospital-based prospective cohort study. Virol J.
10(209)2013.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Lin CJ, Liu CH, Wang JY, Lin CC, Li YF,
Richardson CD and Lin LT: Small molecules targeting coxsackievirus
A16 capsid inactivate viral particles and prevent viral binding.
Emerg Microbes Infect. 7(162)2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Liu CH, Kuo YT, Lin CJ and Lin LT:
Involvement of cell surface glycosaminoglycans in chebulagic acid's
and punicalagin's antiviral activities against Coxsackievirus A16
infection. Phytomedicine. 120(155047)2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Yang Y, Xiu J, Zhang L, Qin C and Liu J:
Antiviral activity of punicalagin toward human enterovirus 71 in
vitro and in vivo. Phytomedicine. 20:67–70. 2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Asandem DA, Segbefia SP, Kusi KA and
Bonney JHK: Hepatitis B virus infection: A mini review. Viruses.
16(724)2024.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zoulim F and Durantel D: Antiviral
therapies and prospects for a cure of chronic hepatitis B. Cold
Spring Harb Perspect Med. 5(a021501)2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Guo JT and Guo H: Metabolism and function
of hepatitis B virus cccDNA: Implications for the development of
cccDNA-targeting antiviral therapeutics. Antiviral Res. 122:91–100.
2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Liu C, Cai D, Zhang L, Tang W, Yan R, Guo
H and Chen X: Identification of hydrolyzable tannins (punicalagin,
punicalin and geraniin) as novel inhibitors of hepatitis B virus
covalently closed circular DNA. Antiviral Res. 134:97–107.
2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Shepard CW, Simard EP, Finelli L, Fiore AE
and Bell BP: Hepatitis B virus infection: Epidemiology and
vaccination. Epidemiol Rev. 28:112–125. 2006.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Gaskell R, Dawson S, Radford A and Thiry
E: Feline herpesvirus. Vet Res. 38:337–354. 2007.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Synowiec A, Dąbrowska A, Pachota M,
Baouche M, Owczarek K, Niżański W and Pyrc K: Feline herpesvirus 1
(FHV-1) enters the cell by receptor-mediated endocytosis. J Virol.
97(e0068123)2023.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Hilterbrand AT, Daly RE and Heldwein EE:
Contributions of the four essential entry glycoproteins to HSV-1
tropism and the selection of entry routes. mBio. 12:e00143–21.
2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Gaudreault NN, Madden DW, Wilson WC,
Trujillo JD and Richt JA: African swine fever virus: An emerging
DNA arbovirus. Front Vet Sci. 7(215)2020.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Geng R, Yin D, Liu Y, Lv H, Zhou X, Bao C,
Gong L, Shao H, Qian K, Chen H and Qin A: Punicalagin inhibits
african swine fever virus replication by targeting early viral
stages and modulating inflammatory pathways. Vet Sci.
11(440)2024.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Landovitz RJ, Scott H and Deeks SG:
Prevention, treatment and cure of HIV infection. Nat Rev Microbiol.
21:657–670. 2023.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Vidya Vijayan KK, Karthigeyan KP, Tripathi
SP and Hanna LE: Pathophysiology of CD4+ T-Cell depletion in HIV-1
and HIV-2 infections. Front Immunol. 8(580)2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Goguen RP, Chen MJ, Dunkley ORS, Gatignol
A and Scarborough RJ: Gene therapy to cure HIV infection. Virologie
(Montrouge). 27:63–84. 2023.PubMed/NCBI View Article : Google Scholar
|
|
111
|
de Carvalho AC, Dias CSB, Coimbra LD,
Rocha RPF, Borin A, Fontoura MA, Carvalho M, Proost P, Nogueira ML,
Consonni SR, et al: Characterization of systemic disease
development and paw inflammation in a susceptible mouse model of
mayaro virus infection and validation using x-ray synchrotron
microtomography. Int J Mol Sci. 24(4799)2023.PubMed/NCBI View Article : Google Scholar
|