|
1
|
Curigliano G, Lenihan D, Fradley M,
Ganatra S, Barac A, Blaes A, Herrmann J, Porter C, Lyon AR,
Lancellotti P, et al: Management of cardiac disease in cancer
patients throughout oncological treatment: ESMO consensus
recommendations. Ann Oncol. 31:171–190. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Mudd TW Jr, Khalid M and Guddati AK:
Cardiotoxicity of chemotherapy and targeted agents. Am J Cancer
Res. 11:1132–1147. 2021.PubMed/NCBI
|
|
3
|
Batool SM, Yekula A, Khanna P, Hsia T,
Gamblin AS, Ekanayake E, Escobedo AK, You DG, Castro CM, Im H, et
al: The liquid biopsy consortium: Challenges and opportunities for
early cancer detection and monitoring. Cell Rep Med.
4(101198)2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Boen HM, Cherubin M, Franssen C, Gevaert
AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts
M, et al: Circulating MicroRNA as biomarkers of
anthracycline-induced cardiotoxicity: JACC: Cardiooncology
state-of-the-art review. JACC CardioOncol. 6:183–199.
2024.PubMed/NCBI View Article : Google Scholar
|
|
5
|
de Wall C, Bauersachs J and Berliner D:
Cardiooncology-dealing with modern drug treatment, long-term
complications, and cancer survivorship. Clin Exp Metastasis.
38:361–371. 2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Nagy A, Börzsei D, Hoffmann A, Török S,
Veszelka M, Almási N, Varga C and Szabó R: A comprehensive overview
on chemotherapy-induced cardiotoxicity: Insights into the
underlying inflammatory and oxidative mechanisms. Cardiovasc Drugs
Ther: Mar 16, 2024 (Epub ahead of print).
|
|
7
|
Berardi R, Caramanti M, Savini A,
Chiorrini S, Pierantoni C, Onofri A, Ballatore Z, De Lisa M,
Mazzanti P and Cascinu S: State of the art for cardiotoxicity due
to chemotherapy and to targeted therapies: A literature review.
Crit Rev Oncol Hematol. 88:75–86. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Volkova M and Russell R III: Anthracycline
cardiotoxicity: Prevalence, pathogenesis and treatment. Curr
Cardiol Rev. 7:214–220. 2011.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Vejpongsa P and Yeh ETH: Prevention of
anthracycline-induced cardiotoxicity: Challenges and opportunities.
J Am Coll Cardiol. 64:938–945. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
McGowan JV, Chung R, Maulik A, Piotrowska
I, Walker JM and Yellon DM: Anthracycline chemotherapy and
cardiotoxicity. Cardiovasc Drugs Ther. 31:63–75. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Kuo CL, Ponneri Babuharisankar A, Lin YC,
Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY:
Mitochondrial oxidative stress in the tumor microenvironment and
cancer immunoescape: Foe or friend? J Biomed Sci.
29(74)2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang
X, Lu S, Huang C, Liu L, Tang J and Gao F: Drug-induced oxidative
stress in cancer treatments: Angel or devil? Redox Biol.
63(102754)2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Thavendiranathan P, Wintersperger BJ,
Flamm SD and Marwick TH: Cardiac MRI in the assessment of cardiac
injury and toxicity from cancer chemotherapy: A systematic review.
Circ Cardiovasc Imaging. 6:1080–1091. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ezaz G, Long JB, Gross CP and Chen J: Risk
prediction model for heart failure and cardiomyopathy after
adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc.
3(e000472)2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Pavo N, Raderer M, Hülsmann M, Neuhold S,
Adlbrecht C, Strunk G, Goliasch G, Gisslinger H, Steger GG, Hejna
M, et al: Cardiovascular biomarkers in patients with cancer and
their association with all-cause mortality. Heart. 101:1874–1880.
2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Cho WCS: Circulating MicroRNAs as
minimally invasive biomarkers for cancer theragnosis and prognosis.
Front Genet. 2(7)2011.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kowal J, Arras G, Colombo M, Jouve M,
Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry
C: Proteomic comparison defines novel markers to characterize
heterogeneous populations of extracellular vesicle subtypes. Proc
Natl Acad Sci USA. 113:E968–E977. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Gould SJ and Raposo G: As we wait: Coping
with an imperfect nomenclature for extracellular vesicles. J
Extracell Vesicles. 2(20389)2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Mathivanan S, Ji H and Simpson RJ:
Exosomes: Extracellular organelles important in intercellular
communication. J Proteomics. 73:1907–1920. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Raposo G, Nijman HW, Stoorvogel W,
Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes
secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172.
1996.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Nolte-'t Hoen EN, Buermans HP, Waasdorp M,
Stoorvogel W, Wauben MH and 't Hoen PA: Deep sequencing of RNA from
immune cell-derived vesicles uncovers the selective incorporation
of small non-coding RNA biotypes with potential regulatory
functions. Nucleic Acids Res. 40:9272–9285. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Patel GK, Patton MC, Singh S, Khushman M
and Singh AP: Pancreatic cancer exosomes: Shedding off for a
meaningful journey. Pancreat Disord Ther. 6(e148)2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Gajos-Michniewicz A, Duechler M and Czyz
M: MiRNA in melanoma-derived exosomes. Cancer Lett. 347:29–37.
2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Azmi AS, Bao B and Sarkar FH: Exosomes in
cancer development, metastasis, and drug resistance: A
comprehensive review. Cancer Metastasis Rev. 32:623–642.
2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Riches A, Campbell E, Borger E and Powis
S: Regulation of exosome release from mammary epithelial and breast
cancer cells-a new regulatory pathway. Eur J Cancer. 50:1025–1034.
2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Suchorska WM and Lach MS: The role of
exosomes in tumor progression and metastasis (review). Oncol Rep.
35:1237–1244. 2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chen L, Guo P, He Y, Chen Z, Chen L, Luo
Y, Qi L, Liu Y, Wu Q, Cui Y, et al: HCC-derived exosomes elicit HCC
progression and recurrence by epithelial-mesenchymal transition
through MAPK/ERK signalling pathway. Cell Death Dis.
9(513)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Li Z, Yanfang W, Li J, Jiang P, Peng T,
Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released
exosomal circular RNA PDE8A promotes invasive growth via the
miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett.
432:237–250. 2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Demory Beckler M, Higginbotham JN,
Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M,
Liebler DC and Coffey RJ: Proteomic analysis of exosomes from
mutant KRAS colon cancer cells identifies intercellular transfer of
mutant KRAS. Mol Cell Proteomics. 12:343–355. 2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Melo SA, Sugimoto H, O'Connell JT, Kato N,
Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et
al: Cancer exosomes perform cell-independent microRNA biogenesis
and promote tumorigenesis. Cancer Cell. 26:707–721. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chevillet JR, Kang Q, Ruf IK, Briggs HA,
Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK,
Gallichotte EN, et al: Quantitative and stoichiometric analysis of
the microRNA content of exosomes. Proc Natl Acad Sci USA.
111:14888–14893. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Mittelbrunn M, Gutiérrez-Vázquez C,
Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ,
Bernad A and Sánchez-Madrid F: Unidirectional transfer of
microRNA-loaded exosomes from T cells to antigen-presenting cells.
Nat Commun. 2(282)2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Bland CL, Byrne-Hoffman CN, Fernandez A,
Rellick SL, Deng W and Klinke DJ II: Exosomes derived from B16F0
melanoma cells alter the transcriptome of cytotoxic T cells that
impacts mitochondrial respiration. FEBS J. 285:1033–1050.
2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Dioufa N, Clark AM, Ma B, Beckwitt CH and
Wells A: Bi-directional exosome-driven intercommunication between
the hepatic niche and cancer cells. Mol Cancer.
16(172)2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Xu Z, Liu X, Wang H, Li J, Dai L, Li J and
Dong C: Lung adenocarcinoma cell-derived exosomal miR-21
facilitates osteoclastogenesis. Gene. 666:116–122. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Yang H, Fu H, Wang B, Zhang X, Mao J, Li
X, Wang M, Sun Z, Qian H and Xu W: Exosomal miR-423-5p targets SUFU
to promote cancer growth and metastasis and serves as a novel
marker for gastric cancer. Mol Carcinog. 57:1223–1236.
2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei
L, Tong L, Zhang W and Shen Y: Exosomal miR-675 from metastatic
osteosarcoma promotes cell migration and invasion by targeting
CALN1. Biochem Biophys Res Commun. 500:170–176. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Bao L, You B, Shi S, Shan Y, Zhang Q, Yue
H, Zhang J, Zhang W, Shi Y, Liu Y, et al: Metastasis-associated
miR-23a from nasopharyngeal carcinoma-derived exosomes mediates
angiogenesis by repressing a novel target gene TSGA10. Oncogene.
37:2873–2889. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Street JM, Koritzinsky EH, Glispie DM,
Star RA and Yuen PST: Urine exosomes: An emerging trove of
biomarkers. Adv Clin Chem. 78:103–122. 2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Machida T, Tomofuji T, Ekuni D, Maruyama
T, Yoneda T, Kawabata Y, Mizuno H, Miyai H, Kunitomo M and Morita
M: MicroRNAs in salivary exosome as potential biomarkers of aging.
Int J Mol Sci. 16:21294–21309. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Keller S, Rupp C, Stoeck A, Runz S, Fogel
M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P and Altevogt P:
CD24 is a marker of exosomes secreted into urine and amniotic
fluid. Kidney Int. 72:1095–1102. 2007.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Peng P, Yan Y and Keng S: Exosomes in the
ascites of ovarian cancer patients: Origin and effects on
anti-tumor immunity. Oncol Rep. 25:749–762. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Tanaka Y, Kamohara H, Kinoshita K,
Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M and Baba H:
Clinical impact of serum exosomal microRNA-21 as a clinical
biomarker in human esophageal squamous cell carcinoma. Cancer.
119:1159–1167. 2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wang H, Hou L, Li A, Duan Y, Gao H and
Song X: Expression of serum exosomal microRNA-21 in human
hepatocellular carcinoma. Biomed Res Int.
2014(864894)2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Jain D, Russell RR, Schwartz RG, Panjrath
GS and Aronow W: Cardiac complications of cancer therapy:
Pathophysiology, identification, prevention, treatment, and future
directions. Curr Cardiol Rep. 19(36)2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Han X, Zhou Y and Liu W: Precision
cardio-oncology: Understanding the cardiotoxicity of cancer
therapy. NPJ Precis Oncol. 1(31)2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Chang HM, Moudgil R, Scarabelli T, Okwuosa
TM and Yeh ETH: Cardiovascular complications of cancer therapy:
Best practices in diagnosis, prevention, and management: Part 1. J
Am Coll Cardiol. 70:2536–2551. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Frères P, Bouznad N, Servais L, Josse C,
Wenric S, Poncin A, Thiry J, Moonen M, Oury C, Lancellotti P, et
al: Variations of circulating cardiac biomarkers during and after
anthracycline-containing chemotherapy in breast cancer patients.
BMC Cancer. 18(102)2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Brabletz S and Brabletz T: The ZEB/miR-200
feedback loop-a motor of cellular plasticity in development and
cancer? EMBO Rep. 11:670–677. 2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Beji S, Milano G, Scopece A, Cicchillitti
L, Cencioni C, Picozza M, D'Alessandra Y, Pizzolato S, Bertolotti
M, Spaltro G, et al: Doxorubicin upregulates CXCR4 via
miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal
progenitor cells. Cell Death Dis. 8(e3020)2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Damrot J, Nübel T, Epe B, Roos WP, Kaina B
and Fritz G: Lovastatin protects human endothelial cells from the
genotoxic and cytotoxic effects of the anticancer drugs doxorubicin
and etoposide. Br J Pharmacol. 149:988–997. 2006.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Magenta A, Cencioni C, Fasanaro P,
Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F and
Capogrossi MC: miR-200c is upregulated by oxidative stress and
induces endothelial cell apoptosis and senescence via ZEB1
inhibition. Cell Death Differ. 18:1628–1639. 2011.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Potente M and Dimmeler S: Emerging roles
of SIRT1 in vascular endothelial homeostasis. Cell Cycle.
7:2117–2122. 2008.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hu X, Liu H, Wang Z, Hu Z and Li L:
miR-200a attenuated doxorubicin-induced cardiotoxicity through
upregulation of Nrf2 in mice. Oxid Med Cell Longev.
2019(1512326)2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zhang WC, Yang JH, Liu GH, Yang F, Gong
JL, Jia MG, Zhang MJ and Zhao LS: miR-34b/c regulates
doxorubicin-induced myocardial cell injury through ITCH. Cell
Cycle. 18:3263–3274. 2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Vacchi-Suzzi C, Bauer Y, Berridge BR,
Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J,
Paules RS, et al: Perturbation of microRNAs in rat heart during
chronic doxorubicin treatment. PLoS One. 7(e40395)2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei
HW, Yang H, Lin QX, Gou DM, Wu SL and Shan ZX: Activation of
miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced
cardiotoxicity. Sci Rep. 7(11879)2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS,
Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, et al: Repression of
P66Shc expression by SIRT1 contributes to the prevention of
hyperglycemia-induced endothelial dysfunction. Circ Res.
109:639–648. 2011.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Bonfini L, Migliaccio E, Pelicci G,
Lanfrancone L and Pelicci PG: Not all Shc's roads lead to Ras.
Trends Biochem Sci. 21:257–261. 1996.PubMed/NCBI
|
|
61
|
Lacombe J and Zenhausern F: Emergence of
miR-34a in radiation therapy. Crit Rev Oncol Hematol. 109:69–78.
2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hu Y, Xia W and Hou M: Macrophage
migration inhibitory factor serves a pivotal role in the regulation
of radiation-induced cardiac senescencethrough rebalancing the
microRNA-34a/sirtuin 1 signaling pathway. Int J Mol Med.
42:2849–2858. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Baban B, Liu JY, Qin X, Weintraub NL and
Mozaffari MS: Upregulation of programmed death-1 and its ligand in
cardiac injury models: Interaction with GADD153. PLoS One.
10(e0124059)2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Nishimura H, Okazaki T, Tanaka Y, Nakatani
K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N
and Honjo T: Autoimmune dilated cardiomyopathy in PD-1
receptor-deficient mice. Science. 291:319–322. 2001.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tarrio ML, Grabie N, Bu DX, Sharpe AH and
Lichtman AH: PD-1 protects against inflammation and myocyte damage
in T cell-mediated myocarditis. J Immunol. 188:4876–4884.
2012.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Grabie N, Gotsman I, DaCosta R, Pang H,
Stavrakis G, Butte MJ, Keir ME, Freeman GJ, Sharpe AH and Lichtman
AH: Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+
T-cell mediated injury in the heart. Circulation. 116:2062–2071.
2007.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Beg MS, Brenner AJ, Sachdev J, Borad M,
Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase
I study of MRX34, a liposomal miR-34a mimic, administered twice
weekly in patients with advanced solid tumors. Invest New Drugs.
35:180–188. 2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ameres SL and Zamore PD: Diversifying
microRNA sequence and function. Nat Rev Mol Cell Biol. 14:475–488.
2013.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Neilsen CT, Goodall GJ and Bracken CP:
IsomiRs-the overlooked repertoire in the dynamic microRNAome.
Trends Genet. 28:544–549. 2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011.PubMed/NCBI View Article : Google Scholar
|
|
71
|
van Rooij E, Sutherland LB, Thatcher JE,
DiMaio JM, Naseem RH, Marshall WS, Hill JA and Olson EN:
Dysregulation of microRNAs after myocardial infarction reveals a
role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA.
105:13027–13032. 2008.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Roncarati R, Viviani Anselmi C, Losi MA,
Papa L, Cavarretta E, Da Costa Martins P, Contaldi C, Saccani Jotti
G, Franzone A, Galastri L, et al: Circulating miR-29a, among other
up-regulated microRNAs, is the only biomarker for both hypertrophy
and fibrosis in patients with hypertrophic cardiomyopathy. J Am
Coll Cardiol. 63:920–927. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zile MR, Mehurg SM, Arroyo JE, Stroud RE,
DeSantis SM and Spinale FG: Relationship between the temporal
profile of plasma microRNA and left ventricular remodeling in
patients after myocardial infarction. Circ Cardiovasc Genet.
4:614–619. 2011.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Jing X, Yang J, Jiang L, Chen J and Wang
H: MicroRNA-29b regulates the mitochondria-dependent apoptotic
pathway by targeting Bax in doxorubicin cardiotoxicity. Cell
Physiol Biochem. 48:692–704. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Leger KJ, Leonard D, Nielson D, de Lemos
JA, Mammen PPA and Winick NJ: Circulating microRNAs: Potential
markers of cardiotoxicity in children and young adults treated with
anthracycline chemotherapy. J Am Heart Assoc.
6(e004653)2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Liu Y, Taylor NE, Lu L, Usa K, Cowley AW
Jr, Ferreri NR, Yeo NC and Liang M: Renal medullary microRNAs in
Dahl salt-sensitive rats: miR-29b regulates several collagens and
related genes. Hypertension. 55:974–982. 2010.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Spallarossa P, Altieri P, Garibaldi S,
Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A,
Brunelli C and Barsotti A: Matrix metalloproteinase-2 and -9 are
induced differently by doxorubicin in H9c2 cells: The role of MAP
kinases and NAD(P)H oxidase. Cardiovasc Res. 69:736–745.
2006.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kizaki K, Ito R, Okada M, Yoshioka K,
Uchide T, Temma K, Mutoh K, Uechi M and Hara Y: Enhanced gene
expression of myocardial matrix metalloproteinases 2 and 9 after
acute treatment with doxorubicin in mice. Pharmacol Res.
53:341–346. 2006.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Eken SM, Christersdottir T, Winski G,
Sangsuwan T, Jin H, Chernogubova E, Pirault J, Sun C, Simon N,
Winter H, et al: MiR-29b mediates the chronic inflammatory response
in radiotherapy-induced vascular disease. JACC Basic Transl Sci.
4:72–82. 2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Dinh TK, Fendler W, Chałubińska-Fendler J,
Acharya SS, O'Leary C, Deraska PV, D'Andrea AD, Chowdhury D and
Kozono D: Circulating miR-29a and miR-150 correlate with delivered
dose during thoracic radiation therapy for non-small cell lung
cancer. Radiat Oncol. 11(61)2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lai L, Chen J, Wang N, Zhu G, Duan X and
Ling F: MiRNA-30e mediated cardioprotection of ACE2 in rats with
doxorubicin-induced heart failure through inhibiting cardiomyocytes
autophagy. Life Sci. 169:69–75. 2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhou F, Lu X and Zhang X: Serum miR-30c
level predicted cardiotoxicity in non-small cell lung cancer
patients treated with bevacizumab. Cardiovasc Toxicol. 18:284–289.
2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M,
Jiang Y, Lv Q and Xiao X: MiR-21 protected cardiomyocytes against
doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci.
16:14511–14525. 2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Yin C, Salloum FN and Kukreja RC: A novel
role of microRNA in late preconditioning: upregulation of
endothelial nitric oxide synthase and heat shock protein 70. Circ
Res. 104:572–575. 2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang
X, Wang D, Krall TJ, Delphin ES and Zhang C: MicroRNA expression
signature and the role of microRNA-21 in the early phase of acute
myocardial infarction. J Biol Chem. 284:29514–29525.
2009.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Roy S, Khanna S, Hussain SR, Biswas S,
Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ and Sen CK: MicroRNA
expression in response to murine myocardial infarction: miR-21
regulates fibroblast metalloprotease-2 via phosphatase and tensin
homologue. Cardiovasc Res. 82:21–29. 2009.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Thum T, Gross C, Fiedler J, Fischer T,
Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et
al: MicroRNA-21 contributes to myocardial disease by stimulating
MAP kinase signalling in fibroblasts. Nature. 456:980–984.
2008.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Viczenczova C, Szeiffova Bacova B, Egan
Benova T, Kura B, Yin C, Weismann P, Kukreja R, Slezak J and
Tribulova N: Myocardial connexin-43 and PKC signalling are involved
in adaptation of the heart to irradiation-induced injury:
Implication of miR-1 and miR-21. Gen Physiol Biophys. 35:215–222.
2016.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kopcalic K, Petrovic N, Stanojkovic TP,
Stankovic V, Bukumiric Z, Roganovic J, Malisic E and Nikitovic M:
Association between miR-21/146a/155 level changes and acute
genitourinary radiotoxicity in prostate cancer patients: A pilot
study. Pathol Res Pract. 215:626–631. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar
M, Zhou Z, Li L, Zeng Z, Young KH, et al: miR-21 depletion in
macrophages promotes tumoricidal polarization and enhances PD-1
immunotherapy. Oncogene. 37:3151–3165. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Loot AE and Fleming I: Cytochrome
P450-derived epoxyeicosatrienoic acids and pulmonary hypertension:
Central role of transient receptor potential C6 channels. J
Cardiovasc Pharmacol. 57:140–147. 2011.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhao Y, Samal E and Srivastava D: Serum
response factor regulates a muscle-specific microRNA that targets
Hand2 during cardiogenesis. Nature. 436:214–220. 2005.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Chen JF, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006.PubMed/NCBI View
Article : Google Scholar
|
|
94
|
Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL,
Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG and Yu XY: Upregulated
expression of miR-1/miR-206 in a rat model of myocardial
infarction. Biochem Biophys Res Commun. 381:597–601.
2009.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and
Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting
Bcl-2. Int Heart J. 50:377–387. 2009.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Cheng Y, Tan N, Yang J, Liu X, Cao X, He
P, Dong X, Qin S and Zhang C: A translational study of circulating
cell-free microRNA-1 in acute myocardial infarction. Clin Sci
(Lond). 119:87–95. 2010.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Nishimura Y, Kondo C, Morikawa Y, Tonomura
Y, Torii M, Yamate J and Uehara T: Plasma miR-208 as a useful
biomarker for drug-induced cardiotoxicity in rats. J Appl Toxicol.
35:173–180. 2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H,
Xiao J, Shan H, Wang Z and Yang B: The muscle-specific microRNAs
miR-1 and miR-133 produce opposing effects on apoptosis by
targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci.
120:3045–3052. 2007.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ji X, Takahashi R, Hiura Y, Hirokawa G,
Fukushima Y and Iwai N: Plasma miR-208 as a biomarker of myocardial
injury. Clin Chem. 55:1944–1949. 2009.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Tony H, Yu K and Qiutang Z: MicroRNA-208a
silencing attenuates doxorubicin induced myocyte apoptosis and
cardiac dysfunction. Oxid Med Cell Longev.
2015(597032)2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Desai VG, C*Kwekel J, Vijay V, Moland CL,
Herman EH, Lee T, Han T, Lewis SM, Davis KJ, Muskhelishvili L, et
al: Early biomarkers of doxorubicin-induced heart injury in a mouse
model. Toxicol Appl Pharmacol. 281:221–229. 2014.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wan Q, Xu T, Ding W, Zhang X, Ji X, Yu T,
Yu W, Lin Z and Wang J: MiR-499-5p attenuates mitochondrial fission
and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front
Genet. 9(734)2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Liu X, Cheng Y, Yang J, Xu L and Zhang C:
Cell-specific effects of miR-221/222 in vessels: Molecular
mechanism and therapeutic application. J Mol Cell Cardiol.
52:245–255. 2012.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Watson CJ, Gupta SK, O'Connell E, Thum S,
Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L,
McDonald K and Thum T: MicroRNA signatures differentiate preserved
from reduced ejection fraction heart failure. Eur J Heart Fail.
17:405–415. 2015.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Verjans R, Peters T, Beaumont FJ, van
Leeuwen R, van Herwaarden T, Verhesen W, Munts C, Bijnen M, Henkens
M, Diez J, et al: MicroRNA-221/222 family counteracts myocardial
fibrosis in pressure overload-induced heart failure. Hypertension.
71:280–288. 2018.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Su M, Wang J, Wang C, Wang X, Dong W, Qiu
W, Wang Y, Zhao X, Zou Y, Song L, et al: MicroRNA-221 inhibits
autophagy and promotes heart failure by modulating the
p27/CDK2/mTOR axis. Cell Death Differ. 22:986–999. 2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Esplugas R, Arenas M, Serra N, Bellés M,
Bonet M, Gascón M, Vallvé JC and Linares V: Effect of radiotherapy
on the expression of cardiovascular disease-related miRNA-146a,
-155, -221 and -222 in blood of women with breast cancer. PLoS One.
14(e0217443)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Tao L, Bei Y, Zhou Y, Xiao J and Li X:
Non-coding RNAs in cardiac regeneration. Oncotarget. 6:42613–42622.
2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Feng B and Chakrabarti S: miR-320
regulates glucose-induced gene expression in diabetes. ISRN
Endocrinol. 2012(549875)2012.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Yin Z, Zhao Y, Li H, Yan M, Zhou L, Chen C
and Wang DW: miR-320a mediates doxorubicin-induced cardiotoxicity
by targeting VEGF signal pathway. Aging (Albany NY). 8:192–207.
2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Todorova VK, Makhoul I, Wei J and Klimberg
VS: Circulating miRNA profiles of doxorubicin-induced
cardiotoxicity in breast cancer patients. Ann Clin Lab Sci.
47:115–119. 2017.PubMed/NCBI
|
|
112
|
Totoń-Żurańska J, Sulicka-Grodzicka J,
Seweryn MT, Pitera E, Kapusta P, Konieczny P, Drabik L, Kołton-Wróż
M, Chyrchel B, Nowak E, et al: MicroRNA composition of plasma
extracellular vesicles: A harbinger of late cardiotoxicity of
doxorubicin. Mol Med. 28(156)2022.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Pillai SS, Pereira DG, Bonsu G, Chaudhry
H, Puri N, Lakhani HV, Tirona MT, Sodhi K and Thompson E: Biomarker
panel for early screening of trastuzumab-induced cardiotoxicity
among breast cancer patients in west virginia. Front Pharmacol.
13(953178)2022.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Rigaud VOC, Ferreira LRP, Ayub-Ferreira
SM, Ávila MS, Brandão SMG, Cruz FD, Santos MHH, Cruz CBBV, Alves
MSL, Issa VS, et al: Circulating miR-1 as a potential biomarker of
doxorubicin-induced cardiotoxicity in breast cancer patients.
Oncotarget. 8:6994–7002. 2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Gioffré S, Chiesa M, Cardinale DM, Ricci
V, Vavassori C, Cipolla CM, Masson S, Sandri MT, Salvatici M,
Ciceri F, et al: Circulating MicroRNAs as potential predictors of
anthracycline-induced troponin elevation in breast cancer patients:
Diverging effects of doxorubicin and epirubicin. J Clin Med.
9(1418)2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Brown C, Mantzaris M, Nicolaou E,
Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos
G, Memos N, Naka KK, et al: A systematic review of miRNAs as
biomarkers for chemotherapy-induced cardiotoxicity in breast cancer
patients reveals potentially clinically informative panels as well
as key challenges in miRNA research. Cardiooncology.
8(16)2022.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Zhang X, Sun Y, Zhang Y, Fang F, Liu J,
Xia Y and Liu Y: Cardiac biomarkers for the detection and
management of cancer therapy-related cardiovascular toxicity. J
Cardiovasc Dev Dis. 9(372)2022.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Hendrix A and Hume AN: Exosome signaling
in mammary gland development and cancer. Int J Dev Biol.
55:879–887. 2011.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Galindo-Hernandez O, Villegas-Comonfort S,
Candanedo F, González-Vázquez MC, Chavez-Ocaña S,
Jimenez-Villanueva X, Sierra-Martinez M and Salazar EP: Elevated
concentration of microvesicles isolated from peripheral blood in
breast cancer patients. Arch Med Res. 44:208–214. 2013.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Webber J, Steadman R, Mason MD, Tabi Z and
Clayton A: Cancer exosomes trigger fibroblast to myofibroblast
differentiation. Cancer Res. 70:9621–9630. 2010.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Kosgodage US, Mould R, Henley AB, Nunn AV,
Guy GW, Thomas EL, Inal JM, Bell JD and Lange S: Cannabidiol (CBD)
is a novel inhibitor for exosome and microvesicle (EMV) release in
cancer. Front Pharmacol. 9(889)2018.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee
B, Lee JM, Lee JC, Jee JG, Bae JS, Kwon TK, et al: Sulfisoxazole
inhibits the secretion of small extracellular vesicles by targeting
the endothelin receptor A. Nat Commun. 10(1387)2019.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Aoki N, Jin-no S, Nakagawa Y, Asai N,
Arakawa E, Tamura N, Tamura T and Matsuda T: Identification and
characterization of microvesicles secreted by 3T3-L1 adipocytes:
redox- and hormone-dependent induction of milk fat
globule-epidermal growth factor 8-associated microvesicles.
Endocrinology. 148:3850–3862. 2007.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Müller G, Schneider M, Biemer-Daub G and
Wied S: Microvesicles released from rat adipocytes and harboring
glycosylphosphatidylinositol-anchored proteins transfer RNA
stimulating lipid synthesis. Cell Signal. 23:1207–1223.
2011.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Konoshenko MY, Lekchnov EA, Vlassov AV and
Laktionov PP: Isolation of extracellular vesicles: General
methodologies and latest trends. Biomed Res Int.
2018(8545347)2018.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Gardiner C, Di Vizio D, Sahoo S, Théry C,
Witwer KW, Wauben M and Hill AF: Techniques used for the isolation
and characterization of extracellular vesicles: Results of a
worldwide survey. J Extracell Vesicles. 5(32945)2016.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Ludwig N, Razzo BM, Yerneni SS and
Whiteside TL: Optimization of cell culture conditions for exosome
isolation using mini-size exclusion chromatography (mini-SEC). Exp
Cell Res. 378:149–157. 2019.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Zhang H, Freitas D, Kim HS, Fabijanic K,
Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, et al:
Identification of distinct nanoparticles and subsets of
extracellular vesicles by asymmetric flow field-flow fractionation.
Nat Cell Biol. 20:332–343. 2018.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Sluijter JPG, Davidson SM, Boulanger CM,
Buzás EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore
R, Lecour S, et al: Extracellular vesicles in diagnostics and
therapy of the ischaemic heart: Position paper from the working
group on cellular biology of the heart of the european society of
cardiology. Cardiovasc Res. 114:19–34. 2018.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Ardekani AM and Naeini MM: The role of
MicroRNAs in human diseases. Avicenna J Med Biotechnol. 2:161–179.
2010.PubMed/NCBI
|
|
131
|
Brandão-Lima PN, de Carvalho GB, Payolla
TB, Sarti FM and Rogero MM: Circulating microRNA related to
cardiometabolic risk factors for metabolic syndrome: A systematic
review. Metabolites. 12(1044)2022.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Tijsen AJ, Pinto YM and Creemers EE:
Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res.
93:573–582. 2012.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Subbaswamy A and Saria S: From development
to deployment: Dataset shift, causality, and shift-stable models in
health AI. Biostatistics. 21:345–352. 2020.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Rulten SL, Grose RP, Gatz SA, Jones JL and
Cameron AJM: The future of precision oncology. Int J Mol Sci.
24(12613)2023.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Pellegrini L, Sileno S, D'Agostino M,
Foglio E, Florio MC, Guzzanti V, Russo MA, Limana F and Magenta A:
MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers
(Basel). 12(704)2020.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Chang WT, Liu CF, Feng YH, Liao CT, Wang
JJ, Chen ZC, Lee HC and Shih JY: An artificial intelligence
approach for predicting cardiotoxicity in breast cancer patients
receiving anthracycline. Arch Toxicol. 96:2731–2737.
2022.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Hong DS, Kang YK, Borad M, Sachdev J,
Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1
study of MRX34, a liposomal miR-34a mimic, in patients with
advanced solid tumours. Br J Cancer. 122:1630–1637. 2020.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Jopling CL: Targeting microRNA-122 to
treat hepatitis C virus infection. Viruses. 2:1382–1393.
2010.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Xu K, Chen C, Wu Y, Wu M and Lin L:
Advances in miR-132-based biomarker and therapeutic potential in
the cardiovascular system. Front Pharmacol.
12(751487)2021.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Machida T, Tomofuji T, Maruyama T, Yoneda
T, Ekuni D, Azuma T, Miyai H, Mizuno H, Kato H, Tsutsumi K, et al:
miR-1246 and miR-4644 in salivary exosome as potential biomarkers
for pancreatobiliary tract cancer. Oncol Rep. 36:2375–2381.
2016.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Sun J, Aswath K, Schroeder SG, Lippolis
JD, Reinhardt TA and Sonstegard TS: MicroRNA expression profiles of
bovine milk exosomes in response to Staphylococcus aureus
infection. BMC Genomics. 16(806)2015.PubMed/NCBI View Article : Google Scholar
|