Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
November-December 2025 Volume 5 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-December 2025 Volume 5 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review)

  • Authors:
    • Vedant Shah
    • Viraj Panchal
    • Abhi Shah
    • Bhavya Vyas
    • Subham Bhowmik
    • Ishita Panchal
    • Pragya Jain
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine, The New York Medical College Graduate Medical Education Program at St. Mary's General Hospital and Saint Clare's Health, Denville, NJ 07834, USA, Department of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat 380058, India, Department of Family Medicine, Hennepin Healthcare, Minneapolis, MN 55415, USA, Department of Neurology, Max Smart Hospital, New Delhi 110017, India, Department of Medicine, Jawaharlal Nehru Medical College, Belagavi, Karnataka 590010, India, Department of Internal Medicine, Baptist Hospital of Southeast Texas, Beaumont, TX 77701, USA
    Copyright: © Shah et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 69
    |
    Published online on: September 4, 2025
       https://doi.org/10.3892/mi.2025.268
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

With the advancements made in oncology, such as molecularly targeted therapies and immune checkpoint inhibitors, their use has significantly improved the outcomes of patients with cancer. In addition, these advancements have led to an increased incidence of cardiotoxicity, ranging from subclinical dysfunction to severe cardiomyopathy. Hence, it is imperative to enable the early detection and prevention of cardiotoxicity to mitigate irreversible cardiac damage. Exosomal microRNAs (miRNAs) have emerged as promising non‑invasive biomarkers due to their stability in biological fluids and their ability to reflect early myocardial stress and damage. Unlike traditional biomarkers such as troponins, which indicate damage after myocardial injury has occurred, miRNAs can detect subclinical changes earlier, enabling timely intervention. Exosomal miRNAs not only serve as diagnostic biomarkers, but also provide therapeutic potential by modulating molecular pathways associated with cardiotoxicity. Understanding the regulatory mechanisms of miRNA expression in chemotherapy‑induced cardiotoxicity can pave the way for personalized cardioprotective strategies, minimizing cardiovascular complications during cancer therapy. The present review discusses the role of various miRNAs as biomarkers for the early diagnosis of cardiotoxicity induced by chemotherapeutic agents.
View Figures

Figure 1

Image demonstrating the key
mechanisms of chemotherapy-induced cardiotoxicity.
View References

1 

Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, Herrmann J, Porter C, Lyon AR, Lancellotti P, et al: Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 31:171–190. 2020.PubMed/NCBI View Article : Google Scholar

2 

Mudd TW Jr, Khalid M and Guddati AK: Cardiotoxicity of chemotherapy and targeted agents. Am J Cancer Res. 11:1132–1147. 2021.PubMed/NCBI

3 

Batool SM, Yekula A, Khanna P, Hsia T, Gamblin AS, Ekanayake E, Escobedo AK, You DG, Castro CM, Im H, et al: The liquid biopsy consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep Med. 4(101198)2023.PubMed/NCBI View Article : Google Scholar

4 

Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, et al: Circulating MicroRNA as biomarkers of anthracycline-induced cardiotoxicity: JACC: Cardiooncology state-of-the-art review. JACC CardioOncol. 6:183–199. 2024.PubMed/NCBI View Article : Google Scholar

5 

de Wall C, Bauersachs J and Berliner D: Cardiooncology-dealing with modern drug treatment, long-term complications, and cancer survivorship. Clin Exp Metastasis. 38:361–371. 2021.PubMed/NCBI View Article : Google Scholar

6 

Nagy A, Börzsei D, Hoffmann A, Török S, Veszelka M, Almási N, Varga C and Szabó R: A comprehensive overview on chemotherapy-induced cardiotoxicity: Insights into the underlying inflammatory and oxidative mechanisms. Cardiovasc Drugs Ther: Mar 16, 2024 (Epub ahead of print).

7 

Berardi R, Caramanti M, Savini A, Chiorrini S, Pierantoni C, Onofri A, Ballatore Z, De Lisa M, Mazzanti P and Cascinu S: State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: A literature review. Crit Rev Oncol Hematol. 88:75–86. 2013.PubMed/NCBI View Article : Google Scholar

8 

Volkova M and Russell R III: Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev. 7:214–220. 2011.PubMed/NCBI View Article : Google Scholar

9 

Vejpongsa P and Yeh ETH: Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J Am Coll Cardiol. 64:938–945. 2014.PubMed/NCBI View Article : Google Scholar

10 

McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM and Yellon DM: Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 31:63–75. 2017.PubMed/NCBI View Article : Google Scholar

11 

Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY: Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J Biomed Sci. 29(74)2022.PubMed/NCBI View Article : Google Scholar

12 

Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J and Gao F: Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 63(102754)2023.PubMed/NCBI View Article : Google Scholar

13 

Thavendiranathan P, Wintersperger BJ, Flamm SD and Marwick TH: Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: A systematic review. Circ Cardiovasc Imaging. 6:1080–1091. 2013.PubMed/NCBI View Article : Google Scholar

14 

Ezaz G, Long JB, Gross CP and Chen J: Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 3(e000472)2014.PubMed/NCBI View Article : Google Scholar

15 

Pavo N, Raderer M, Hülsmann M, Neuhold S, Adlbrecht C, Strunk G, Goliasch G, Gisslinger H, Steger GG, Hejna M, et al: Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 101:1874–1880. 2015.PubMed/NCBI View Article : Google Scholar

16 

Cho WCS: Circulating MicroRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Front Genet. 2(7)2011.PubMed/NCBI View Article : Google Scholar

17 

Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry C: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 113:E968–E977. 2016.PubMed/NCBI View Article : Google Scholar

18 

Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2(20389)2013.PubMed/NCBI View Article : Google Scholar

19 

Mathivanan S, Ji H and Simpson RJ: Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 73:1907–1920. 2010.PubMed/NCBI View Article : Google Scholar

20 

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996.PubMed/NCBI View Article : Google Scholar

21 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007.PubMed/NCBI View Article : Google Scholar

22 

Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH and 't Hoen PA: Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40:9272–9285. 2012.PubMed/NCBI View Article : Google Scholar

23 

Patel GK, Patton MC, Singh S, Khushman M and Singh AP: Pancreatic cancer exosomes: Shedding off for a meaningful journey. Pancreat Disord Ther. 6(e148)2016.PubMed/NCBI View Article : Google Scholar

24 

Gajos-Michniewicz A, Duechler M and Czyz M: MiRNA in melanoma-derived exosomes. Cancer Lett. 347:29–37. 2014.PubMed/NCBI View Article : Google Scholar

25 

Azmi AS, Bao B and Sarkar FH: Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013.PubMed/NCBI View Article : Google Scholar

26 

Riches A, Campbell E, Borger E and Powis S: Regulation of exosome release from mammary epithelial and breast cancer cells-a new regulatory pathway. Eur J Cancer. 50:1025–1034. 2014.PubMed/NCBI View Article : Google Scholar

27 

Suchorska WM and Lach MS: The role of exosomes in tumor progression and metastasis (review). Oncol Rep. 35:1237–1244. 2016.PubMed/NCBI View Article : Google Scholar

28 

Chen L, Guo P, He Y, Chen Z, Chen L, Luo Y, Qi L, Liu Y, Wu Q, Cui Y, et al: HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis. 9(513)2018.PubMed/NCBI View Article : Google Scholar

29 

Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432:237–250. 2018.PubMed/NCBI View Article : Google Scholar

30 

Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC and Coffey RJ: Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics. 12:343–355. 2013.PubMed/NCBI View Article : Google Scholar

31 

Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et al: Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 26:707–721. 2014.PubMed/NCBI View Article : Google Scholar

32 

Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, et al: Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 111:14888–14893. 2014.PubMed/NCBI View Article : Google Scholar

33 

Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A and Sánchez-Madrid F: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2(282)2011.PubMed/NCBI View Article : Google Scholar

34 

Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W and Klinke DJ II: Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. FEBS J. 285:1033–1050. 2018.PubMed/NCBI View Article : Google Scholar

35 

Dioufa N, Clark AM, Ma B, Beckwitt CH and Wells A: Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Mol Cancer. 16(172)2017.PubMed/NCBI View Article : Google Scholar

36 

Xu Z, Liu X, Wang H, Li J, Dai L, Li J and Dong C: Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene. 666:116–122. 2018.PubMed/NCBI View Article : Google Scholar

37 

Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H and Xu W: Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog. 57:1223–1236. 2018.PubMed/NCBI View Article : Google Scholar

38 

Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, Tong L, Zhang W and Shen Y: Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun. 500:170–176. 2018.PubMed/NCBI View Article : Google Scholar

39 

Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, Zhang J, Zhang W, Shi Y, Liu Y, et al: Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene. 37:2873–2889. 2018.PubMed/NCBI View Article : Google Scholar

40 

Street JM, Koritzinsky EH, Glispie DM, Star RA and Yuen PST: Urine exosomes: An emerging trove of biomarkers. Adv Clin Chem. 78:103–122. 2017.PubMed/NCBI View Article : Google Scholar

41 

Machida T, Tomofuji T, Ekuni D, Maruyama T, Yoneda T, Kawabata Y, Mizuno H, Miyai H, Kunitomo M and Morita M: MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci. 16:21294–21309. 2015.PubMed/NCBI View Article : Google Scholar

42 

Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P and Altevogt P: CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72:1095–1102. 2007.PubMed/NCBI View Article : Google Scholar

43 

Peng P, Yan Y and Keng S: Exosomes in the ascites of ovarian cancer patients: Origin and effects on anti-tumor immunity. Oncol Rep. 25:749–762. 2011.PubMed/NCBI View Article : Google Scholar

44 

Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M and Baba H: Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 119:1159–1167. 2013.PubMed/NCBI View Article : Google Scholar

45 

Wang H, Hou L, Li A, Duan Y, Gao H and Song X: Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014(864894)2014.PubMed/NCBI View Article : Google Scholar

46 

Jain D, Russell RR, Schwartz RG, Panjrath GS and Aronow W: Cardiac complications of cancer therapy: Pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. 19(36)2017.PubMed/NCBI View Article : Google Scholar

47 

Han X, Zhou Y and Liu W: Precision cardio-oncology: Understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 1(31)2017.PubMed/NCBI View Article : Google Scholar

48 

Chang HM, Moudgil R, Scarabelli T, Okwuosa TM and Yeh ETH: Cardiovascular complications of cancer therapy: Best practices in diagnosis, prevention, and management: Part 1. J Am Coll Cardiol. 70:2536–2551. 2017.PubMed/NCBI View Article : Google Scholar

49 

Frères P, Bouznad N, Servais L, Josse C, Wenric S, Poncin A, Thiry J, Moonen M, Oury C, Lancellotti P, et al: Variations of circulating cardiac biomarkers during and after anthracycline-containing chemotherapy in breast cancer patients. BMC Cancer. 18(102)2018.PubMed/NCBI View Article : Google Scholar

50 

Brabletz S and Brabletz T: The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 11:670–677. 2010.PubMed/NCBI View Article : Google Scholar

51 

Beji S, Milano G, Scopece A, Cicchillitti L, Cencioni C, Picozza M, D'Alessandra Y, Pizzolato S, Bertolotti M, Spaltro G, et al: Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death Dis. 8(e3020)2017.PubMed/NCBI View Article : Google Scholar

52 

Damrot J, Nübel T, Epe B, Roos WP, Kaina B and Fritz G: Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol. 149:988–997. 2006.PubMed/NCBI View Article : Google Scholar

53 

Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F and Capogrossi MC: miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 18:1628–1639. 2011.PubMed/NCBI View Article : Google Scholar

54 

Potente M and Dimmeler S: Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle. 7:2117–2122. 2008.PubMed/NCBI View Article : Google Scholar

55 

Hu X, Liu H, Wang Z, Hu Z and Li L: miR-200a attenuated doxorubicin-induced cardiotoxicity through upregulation of Nrf2 in mice. Oxid Med Cell Longev. 2019(1512326)2019.PubMed/NCBI View Article : Google Scholar

56 

Zhang WC, Yang JH, Liu GH, Yang F, Gong JL, Jia MG, Zhang MJ and Zhao LS: miR-34b/c regulates doxorubicin-induced myocardial cell injury through ITCH. Cell Cycle. 18:3263–3274. 2019.PubMed/NCBI View Article : Google Scholar

57 

Vacchi-Suzzi C, Bauer Y, Berridge BR, Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J, Paules RS, et al: Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One. 7(e40395)2012.PubMed/NCBI View Article : Google Scholar

58 

Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, Yang H, Lin QX, Gou DM, Wu SL and Shan ZX: Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep. 7(11879)2017.PubMed/NCBI View Article : Google Scholar

59 

Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, et al: Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 109:639–648. 2011.PubMed/NCBI View Article : Google Scholar

60 

Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L and Pelicci PG: Not all Shc's roads lead to Ras. Trends Biochem Sci. 21:257–261. 1996.PubMed/NCBI

61 

Lacombe J and Zenhausern F: Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol. 109:69–78. 2017.PubMed/NCBI View Article : Google Scholar

62 

Hu Y, Xia W and Hou M: Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. Int J Mol Med. 42:2849–2858. 2018.PubMed/NCBI View Article : Google Scholar

63 

Baban B, Liu JY, Qin X, Weintraub NL and Mozaffari MS: Upregulation of programmed death-1 and its ligand in cardiac injury models: Interaction with GADD153. PLoS One. 10(e0124059)2015.PubMed/NCBI View Article : Google Scholar

64 

Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N and Honjo T: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291:319–322. 2001.PubMed/NCBI View Article : Google Scholar

65 

Tarrio ML, Grabie N, Bu DX, Sharpe AH and Lichtman AH: PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol. 188:4876–4884. 2012.PubMed/NCBI View Article : Google Scholar

66 

Grabie N, Gotsman I, DaCosta R, Pang H, Stavrakis G, Butte MJ, Keir ME, Freeman GJ, Sharpe AH and Lichtman AH: Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation. 116:2062–2071. 2007.PubMed/NCBI View Article : Google Scholar

67 

Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017.PubMed/NCBI View Article : Google Scholar

68 

Ameres SL and Zamore PD: Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 14:475–488. 2013.PubMed/NCBI View Article : Google Scholar

69 

Neilsen CT, Goodall GJ and Bracken CP: IsomiRs-the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28:544–549. 2012.PubMed/NCBI View Article : Google Scholar

70 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011.PubMed/NCBI View Article : Google Scholar

71 

van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA and Olson EN: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 105:13027–13032. 2008.PubMed/NCBI View Article : Google Scholar

72 

Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P, Contaldi C, Saccani Jotti G, Franzone A, Galastri L, et al: Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 63:920–927. 2014.PubMed/NCBI View Article : Google Scholar

73 

Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM and Spinale FG: Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 4:614–619. 2011.PubMed/NCBI View Article : Google Scholar

74 

Jing X, Yang J, Jiang L, Chen J and Wang H: MicroRNA-29b regulates the mitochondria-dependent apoptotic pathway by targeting Bax in doxorubicin cardiotoxicity. Cell Physiol Biochem. 48:692–704. 2018.PubMed/NCBI View Article : Google Scholar

75 

Leger KJ, Leonard D, Nielson D, de Lemos JA, Mammen PPA and Winick NJ: Circulating microRNAs: Potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J Am Heart Assoc. 6(e004653)2017.PubMed/NCBI View Article : Google Scholar

76 

Liu Y, Taylor NE, Lu L, Usa K, Cowley AW Jr, Ferreri NR, Yeo NC and Liang M: Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 55:974–982. 2010.PubMed/NCBI View Article : Google Scholar

77 

Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C and Barsotti A: Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res. 69:736–745. 2006.PubMed/NCBI View Article : Google Scholar

78 

Kizaki K, Ito R, Okada M, Yoshioka K, Uchide T, Temma K, Mutoh K, Uechi M and Hara Y: Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacol Res. 53:341–346. 2006.PubMed/NCBI View Article : Google Scholar

79 

Eken SM, Christersdottir T, Winski G, Sangsuwan T, Jin H, Chernogubova E, Pirault J, Sun C, Simon N, Winter H, et al: MiR-29b mediates the chronic inflammatory response in radiotherapy-induced vascular disease. JACC Basic Transl Sci. 4:72–82. 2019.PubMed/NCBI View Article : Google Scholar

80 

Dinh TK, Fendler W, Chałubińska-Fendler J, Acharya SS, O'Leary C, Deraska PV, D'Andrea AD, Chowdhury D and Kozono D: Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiat Oncol. 11(61)2016.PubMed/NCBI View Article : Google Scholar

81 

Lai L, Chen J, Wang N, Zhu G, Duan X and Ling F: MiRNA-30e mediated cardioprotection of ACE2 in rats with doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 169:69–75. 2017.PubMed/NCBI View Article : Google Scholar

82 

Zhou F, Lu X and Zhang X: Serum miR-30c level predicted cardiotoxicity in non-small cell lung cancer patients treated with bevacizumab. Cardiovasc Toxicol. 18:284–289. 2018.PubMed/NCBI View Article : Google Scholar

83 

Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q and Xiao X: MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 16:14511–14525. 2015.PubMed/NCBI View Article : Google Scholar

84 

Yin C, Salloum FN and Kukreja RC: A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res. 104:572–575. 2009.PubMed/NCBI View Article : Google Scholar

85 

Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES and Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 284:29514–29525. 2009.PubMed/NCBI View Article : Google Scholar

86 

Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ and Sen CK: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 82:21–29. 2009.PubMed/NCBI View Article : Google Scholar

87 

Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456:980–984. 2008.PubMed/NCBI View Article : Google Scholar

88 

Viczenczova C, Szeiffova Bacova B, Egan Benova T, Kura B, Yin C, Weismann P, Kukreja R, Slezak J and Tribulova N: Myocardial connexin-43 and PKC signalling are involved in adaptation of the heart to irradiation-induced injury: Implication of miR-1 and miR-21. Gen Physiol Biophys. 35:215–222. 2016.PubMed/NCBI View Article : Google Scholar

89 

Kopcalic K, Petrovic N, Stanojkovic TP, Stankovic V, Bukumiric Z, Roganovic J, Malisic E and Nikitovic M: Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients: A pilot study. Pathol Res Pract. 215:626–631. 2019.PubMed/NCBI View Article : Google Scholar

90 

Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, Zhou Z, Li L, Zeng Z, Young KH, et al: miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 37:3151–3165. 2018.PubMed/NCBI View Article : Google Scholar

91 

Loot AE and Fleming I: Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: Central role of transient receptor potential C6 channels. J Cardiovasc Pharmacol. 57:140–147. 2011.PubMed/NCBI View Article : Google Scholar

92 

Zhao Y, Samal E and Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436:214–220. 2005.PubMed/NCBI View Article : Google Scholar

93 

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006.PubMed/NCBI View Article : Google Scholar

94 

Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG and Yu XY: Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun. 381:597–601. 2009.PubMed/NCBI View Article : Google Scholar

95 

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 50:377–387. 2009.PubMed/NCBI View Article : Google Scholar

96 

Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S and Zhang C: A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 119:87–95. 2010.PubMed/NCBI View Article : Google Scholar

97 

Nishimura Y, Kondo C, Morikawa Y, Tonomura Y, Torii M, Yamate J and Uehara T: Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats. J Appl Toxicol. 35:173–180. 2015.PubMed/NCBI View Article : Google Scholar

98 

Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z and Yang B: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 120:3045–3052. 2007.PubMed/NCBI View Article : Google Scholar

99 

Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y and Iwai N: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem. 55:1944–1949. 2009.PubMed/NCBI View Article : Google Scholar

100 

Tony H, Yu K and Qiutang Z: MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid Med Cell Longev. 2015(597032)2015.PubMed/NCBI View Article : Google Scholar

101 

Desai VG, C*Kwekel J, Vijay V, Moland CL, Herman EH, Lee T, Han T, Lewis SM, Davis KJ, Muskhelishvili L, et al: Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol Appl Pharmacol. 281:221–229. 2014.PubMed/NCBI View Article : Google Scholar

102 

Wan Q, Xu T, Ding W, Zhang X, Ji X, Yu T, Yu W, Lin Z and Wang J: MiR-499-5p attenuates mitochondrial fission and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front Genet. 9(734)2019.PubMed/NCBI View Article : Google Scholar

103 

Liu X, Cheng Y, Yang J, Xu L and Zhang C: Cell-specific effects of miR-221/222 in vessels: Molecular mechanism and therapeutic application. J Mol Cell Cardiol. 52:245–255. 2012.PubMed/NCBI View Article : Google Scholar

104 

Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K and Thum T: MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 17:405–415. 2015.PubMed/NCBI View Article : Google Scholar

105 

Verjans R, Peters T, Beaumont FJ, van Leeuwen R, van Herwaarden T, Verhesen W, Munts C, Bijnen M, Henkens M, Diez J, et al: MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension. 71:280–288. 2018.PubMed/NCBI View Article : Google Scholar

106 

Su M, Wang J, Wang C, Wang X, Dong W, Qiu W, Wang Y, Zhao X, Zou Y, Song L, et al: MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ. 22:986–999. 2015.PubMed/NCBI View Article : Google Scholar

107 

Esplugas R, Arenas M, Serra N, Bellés M, Bonet M, Gascón M, Vallvé JC and Linares V: Effect of radiotherapy on the expression of cardiovascular disease-related miRNA-146a, -155, -221 and -222 in blood of women with breast cancer. PLoS One. 14(e0217443)2019.PubMed/NCBI View Article : Google Scholar

108 

Tao L, Bei Y, Zhou Y, Xiao J and Li X: Non-coding RNAs in cardiac regeneration. Oncotarget. 6:42613–42622. 2015.PubMed/NCBI View Article : Google Scholar

109 

Feng B and Chakrabarti S: miR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinol. 2012(549875)2012.PubMed/NCBI View Article : Google Scholar

110 

Yin Z, Zhao Y, Li H, Yan M, Zhou L, Chen C and Wang DW: miR-320a mediates doxorubicin-induced cardiotoxicity by targeting VEGF signal pathway. Aging (Albany NY). 8:192–207. 2016.PubMed/NCBI View Article : Google Scholar

111 

Todorova VK, Makhoul I, Wei J and Klimberg VS: Circulating miRNA profiles of doxorubicin-induced cardiotoxicity in breast cancer patients. Ann Clin Lab Sci. 47:115–119. 2017.PubMed/NCBI

112 

Totoń-Żurańska J, Sulicka-Grodzicka J, Seweryn MT, Pitera E, Kapusta P, Konieczny P, Drabik L, Kołton-Wróż M, Chyrchel B, Nowak E, et al: MicroRNA composition of plasma extracellular vesicles: A harbinger of late cardiotoxicity of doxorubicin. Mol Med. 28(156)2022.PubMed/NCBI View Article : Google Scholar

113 

Pillai SS, Pereira DG, Bonsu G, Chaudhry H, Puri N, Lakhani HV, Tirona MT, Sodhi K and Thompson E: Biomarker panel for early screening of trastuzumab-induced cardiotoxicity among breast cancer patients in west virginia. Front Pharmacol. 13(953178)2022.PubMed/NCBI View Article : Google Scholar

114 

Rigaud VOC, Ferreira LRP, Ayub-Ferreira SM, Ávila MS, Brandão SMG, Cruz FD, Santos MHH, Cruz CBBV, Alves MSL, Issa VS, et al: Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget. 8:6994–7002. 2017.PubMed/NCBI View Article : Google Scholar

115 

Gioffré S, Chiesa M, Cardinale DM, Ricci V, Vavassori C, Cipolla CM, Masson S, Sandri MT, Salvatici M, Ciceri F, et al: Circulating MicroRNAs as potential predictors of anthracycline-induced troponin elevation in breast cancer patients: Diverging effects of doxorubicin and epirubicin. J Clin Med. 9(1418)2020.PubMed/NCBI View Article : Google Scholar

116 

Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, et al: A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. Cardiooncology. 8(16)2022.PubMed/NCBI View Article : Google Scholar

117 

Zhang X, Sun Y, Zhang Y, Fang F, Liu J, Xia Y and Liu Y: Cardiac biomarkers for the detection and management of cancer therapy-related cardiovascular toxicity. J Cardiovasc Dev Dis. 9(372)2022.PubMed/NCBI View Article : Google Scholar

118 

Hendrix A and Hume AN: Exosome signaling in mammary gland development and cancer. Int J Dev Biol. 55:879–887. 2011.PubMed/NCBI View Article : Google Scholar

119 

Galindo-Hernandez O, Villegas-Comonfort S, Candanedo F, González-Vázquez MC, Chavez-Ocaña S, Jimenez-Villanueva X, Sierra-Martinez M and Salazar EP: Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients. Arch Med Res. 44:208–214. 2013.PubMed/NCBI View Article : Google Scholar

120 

Webber J, Steadman R, Mason MD, Tabi Z and Clayton A: Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70:9621–9630. 2010.PubMed/NCBI View Article : Google Scholar

121 

Kosgodage US, Mould R, Henley AB, Nunn AV, Guy GW, Thomas EL, Inal JM, Bell JD and Lange S: Cannabidiol (CBD) is a novel inhibitor for exosome and microvesicle (EMV) release in cancer. Front Pharmacol. 9(889)2018.PubMed/NCBI View Article : Google Scholar

122 

Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee B, Lee JM, Lee JC, Jee JG, Bae JS, Kwon TK, et al: Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun. 10(1387)2019.PubMed/NCBI View Article : Google Scholar

123 

Aoki N, Jin-no S, Nakagawa Y, Asai N, Arakawa E, Tamura N, Tamura T and Matsuda T: Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology. 148:3850–3862. 2007.PubMed/NCBI View Article : Google Scholar

124 

Müller G, Schneider M, Biemer-Daub G and Wied S: Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 23:1207–1223. 2011.PubMed/NCBI View Article : Google Scholar

125 

Konoshenko MY, Lekchnov EA, Vlassov AV and Laktionov PP: Isolation of extracellular vesicles: General methodologies and latest trends. Biomed Res Int. 2018(8545347)2018.PubMed/NCBI View Article : Google Scholar

126 

Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M and Hill AF: Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J Extracell Vesicles. 5(32945)2016.PubMed/NCBI View Article : Google Scholar

127 

Ludwig N, Razzo BM, Yerneni SS and Whiteside TL: Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Exp Cell Res. 378:149–157. 2019.PubMed/NCBI View Article : Google Scholar

128 

Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, et al: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 20:332–343. 2018.PubMed/NCBI View Article : Google Scholar

129 

Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, et al: Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the european society of cardiology. Cardiovasc Res. 114:19–34. 2018.PubMed/NCBI View Article : Google Scholar

130 

Ardekani AM and Naeini MM: The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol. 2:161–179. 2010.PubMed/NCBI

131 

Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM and Rogero MM: Circulating microRNA related to cardiometabolic risk factors for metabolic syndrome: A systematic review. Metabolites. 12(1044)2022.PubMed/NCBI View Article : Google Scholar

132 

Tijsen AJ, Pinto YM and Creemers EE: Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res. 93:573–582. 2012.PubMed/NCBI View Article : Google Scholar

133 

Subbaswamy A and Saria S: From development to deployment: Dataset shift, causality, and shift-stable models in health AI. Biostatistics. 21:345–352. 2020.PubMed/NCBI View Article : Google Scholar

134 

Rulten SL, Grose RP, Gatz SA, Jones JL and Cameron AJM: The future of precision oncology. Int J Mol Sci. 24(12613)2023.PubMed/NCBI View Article : Google Scholar

135 

Pellegrini L, Sileno S, D'Agostino M, Foglio E, Florio MC, Guzzanti V, Russo MA, Limana F and Magenta A: MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers (Basel). 12(704)2020.PubMed/NCBI View Article : Google Scholar

136 

Chang WT, Liu CF, Feng YH, Liao CT, Wang JJ, Chen ZC, Lee HC and Shih JY: An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Arch Toxicol. 96:2731–2737. 2022.PubMed/NCBI View Article : Google Scholar

137 

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020.PubMed/NCBI View Article : Google Scholar

138 

Jopling CL: Targeting microRNA-122 to treat hepatitis C virus infection. Viruses. 2:1382–1393. 2010.PubMed/NCBI View Article : Google Scholar

139 

Xu K, Chen C, Wu Y, Wu M and Lin L: Advances in miR-132-based biomarker and therapeutic potential in the cardiovascular system. Front Pharmacol. 12(751487)2021.PubMed/NCBI View Article : Google Scholar

140 

Machida T, Tomofuji T, Maruyama T, Yoneda T, Ekuni D, Azuma T, Miyai H, Mizuno H, Kato H, Tsutsumi K, et al: miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep. 36:2375–2381. 2016.PubMed/NCBI View Article : Google Scholar

141 

Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA and Sonstegard TS: MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics. 16(806)2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Shah V, Panchal V, Shah A, Vyas B, Bhowmik S, Panchal I and Jain P: Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review). Med Int 5: 69, 2025.
APA
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., & Jain, P. (2025). Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review). Medicine International, 5, 69. https://doi.org/10.3892/mi.2025.268
MLA
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., Jain, P."Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review)". Medicine International 5.6 (2025): 69.
Chicago
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., Jain, P."Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review)". Medicine International 5, no. 6 (2025): 69. https://doi.org/10.3892/mi.2025.268
Copy and paste a formatted citation
x
Spandidos Publications style
Shah V, Panchal V, Shah A, Vyas B, Bhowmik S, Panchal I and Jain P: Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review). Med Int 5: 69, 2025.
APA
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., & Jain, P. (2025). Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review). Medicine International, 5, 69. https://doi.org/10.3892/mi.2025.268
MLA
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., Jain, P."Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review)". Medicine International 5.6 (2025): 69.
Chicago
Shah, V., Panchal, V., Shah, A., Vyas, B., Bhowmik, S., Panchal, I., Jain, P."Exosomal miRNAs as biomarkers in predicting chemotherapy‑induced cardiotoxicity in patients with cancer (Review)". Medicine International 5, no. 6 (2025): 69. https://doi.org/10.3892/mi.2025.268
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team