Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
January-February 2026 Volume 6 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-February 2026 Volume 6 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Artificial intelligence in modern clinical practice (Review)

  • Authors:
    • Krupa Sara Thomas
    • Sudeep Edpuganti
    • Divina Mariya Puthooran
    • Angela Thomas
    • Angel Joy
    • Shifna Latheef
  • View Affiliations / Copyright

    Affiliations: Department of Medicine, Faculty of Medicine, Tbilisi State Medical University, Tbilisi 0177, Georgia
    Copyright: © Thomas et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 5
    |
    Published online on: December 9, 2025
       https://doi.org/10.3892/mi.2025.289
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Since its inception as rule‑based programs, artificial intelligence (AI) has developed into machine learning and deep learning systems that utilize the enormous volumes of clinical data currently accessible. The aim of the present review was to discuss the role of AI in modern clinical practice and to highlight the opportunities and challenges that lie ahead by combining the results of recent research. AI tools provide physicians with decision support and prediction models, directs robotic procedures and surgical planning, supports radiologists, pathologists, dermatologists and ophthalmologists with image analysis, and aids in the delivery of more individualized care in cardiology and precision medicine. These developments are boosting precision, optimizing daily tasks and providing patients with more individualized treatment. In practice, this could include imaging systems that prioritize patients who are most at risk or prediction technologies that help physicians allocate resources and reduce unnecessary workload. However, there are still critical obstacles to overcome. The biases of the training data may be reflected in the algorithms, which could exacerbate already‑existing disparities. Since many models operate as ‘black boxes’, it can be challenging to understand their logic, which raises questions about accountability, ethics and trust. Clinical standards and regulations are still lagging behind technology, and incorporating AI into busy healthcare systems can be difficult and costly. Achieving its promise will require careful implementation, rigorous validation and sustained collaboration among clinicians, data scientists, engineers, ethicists and policymakers for safe adoption in clinical practice.
View Figures
View References

1 

Rojas-Carabali W, Agrawal R, Gutierrez-Sinisterra L, Baxter SL, Cifuentes-González C, Wei YC, Abisheganaden J, Kannapiran P, Wong S, Lee B, et al: Natural language processing in medicine and ophthalmology: A review for the 21st-century clinician. Asia Pac J Ophthalmol (Phila). 13(100084)2024.PubMed/NCBI View Article : Google Scholar

2 

Hirani R, Noruzi K, Khuram H, Hussaini AS, Aifuwa EI, Ely KE, Lewis JM, Gabr AE, Smiley A, Tiwari RK and Etienne M: Artificial intelligence and healthcare: A journey through history, present innovations, and future possibilities. Life (Basel). 14(557)2024.PubMed/NCBI View Article : Google Scholar

3 

Aamir A, Iqbal A, Jawed F, Ashfaque F, Hafsa H, Anas Z, Oduoye MO, Basit A, Ahmed S, Abdul Rauf S, et al: Exploring the current and prospective role of artificial intelligence in disease diagnosis. Ann Med Surg (Lond). 86:943–949. 2024.PubMed/NCBI View Article : Google Scholar

4 

Bajwa J, Munir U, Nori A and Williams B: Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 8:e188–e194. 2021.PubMed/NCBI View Article : Google Scholar

5 

Poterucha TJ, Jing L, Ricart RP, Adjei-Mosi M, Finer J, Hartzel D, Kelsey C, Long A, Rocha D, Ruhl JA, et al: Detecting structural heart disease from electrocardiograms using AI. Nature. 644:221–230. 2025.PubMed/NCBI View Article : Google Scholar

6 

Bhandari A: Revolutionizing radiology with artificial intelligence. Cureus. 16(e72646)2024.PubMed/NCBI View Article : Google Scholar

7 

Krishna NK, RS A and K S: Artificial intelligence in radiology: Augmentation, not replacement. Cureus. 17(e86247)2025.PubMed/NCBI View Article : Google Scholar

8 

Stafie CS, Sufaru IG, Ghiciuc CM, Stafie II, Sufaru EC, Solomon SM and Hancianu M: Exploring the intersection of artificial intelligence and clinical healthcare: A multidisciplinary review. Diagnostics (Basel). 13(1995)2023.PubMed/NCBI View Article : Google Scholar

9 

Langs G, Röhrich S, Hofmanninger J, Prayer F, Pan J, Herold C and Prosch H: Machine learning: From radiomics to discovery and routine. Radiologe. 58 (Suppl 1):S1–S6. 2018.PubMed/NCBI View Article : Google Scholar

10 

Li X, Shen L, Xie X, Huang S, Xie Z, Hong X and Yu J: Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif Intell Med. 103(101744)2020.PubMed/NCBI View Article : Google Scholar

11 

Maiter A, Hocking K, Matthews S, Taylor J, Sharkey M, Metherall P, Alabed S, Dwivedi K, Shahin Y, Anderson E, et al: Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population. BMJ Open. 13(e077348)2023.PubMed/NCBI View Article : Google Scholar

12 

Wang S and Summers RM: Machine learning and radiology. Med Image Anal. 16:933–951. 2012.PubMed/NCBI View Article : Google Scholar

13 

Wang J, Wang T, Han R, Shi D and Chen B: Artificial intelligence in cancer pathology: Applications, challenges, and future directions. CytoJournal. 22(45)2025.PubMed/NCBI View Article : Google Scholar

14 

Zhu M, Sali R, Baba F, Khasawneh H, Ryndin M, Leveillee RJ, Hurwitz MD, Lui K, Dixon C and Zhang DY: Artificial intelligence in pathologic diagnosis, prognosis and prediction of prostate cancer. Am J Clin Exp Urol. 12:200–215. 2024.PubMed/NCBI View Article : Google Scholar

15 

Bera K, Schalper KA, Rimm DL, Velcheti V and Madabhushi A: Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 16:703–715. 2019.PubMed/NCBI View Article : Google Scholar

16 

Ma Y, Jamdade S, Konduri L and Sailem H: AI in histopathology explorer for comprehensive analysis of the evolving AI landscape in histopathology. NPJ Digit Med. 8(156)2025.PubMed/NCBI View Article : Google Scholar

17 

Jeong JJ, Tariq A, Adejumo T, Trivedi H, Gichoya JW and Banerjee I: Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation. J Digit Imaging. 35:137–152. 2022.PubMed/NCBI View Article : Google Scholar

18 

Skandarani Y, Jodoin PM and Lalande A: GANs for medical image synthesis: An empirical study. J Imaging. 9(69)2023.PubMed/NCBI View Article : Google Scholar

19 

Behara K, Bhero E and Agee JT: AI in dermatology: A comprehensive review into skin cancer detection. PeerJ Comput Sci. 10(e2530)2024.PubMed/NCBI View Article : Google Scholar

20 

Alotaibi A and AlSaeed D: Skin cancer detection using transfer learning and deep attention mechanisms. Diagnostics (Basel). 15(99)2025.PubMed/NCBI View Article : Google Scholar

21 

Arshad M, Khan MA, Almujally NA, Alasiry A, Marzougui M and Nam Y: Multiclass skin lesion classification and localization from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence. BMC Med Inform Decis Mak. 25(215)2025.PubMed/NCBI View Article : Google Scholar

22 

Han SS, Park I, Eun Chang S, Lim W, Kim MS, Park GH, Chae JB, Huh CH and Na JI: Augmented intelligence dermatology: Deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J Invest Dermatol. 140:1753–1761. 2020.PubMed/NCBI View Article : Google Scholar

23 

Wei ML, Tada M, So A and Torres R: Artificial intelligence and skin cancer. Front Med (Lausanne). 11(1331895)2024.PubMed/NCBI View Article : Google Scholar

24 

Jeong HK, Park C, Henao R and Kheterpal M: Deep learning in dermatology: A systematic review of current approaches, outcomes, and limitations. JID Innov. 3(100150)2022.PubMed/NCBI View Article : Google Scholar

25 

Mevorach L, Farcomeni A, Pellacani G and Cantisani C: A comparison of skin lesions' diagnoses between AI-based image classification, an expert dermatologist, and a non-expert. Diagnostics (Basel). 15(1115)2025.PubMed/NCBI View Article : Google Scholar

26 

Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B, Haferkamp S, Schadendorf D, Holland-Letz T, et al: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 113:47–54. 2019.PubMed/NCBI View Article : Google Scholar

27 

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM and Thrun S: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118. 2017.PubMed/NCBI View Article : Google Scholar

28 

Lalmalani RM, Lim CXY and Oh CC: Artificial intelligence in dermatopathology: A systematic review. Clin Exp Dermatol. 50:251–259. 2025.PubMed/NCBI View Article : Google Scholar

29 

Olawade DB, Weerasinghe K, Mathugamage MDDE, Odetayo A, Aderinto N, Teke J and Boussios S: Enhancing ophthalmic diagnosis and treatment with artificial intelligence. Medicina (Kaunas). 61(433)2025.PubMed/NCBI View Article : Google Scholar

30 

Goldhagen BE and Al-Khersan H: Diving deep into deep learning: An update on artificial intelligence in retina. Curr Ophthalmol Rep. 8:121–128. 2020.PubMed/NCBI View Article : Google Scholar

31 

Abràmoff MD, Lavin PT, Birch M, Shah N and Folk JC: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 1(39)2018.PubMed/NCBI View Article : Google Scholar

32 

Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, et al: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 15(e1002686)2018.PubMed/NCBI View Article : Google Scholar

33 

Hashim HT, Alhatemi AQM, Daraghma M, Ali HT, Khan MA, Sulaiman FA, Ali ZH, Sahib MA, Al-Obaidi AD and Al-Obaidi A: Artificial intelligence versus radiologists in detecting early-stage breast cancer from mammograms: A meta-analysis of paradigm shifts. Pol J Radiol. 90:e1–e8. 2025.PubMed/NCBI View Article : Google Scholar

34 

Komatsu M, Teraya N, Natsume T, Harada N, Takeda K and Hamamoto R: Clinical application of artificial intelligence in ultrasound imaging for oncology. JMA J. 8:18–25. 2025.PubMed/NCBI View Article : Google Scholar

35 

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya A, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, et al: Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ. 23(689)2023.PubMed/NCBI View Article : Google Scholar

36 

Sjövall F, Lanckohr C and Bracht H: What's new in therapeutic drug monitoring of antimicrobials? Intensive Care Med. 49:857–859. 2023.PubMed/NCBI View Article : Google Scholar

37 

Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A, Overbeek J and Stevens RL: Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Front Med (Lausanne). 10(1086097)2023.PubMed/NCBI View Article : Google Scholar

38 

Han K, Cao P, Wang Y, Xie F, Ma J, Yu M, Wang J, Xu Y, Zhang Y and Wan J: A review of approaches for predicting drug-drug interactions based on machine learning. Front Pharmacol. 12(814858)2022.PubMed/NCBI View Article : Google Scholar

39 

Yuan S, Yang Z, Li J, Wu C and Liu S: AI-powered early warning systems for clinical deterioration significantly improve patient outcomes: A meta-analysis. BMC Med Inform Decis Mak. 25(203)2025.PubMed/NCBI View Article : Google Scholar

40 

Pimentel MAF, Redfern OC, Malycha J, Meredith P, Prytherch D, Briggs J, Young JD, Clifton DA, Tarassenko L and Watkinson PJ: Detecting deteriorating patients in the hospital: Development and validation of a novel scoring system. Am J Respir Crit Care Med. 204:44–52. 2021.PubMed/NCBI View Article : Google Scholar

41 

Ye J, Woods D, Jordan N and Starren J: The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support. AMIA Jt Summits Transl Sci Proc. 2024:459–467. 2024.PubMed/NCBI

42 

Haug CJ and Drazen JM: Artificial intelligence and machine learning in clinical medicine. N Engl J Med. 388:1201–1208. 2023.PubMed/NCBI View Article : Google Scholar

43 

Abubaker Bagabir S, Ibrahim NK, Abubaker Bagabir H and Hashem Ateeq R: Covid-19 and artificial intelligence: Genome sequencing, drug development and vaccine discovery. J Infect Public Health. 15:289–296. 2022.PubMed/NCBI View Article : Google Scholar

44 

Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A and Troyanskaya OG: Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 19:1454–1462. 2016.PubMed/NCBI View Article : Google Scholar

45 

Tran TTV, Surya Wibowo A, Tayara H and Chong KT: Artificial intelligence in drug toxicity prediction: Recent advances, challenges, and future perspectives. J Chem Inf Model. 63:2628–2643. 2023.PubMed/NCBI View Article : Google Scholar

46 

Singh DP and Kaushik B: A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques. Chem Biol Drug Des. 101:175–194. 2023.PubMed/NCBI View Article : Google Scholar

47 

Ansari MS, Alok AK, Jain D, Rana S, Gupta S, Salwan R and Venkatesh S: Predictive model based on health data analysis for risk of readmission in disease-specific cohorts. Perspect Health Inf Manag. 18(Spring)(1j)2021.PubMed/NCBI

48 

Crossnohere NL, Elsaid M, Paskett J, Bose-Brill S and Bridges JFP: Guidelines for artificial intelligence in medicine: Literature review and content analysis of frameworks. J Med Internet Res. 24(e36823)2022.PubMed/NCBI View Article : Google Scholar

49 

Barmaz Y and Ménard T: Bayesian modeling for the detection of adverse events underreporting in clinical trials. Drug Saf. 44:949–955. 2021.PubMed/NCBI View Article : Google Scholar

50 

Wang Y, Coiera E and Magrabi F: Can unified medical language system-based semantic representation improve automated identification of patient safety incident reports by type and severity? J Am Med Inform Assoc. 27:1502–1509. 2020.PubMed/NCBI View Article : Google Scholar

51 

De Micco F, Di Palma G, Ferorelli D, De Benedictis A, Tomassini L, Tambone V, Cingolani M and Scendoni R: Artificial intelligence in healthcare: Transforming patient safety with intelligent systems-A systematic review. Front Med. 11(1522554)2025.PubMed/NCBI View Article : Google Scholar

52 

Corny J, Rajkumar A, Martin O, Dode X, Lajonchère JP, Billuart O, Bézie Y and Buronfosse A: A machine learning-based clinical decision support system to identify prescriptions with a high risk of medication error. J Am Med Inform Assoc. 27:1688–1694. 2020.PubMed/NCBI View Article : Google Scholar

53 

Zheng Y, Rowell B, Chen Q, Kim JY, Kontar RA, Yang XJ and Lester CA: Designing human-centered AI to prevent medication dispensing errors: Focus group study with pharmacists. JMIR Form Res. 7(e51921)2023.PubMed/NCBI View Article : Google Scholar

54 

Gan TRX, Tan LWJ, Egermark M, Truong ATL, Kumar K, Tan SB, Tang S, Blasiak A, Goh BC, Ngiam KY and Ho D: AI-assisted warfarin dose optimisation with CURATE.AI for clinical impact: Retrospective data analysis. Bioeng Transl Med. 10(e10757)2025.PubMed/NCBI View Article : Google Scholar

55 

Tan BKJ, Teo CB, Tadeo X, Peng S, Soh HPL, Du SX, Luo VWY, Bandla A, Sundar R, Ho D, Kee TW and Blasia A: Personalised, rational, efficacy-driven cancer drug dosing via an artificial intelligence system (PRECISE): A protocol for the PRECISE CURATE.AI pilot clinical trial. Front Digit Health. 3(635524)2021.PubMed/NCBI View Article : Google Scholar

56 

Wah JNK: Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation. J Robot Surg. 19(47)2025.PubMed/NCBI View Article : Google Scholar

57 

Hashimoto DA, Rosman G, Rus D and Meireles OR: Artificial intelligence in surgery: Promises and perils. Ann Surg. 268:70–76. 2018.PubMed/NCBI View Article : Google Scholar

58 

Cizmic A, Mitra AT, Preukschas AA, Kemper M, Melling NT, Mann O, Markar S, Hackert T and Nickel F: Artificial intelligence for intraoperative video analysis in robotic-assisted esophagectomy. Surg Endosc. 39:2774–2783. 2025.PubMed/NCBI View Article : Google Scholar

59 

Esposito C, Masieri L, Di Mento C, Cerulo M, Del Conte F, Coppola V, Esposito G, Tedesco F, Chiodi A, Carraturo F, et al: Seven years of pediatric robotic-assisted surgery: insights from 105 procedures. J Robot Surg. 19(157)2025.PubMed/NCBI View Article : Google Scholar

60 

Xiao X, Wang X, Meng B, Pan X and Zhao H: Comparison of robotic AI-assisted and manual pedicle screw fixation for treating thoracolumbar fractures: A retrospective controlled trial. Front Bioeng Biotechnol. 13(1491775)2025.PubMed/NCBI View Article : Google Scholar

61 

Guni A, Varma P, Zhang J, Fehervari M and Ashrafian H: Artificial intelligence in surgery: The future is now. Eur Surg Res: Jan 22, 2024 (Epub ahead of print).

62 

Reismann J, Romualdi A, Kiss N, Minderjahn MI, Kallarackal J, Schad M and Reismann M: Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach. PLoS One. 14(e0222030)2019.PubMed/NCBI View Article : Google Scholar

63 

El Hechi MW, Maurer LR, Levine J, Zhuo D, El Moheb M, Velmahos GC, Dunn J, Bertsimas D and Kaafarani HM: Validation of the artificial intelligence-based predictive optimal trees in emergency surgery risk (POTTER) calculator in emergency general surgery and emergency laparotomy patients. J Am Coll Surg. 232:912–919.e1. 2021.PubMed/NCBI View Article : Google Scholar

64 

Abbasi N and Hussain HK: Integration of artificial intelligence and smart technology: AI-driven robotics in surgery: Precision and efficiency. Journal of Artificial Intelligence General Science (JAIGS) 5: 381-390. 2024. https://doi.org/10.60087/jaigs.v5i1.207.

65 

Urrea C, Garcia-Garcia Y, Kern J and Rodriguez-Guillen R: Neuro-visual adaptive control for precision in robot-assisted surgery. Technologies. 13(135)2025.

66 

Zhou XY, Guo Y, Shen M and Yang GZ: Application of artificial intelligence in surgery. Front Med. 14:417–430. 2020.PubMed/NCBI View Article : Google Scholar

67 

Rank N, Pfahringer B, Kempfert J, Stamm C, Kühne T, Schoenrath F, Falk V, Eickhoff C and Meyer A: Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit Med. 3(139)2020.PubMed/NCBI View Article : Google Scholar

68 

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L and Muller P: Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks. Int J Comput Assist Radiol Surg. 14:1611–1617. 2019.PubMed/NCBI View Article : Google Scholar

69 

Han J, Davids J, Ashrafian H, Darzi A, Elson DS and Sodergren M: A systematic review of robotic surgery: From supervised paradigms to fully autonomous robotic approaches. Int J Med Robot. 18(e2358)2022.PubMed/NCBI View Article : Google Scholar

70 

Wang J, Zhang L, Huang Y, Zhao J and Bella F: Safety of autonomous vehicles. J Adv Transp: Oct 6, 2020 (Epub ahead of print).

71 

Connor MJ, Dasgupta P, Ahmed HU and Raza A: Autonomous surgery in the era of robotic urology: Friend or foe of the future surgeon? Nat Rev Urol. 17:643–649. 2020.PubMed/NCBI View Article : Google Scholar

72 

Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, Navarrete-Welton A, Sankaranarayanan G, Brunt LM, Okrainec A and Alseidi A: Artificial intelligence for intraoperative guidance: Using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 276:363–369. 2022.PubMed/NCBI View Article : Google Scholar

73 

Garcia Nespolo R, Yi D, Cole E, Valikodath N, Luciano C and Leiderman YI: Evaluation of artificial intelligence-based intraoperative guidance tools for phacoemulsification cataract surgery. JAMA Ophthalmol. 140:170–177. 2022.PubMed/NCBI View Article : Google Scholar

74 

Li A, Javidan AP, Namazi B, Madani A and Forbes TL: Development of an artificial intelligence tool for intraoperative guidance during endovascular abdominal aortic aneurysm repair. Ann Vasc Surg. 99:96–104. 2023.PubMed/NCBI View Article : Google Scholar

75 

Patel RJ, Lee AM, Hallsten J, Lane JS, Barleben AR and Malas MB: Use of surgical augmented intelligence maps can reduce radiation and improve safety in the endovascular treatment of complex aortic aneurysms. J Vasc Surg. 77:982–990.e2. 2023.PubMed/NCBI View Article : Google Scholar

76 

Choi JH, Diab A, Tsay K, Kuruvilla D, Ganam S, Saad A, Docimo S Jr, Sujka JA and DuCoin CG: The evidence behind robot-assisted abdominopelvic surgery: A meta-analysis of randomized controlled trials. Surg Endosc. 38:2371–2382. 2024.PubMed/NCBI View Article : Google Scholar

77 

Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G, Gao X, Hao L, Lou Z and Zhang W: Machine learning-based random forest predicts anastomotic leakage after anterior resection for rectal cancer. J Gastrointest Oncol. 12:921–932. 2021.PubMed/NCBI View Article : Google Scholar

78 

Azimi K, Honaker MD, Chalil Madathil S and Khasawneh MT: Post-operative infection prediction and risk factor analysis in colorectal surgery using data mining techniques: A pilot study. Surg Infect (Larchmt). 21:784–792. 2020.PubMed/NCBI View Article : Google Scholar

79 

Shahi A, Bajaj G, GolharSathawane R, Mendhe D and Dogra A: Integrating robot-assisted surgery and AI for improved healthcare outcomes. In: Proc 2024 Ninth Int Conf Sci Technol Eng Math (ICONSTEM). IEEE, Piscataway, NY, pp1-5, 2024.

80 

Lai TJ, Heggie R, Kamaruzaman HF, Bouttell J and Boyd K: Economic evaluations of robotic-assisted surgery: methods, challenges and opportunities. Appl Health Econ Health Policy. 23:35–49. 2025.PubMed/NCBI View Article : Google Scholar

81 

Salam A, Wireko AA, Jiffry R, Ng JC, Patel H, Zahid MJ, Mehta A, Huang H, Abdul-Rahman T and Isik A: The impact of natural disasters on healthcare and surgical services in low- and middle-income countries. Ann Med Surg (Lond). 85:3774–3777. 2023.PubMed/NCBI View Article : Google Scholar

82 

Bellos T, Manolitsis I, Katsimperis S, Juliebø-Jones P, Feretzakis G, Mitsogiannis I, Varkarakis I, Somani BK and Tzelves L: Artificial intelligence in urologic robotic oncologic surgery: A narrative review. Cancers (Basel). 16(1775)2024.PubMed/NCBI View Article : Google Scholar

83 

Asciak L, Kyeremeh J, Luo X, Kazakidi A, Connolly P, Picard F, O'Neill K, Tsaftaris SA, Stewart GD and Shu W: Digital twin assisted surgery, concept, opportunities, and challenges. NPJ Digit Med. 8(32)2025.PubMed/NCBI View Article : Google Scholar

84 

Knudsen JE, Ghaffar U, Ma R and Hung AJ: Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 18(102)2024.PubMed/NCBI View Article : Google Scholar

85 

Wah JNK: The rise of robotics and AI-assisted surgery in modern healthcare. J Robot Surg. 19(311)2025.PubMed/NCBI View Article : Google Scholar

86 

Asada T, Simon CZ, Lu AZ, Adida S, Dupont M, Parel PM, Zhang J, Bhargava S, Morse KW, Dowdell JE, et al: Robot-navigated pedicle screw insertion can reduce intraoperative blood loss and length of hospital stay: Analysis of 1,633 patients utilizing propensity score matching. Spine J. 24:118–124. 2024.PubMed/NCBI View Article : Google Scholar

87 

Battaglia E, Boehm J, Zheng Y, Jamieson AR, Gahan J and Majewicz Fey A: Rethinking autonomous surgery: Focusing on enhancement over autonomy. Eur Urol Focus. 7:696–705. 2021.PubMed/NCBI View Article : Google Scholar

88 

Nkenguye W: Artificial intelligence in surgical care for low- and middle-income countries: Challenges, opportunities, and the path forward. Surg Pract Sci. 22(100290)2025.PubMed/NCBI View Article : Google Scholar

89 

Chepkoech M, Malila B and Mwangama J: Telementoring for surgical training in low-resource settings: A systematic review of current systems and the emerging role of 5G, AI, and XR. J Robot Surg. 19(525)2025.PubMed/NCBI View Article : Google Scholar

90 

Takeuchi M and Kitagawa Y: Artificial intelligence and surgery. Ann Gastroenterol Surg. 8:4–5. 2023.PubMed/NCBI View Article : Google Scholar

91 

Min Z, Lai J and Ren H: Innovating robot-assisted surgery through large vision models. Nat Rev Electr Eng. 2:350–363. 2025.

92 

Lee S, Chu Y, Ryu J, Park YJ, Yang S and Koh SB: Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: A systematic review and meta-analysis. Yonsei Med J. 63 (Suppl):S93–S107. 2022.PubMed/NCBI View Article : Google Scholar

93 

Patel PM, Green M, Tram J, Wang E, Murphy MZ, Abd-Elsayed A and Chakravarthy K: Beyond the pain management clinic: The role of AI-integrated remote patient monitoring in chronic disease management-a narrative review. J Pain Res. 17:4223–4237. 2024.PubMed/NCBI View Article : Google Scholar

94 

Siranart N, Deepan N, Techasatian W, Phutinart S, Sowalertrat W, Kaewkanha P, Pajareya P, Tokavanich N, Prasitlumkum N and Chokesuwattanaskul R: Diagnostic accuracy of artificial intelligence in detecting left ventricular hypertrophy by electrocardiograph: A systematic review and meta-analysis. Sci Rep. 14(15882)2024.PubMed/NCBI View Article : Google Scholar

95 

He B, Kwan AC, Cho JH, Yuan N, Pollick C, Shiota T, Ebinger J, Bello NA, Wei J, Josan K, et al: Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 616:520–524. 2023.PubMed/NCBI View Article : Google Scholar

96 

Jonas R, Earls J, Marques H, Chang HJ, Choi JH, Doh JH, Her AY, Koo BK, Nam CW, Park HB, et al: Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart. 8(e001832)2021.PubMed/NCBI View Article : Google Scholar

97 

Cho Y, Yoon M, Kim J, Lee JH, Oh IY, Lee CJ, Kang SM and Choi DJ: Artificial intelligence-based electrocardiographic biomarker for outcome prediction in patients with acute heart failure: prospective cohort study. J Med Internet Res. 26(e52139)2024.PubMed/NCBI View Article : Google Scholar

98 

Maille B, Wilkin M, Million M, Resseguier N, Franceschi F, Koutbi-Franceschi L, Hourdain J, Martinez E, Zabern M, Gardella C, et al: Smartwatch electrocardiogram and artificial intelligence for assessing cardiac-rhythm safety of drug therapy in the COVID-19 pandemic. The QT-logs study. Int J Cardiol. 331:333–339. 2021.PubMed/NCBI View Article : Google Scholar

99 

Van der Harst P and Nathoe H: Transforming cardiology with AI: The eko CORE 500 digital stethoscope. Neth Heart J. 33:141–142. 2025.PubMed/NCBI View Article : Google Scholar

100 

Backhaus SJ, Aldehayat H, Kowallick JT, Evertz R, Lange T, Kutty S, Bigalke B, Gutberlet M, Hasenfuß G, Thiele H, et al: Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction. Sci Rep. 12(12220)2022.PubMed/NCBI View Article : Google Scholar

101 

Kolk MZH, Ruipérez-Campillo S, Wilde AAM, Knops RE, Narayan SM and Tjong FVY: Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Heart Rhythm. 22:756–766. 2025.PubMed/NCBI View Article : Google Scholar

102 

Kim Y, Yoon HJ, Suh J, Kang SH, Lim YH, Jang DH, Park JH, Shin ES, Bae JW, Lee JH, et al: Artificial intelligence-based fully automated quantitative coronary angiography vs optical coherence tomography-guided PCI: The FLASH trial. JACC Cardiovasc Interv. 18:187–197. 2024.PubMed/NCBI View Article : Google Scholar

103 

Lee H, Kim HJ, Chang HW, Kim DJ, Mo J and Kim JE: Development of a system to support warfarin dose decisions using deep neural networks. Sci Rep. 11(14745)2021.PubMed/NCBI View Article : Google Scholar

104 

Gautam N, Ghanta SN, Mueller J, Mansour M, Chen Z, Puente C, Ha YM, Tarun T, Dhar G, Sivakumar K, et al: Artificial intelligence, wearables and remote monitoring for heart failure: Current and future applications. Diagnostics. 12(2964)2022.PubMed/NCBI View Article : Google Scholar

105 

Cheema BS, Walter J, Narang A and Thomas JD: Artificial intelligence-enabled POCUS in the COVID-19 ICU: A New Spin on Cardiac Ultrasound. JACC Case Rep. 3:258–263. 2021.PubMed/NCBI View Article : Google Scholar

106 

Deisenhofer I, Albenque JP, Busch S, Gitenay E, Mountantonakis SE, Roux A, Horvilleur J, Bakouboula B, Oza S, Abbey S, et al: Artificial intelligence for individualized treatment of persistent atrial fibrillation: A randomized controlled trial. Nat Med. 31:1286–1293. 2025.PubMed/NCBI View Article : Google Scholar

107 

U.S. Food, Drug Administration. 510(k) premarket notification: EchoGo Core (K191171). Food and Drug Administration, 2019. Silver Spring, Maryland. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K191171.

108 

Mahdavi M, Thomas N, Flood C, Stewart-Lord A, Baillie L, Grisan E, Callaghan P, Panayotova R, Hothi SS, Griffith V, et al: Evaluating artificial intelligence-driven stress echocardiography analysis system (EASE study): A mixed method study. BMJ Open. 14(e079617)2024.PubMed/NCBI View Article : Google Scholar

109 

Shapiro J, Reichard A and Muck PE: New diagnostic tools for pulmonary embolism detection. Methodist Debakey Cardiovasc J. 20:5–12. 2024.PubMed/NCBI View Article : Google Scholar

110 

U.S. Food, Drug Administration. Artificial Intelligence-Enabled Medical Devices. Food and Drug Administration, 2025. Silver Spring, Maryland. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-enabled-medical-devices.

111 

Laletin V, Ayobi A, Chang PD, Chow DS, Soun JE, Junn JC, Scudeler M, Quenet S, Tassy M, Avare C, et al: Diagnostic performance of a deep learning-powered application for aortic dissection triage prioritization and classification. Diagnostics (Basel). 14(1877)2024.PubMed/NCBI View Article : Google Scholar

112 

Chinnaiyan KM, Akasaka T, Amano T, Bax JJ, Blanke P, De Bruyne B, Kawasaki T, Leipsic J, Matsuo H, Morino Y, et al: Rationale, design and goals of the HeartFlow assessing diagnostic value of non-invasive FFRCT in Coronary Care (ADVANCE) registry. J Cardiovasc Comput Tomogr. 11:62–67. 2017.PubMed/NCBI View Article : Google Scholar

113 

El Arab RA, Abu-Mahfouz MS, Abuadas FH, Alzghoul H, Almari M, Ghannam A and Seweid MM: Bridging the gap: From AI success in clinical trials to real-world healthcare implementation-a narrative review. Healthcare (Basel). 13(701)2025.PubMed/NCBI View Article : Google Scholar

114 

Jeong J, Kim S, Pan L, Hwang D, Kim D, Choi J, Kwon Y, Yi P, Jeong J and Yoo SJ: Reducing the workload of medical diagnosis through artificial intelligence: A narrative review. Medicine (Baltimore). 104(e41470)2025.PubMed/NCBI View Article : Google Scholar

115 

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J and Snowdon JL: Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 14:86–93. 2021.PubMed/NCBI View Article : Google Scholar

116 

Jundaeng J, Chamchong R and Nithikathkul C: Artificial intelligence-powered innovations in periodontal diagnosis: A new era in dental healthcare. Front Med Technol. 6(1469852)2025.PubMed/NCBI View Article : Google Scholar

117 

Daemi A, Kalami S, Tahiraga RG, Ghanbarpour O, Barghani MRR, Hooshiar MH, Özbolat G and Yönden Z: Revolutionizing personalized medicine using artificial intelligence: A meta-analysis of predictive diagnostics and their impacts on drug development. Clin Exp Med. 25(255)2025.PubMed/NCBI View Article : Google Scholar

118 

Wei Q, Pan S, Liu X, Hong M, Nong C and Zhang W: The integration of AI in nursing: Addressing current applications, challenges, and future directions. Front Med (Lausanne). 12(1545420)2025.PubMed/NCBI View Article : Google Scholar

119 

Ni Y and Jia F: A scoping review of AI-driven digital interventions in mental health care: Mapping applications across screening, support, monitoring, prevention, and clinical education. Healthcare (Basel). 13(1205)2025.PubMed/NCBI View Article : Google Scholar

120 

Bhuyan SS, Sateesh V, Mukul N, Galvankar A, Mahmood A, Nauman M, Rai A, Bordoloi K, Basu U and Samuel J: Generative artificial intelligence use in healthcare: Opportunities for clinical excellence and administrative efficiency. J Med Syst. 49(10)2025.PubMed/NCBI View Article : Google Scholar

121 

Villanueva-Miranda I, Xiao G and Xie Y: Artificial intelligence in early warning systems for infectious disease surveillance: A systematic review. Front Public Health. 13(1609615)2025.PubMed/NCBI View Article : Google Scholar

122 

Lavoie-Gagne O, Woo JJ, Williams RJ III, Nwachukwu BU, Kunze KN and Ramkumar PN: Artificial intelligence as a tool to mitigate administrative burden, optimize billing, reduce insurance- and credentialing-related expenses, and improve quality assurance within health care systems. Arthroscopy. 41:3270–3275. 2025.PubMed/NCBI View Article : Google Scholar

123 

Kakatum Rao S, Gupta P, Mohammed A, Zakhmi K, Ranjan Mohanty M and Prasad Jalaja P: The impact of artificial intelligence on financial systems in healthcare: A systematic review of economic evaluation studies. Cureus. 17(e86279)2025.PubMed/NCBI View Article : Google Scholar

124 

Mittelstadt BD and Floridi L: The ethics of big data: Current and foreseeable issues in biomedical contexts. Sci Eng Ethics. 22:303–341. 2016.PubMed/NCBI View Article : Google Scholar

125 

Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, Bai Y, Tinoco A, Ding Q and Hu X: Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients. PLoS One. 9(e110274)2014.PubMed/NCBI View Article : Google Scholar

126 

Rajkomar A, Hardt M, Howell MD, Corrado G and Chin MH: . Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 169:866–872. 2018.PubMed/NCBI View Article : Google Scholar

127 

Char DS, Shah NH and Magnus D: Implementing machine learning in health care-addressing ethical challenges. N Engl J Med. 378:981–983. 2018.PubMed/NCBI View Article : Google Scholar

128 

Božić V: Artificial Intelligence and Waiting Lists in Hospitals. ResearchGate, Berlin, 2023.

129 

Jiang L, Wu Z, Xu X, Zhan Y, Jin X, Wang L and Qiu Y: Opportunities and challenges of artificial intelligence in the medical field: Current application, emerging problems, and problem-solving strategies. J Int Med Res. 49(3000605211000157)2021.PubMed/NCBI View Article : Google Scholar

130 

Basu T, Engel-Wolf S and Menzer O: The ethics of machine learning in medical sciences: Where do we stand today? Indian J Dermatol. 65:358–364. 2020.PubMed/NCBI View Article : Google Scholar

131 

SFR-IA Group; CERF; French Radiology Community. Artificial intelligence and medical imaging 2018: French radiology community white paper. Diagn Interv Imaging. 99:727–742. 2018.PubMed/NCBI View Article : Google Scholar

132 

Nabi J: How bioethics can shape artificial intelligence and machine learning. Hastings Cent Rep. 48:10–13. 2018.PubMed/NCBI View Article : Google Scholar

133 

Chinta SV, Wang Z, Palikhe A, Zhang X, Kashif A, Smith MA, Liu J and Zhang W: AI-driven healthcare: Fairness in AI healthcare: A survey. PLoS Digit Health. 4(e0000864)2025.PubMed/NCBI View Article : Google Scholar

134 

Mitchell C and Ploem C: Legal challenges for the implementation of advanced clinical digital decision support systems in Europe. J Clin Transl Res. 3 (Suppl 3):S424–S430. 2018.PubMed/NCBI

135 

Geis JR, Brady AP, Wu CC, Spencer J, Ranschaert E, Jaremko JL, Langer SG, Borondy Kitts A, Birch J, Shields WF, et al: Ethics of artificial intelligence in radiology: Summary of the joint European and North American multisociety statement. Radiology. 293:436–440. 2019.PubMed/NCBI View Article : Google Scholar

136 

Ooi SKG, Makmur A, Soon AYQ, Fook-Chong S, Liew C, Sia SY, Ting YH and Lim CY: . Attitudes toward artificial intelligence in radiology with learner needs assessment within radiology residency programmes: A national multi-programme survey. Singapore Med J. 62:126–134. 2021.PubMed/NCBI View Article : Google Scholar

137 

Marks M and Haupt CE: AI chatbots, health privacy, and challenges to HIPAA compliance. JAMA. 330:309–310. 2023.PubMed/NCBI View Article : Google Scholar

138 

McCartney M: Margaret McCartney: AI in medicine must be rigorously tested. BMJ. 361(k1752)2018.PubMed/NCBI View Article : Google Scholar

139 

Golbus JR, Price WN II and Nallamothu BK: Privacy gaps for digital cardiology data: Big problems with big data. Circulation. 141:613–615. 2020.PubMed/NCBI View Article : Google Scholar

140 

Natali C, Marconi L, Dias Duran LD, Miglioretti M and Cabitza F: AI-induced deskilling in medicine: A mixed method literature review for setting a new research agenda. Artif Intell Rev. 58(356)2025.

141 

Ademola A, George C and Mapp G: Addressing the interoperability of electronic health records: the technical and semantic interoperability, preserving privacy and security framework. Appl Syst Innov. 7(116)2024.

142 

Pham T: Ethical and legal considerations in healthcare AI: Innovation and policy for safe and fair use. R Soc Open Sci. 12(241873)2025.PubMed/NCBI View Article : Google Scholar

143 

Braun M, Hummel P, Beck S and Dabrock P: Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics. 47(e3)2020.PubMed/NCBI View Article : Google Scholar

144 

Froicu EM, Creangă-Murariu I, Afrăsânie VA, Gafton B, Alexa-Stratulat T, Miron L, Pușcașu DM, Poroch V, Bacoanu G, Radu I and Marinca MV: Artificial intelligence and decision-making in oncology: A review of ethical, legal, and informed consent challenges. Curr Oncol Rep. 27:1002–1012. 2025.PubMed/NCBI View Article : Google Scholar

145 

Farhud DD and Zokaei S: Ethical issues of artificial intelligence in medicine and healthcare. Iran J Public Health. 50:i–v. 2021.PubMed/NCBI View Article : Google Scholar

146 

Weiner EB, Dankwa-Mullan I, Nelson WA and Hassanpour S: Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLoS Digit Health. 4(e0000810)2025.PubMed/NCBI View Article : Google Scholar

147 

Hasanzadeh F, Josephson CB, Waters G, Adedinsewo D, Azizi Z and White JA: Bias recognition and mitigation strategies in artificial intelligence healthcare applications. NPJ Digit Med. 8(154)2025.PubMed/NCBI View Article : Google Scholar

148 

Chau M, Rahman MG and Debnath T: From black box to clarity: Strategies for effective AI informed consent in healthcare. Artif Intell Med. 103(103169)2025.PubMed/NCBI View Article : Google Scholar

149 

Savulescu J, Giubilini A, Vandersluis R and Mishra A: Ethics of artificial intelligence in medicine. Singapore Med J. 65:150–158. 2024.PubMed/NCBI View Article : Google Scholar

150 

Kiseleva A, Kotzinos D and De Her P: Transparency of AI in healthcare as a multilayered system of accountabilities: between legal requirements and technical limitations. Front Artif Intell. 5(879603)2022.PubMed/NCBI View Article : Google Scholar

151 

Cross JL, Choma MA and Onofrey JA: Bias in medical AI: implications for clinical decision-making. PLOS Digit Health. 3(e0000651)2024.PubMed/NCBI View Article : Google Scholar

152 

Koçak B, Ponsiglione A, Stanzione A, Bluethgen C, Santinha J, Ugga L, Huisman M, Klontzas ME, Cannella R and Cuocolo R: Bias in artificial intelligence for medical imaging: Fundamentals, detection, avoidance, mitigation, challenges, ethics, and prospects. Diagn Interv Radiol. 31:75–88. 2025.PubMed/NCBI View Article : Google Scholar

153 

Nasir M, Siddiqui K and Ahmed S: Ethical-legal implications of AI-powered healthcare in critical perspective. Front Artif Intell. 8(1619463)2025.PubMed/NCBI View Article : Google Scholar

154 

Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, Aggarwal K, Ibrahim S, Patil V, Smriti K, et al: Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front Surg. 9(862322)2022.PubMed/NCBI View Article : Google Scholar

155 

Nouis SC, Uren V and Jariwala S: Evaluating accountability, transparency, and bias in AI-assisted healthcare decision-making: A qualitative study of healthcare professionals' perspectives in the UK. BMC Med Ethics. 26(89)2025.PubMed/NCBI View Article : Google Scholar

156 

Elendu C, Amaechi DC, Elendu TC, Jingwa KA, Okoye OK, John Okah M, Ladele JA, Farah AH and Alimi HA: Ethical implications of AI and robotics in healthcare: A review. Medicine (Baltimore). 102(e36671)2023.PubMed/NCBI View Article : Google Scholar

157 

Mennella C, Maniscalco U, De Pietro G and Esposito M: Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. 10(e26297)2024.PubMed/NCBI View Article : Google Scholar

158 

Solaiman B and Dimitropoulos G: The legal considerations of AI-blockchain for securing health data. In: Research Handbook on Health, AI and the Law, pp130-149, 2024.

159 

Karim MR, Islam T, Shajalal M, Beyan O, Lange C, Cochez M, Rebholz-Schuhmann D and Decker S: Explainable AI for bioinformatics: Methods, tools and applications. Brief Bioinform. 24(bbad236)2023.PubMed/NCBI View Article : Google Scholar

160 

Muralidharan V, Adewale BA, Huang CJ, Nta MT, Ademiju PO, Pathmarajah P, Hang MK, Adesanya O, Abdullateef RO, Babatunde AO, et al: A scoping review of reporting gaps in FDA-approved AI medical devices. Npj Digit Med. 7(273)2024.PubMed/NCBI View Article : Google Scholar

161 

Varghese C, Harrison EM, O'Grady G and Topol EJ: Artificial intelligence in surgery. Nat Med. 30:1257–1268. 2024.PubMed/NCBI View Article : Google Scholar

162 

Dembrower K, Crippa A, Colón E, Eklund M and Strand F: ScreenTrustCAD Trial Consortium. Artificial intelligence for breast cancer detection in screening mammography in Sweden: A prospective, population-based, paired-reader, non-inferiority study. Lancet Digit Health. 5:e703–e711. 2023.PubMed/NCBI View Article : Google Scholar

163 

Lång K, Josefsson V, Larsson AM, Larsson S, Högberg C, Sartor H, Hofvind S, Andersson I and Rosso A: Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): A clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 24:936–944. 2023.PubMed/NCBI View Article : Google Scholar

164 

Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C and Tsaroucha AK: Artificial intelligence in colorectal cancer screening, diagnosis and treatment: A new Era. Curr Oncol. 28:1581–1607. 2021.PubMed/NCBI View Article : Google Scholar

165 

Schreuder A, Scholten ET, Van Ginneken B and Jacobs C: Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: Ready for practice? Transl Lung Cancer Res. 10:2378–2388. 2021.PubMed/NCBI View Article : Google Scholar

166 

Dembrower K, Wåhlin E, Liu Y, Salim M, Smith K, Lindholm P, Eklund M and Strand F: Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study. Lancet Digit Health. 2:e468–e474. 2020.PubMed/NCBI View Article : Google Scholar

167 

Cai Z, Poulos RC, Liu J and Zhong Q: Machine learning for multi-omics data integration in cancer. iScience. 25(103798)2022.PubMed/NCBI View Article : Google Scholar

168 

Tao K, Bian Z, Zhang Q, Guo X, Yin C, Wang Y, Zhou K, Wan S, Shi M, Bao D, et al: Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma. EBioMedicine. 56(102811)2020.PubMed/NCBI View Article : Google Scholar

169 

Lin M, Guo J, Gu Z, Tang W, Tao H, You S, Jia D, Sun Y and Jia P: Machine learning and multi-omics integration: Advancing cardiovascular translational research and clinical practice. J Transl Med. 23(388)2025.PubMed/NCBI View Article : Google Scholar

170 

Mugahid D, Lyon J, Demurjian C, Eolin N, Whittaker C, Godek M, Lauffenburger D, Fortune S and Levine S: A practical guide to FAIR data management in the age of multi-OMICS and AI. Front Immunol. 15(1439434)2025.PubMed/NCBI View Article : Google Scholar

171 

Wen G and Li L: Federated transfer learning with differential privacy for multi-omics survival analysis. Brief Bioinform. 26(bbaf166)2025.PubMed/NCBI View Article : Google Scholar

172 

Palaniappan K, Lin YET and Vogel S: Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. Healthcare (Basel). 12(562)2024.PubMed/NCBI View Article : Google Scholar

173 

Aboy M, Minssen T and Vayena E: Navigating the EU AI Act: Implications for regulated digital medical products. NPJ Digit Med. 7(237)2024.PubMed/NCBI View Article : Google Scholar

174 

Babic B, Glenn Cohen I, Stern AD, Li Y and Ouellet M: A general framework for governing marketed AI/ML medical devices. NPJ Digit Med. 8(328)2025.PubMed/NCBI View Article : Google Scholar

175 

Rong G, Mendez A, Bou Assi E, Zhao B and Sawan M: Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering (Beijing). 6:291–301. 2020.

176 

Van Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA and Steyerberg EW: The digital scribe in clinical practice: A scoping review and research agenda. Npj Digit Med. 4(57)2021.PubMed/NCBI View Article : Google Scholar

177 

Park BJ, Hunt SJ, Martin C III, Nadolski GJ, Wood BJ and Gade TP: Augmented and mixed reality: Technologies for enhancing the future of IR. J Vasc Interv Radiol. 31:1074–1082. 2020.PubMed/NCBI View Article : Google Scholar

178 

Chopra G and Ahmed S: Artificial intelligence and machine learning-assisted robotic surgery: current trends and future scope. Elsevier eBooks, pp23-29, 2024.

179 

Liu Y, Wu X, Sang Y, Zhao C, Wang Y, Shi B and Fan Y: Evolution of surgical robot systems enhanced by artificial intelligence: A review. Adv Intell Syst. 6(2300268)2024.

180 

Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A, Abdul-Rahman T, Hasan MM, Sikora V and Isik A: Embracing robotic surgery in low- and middle-income countries: potential benefits, challenges, and scope in the future. Ann Med Surg (Lond). 84(104803)2022.PubMed/NCBI View Article : Google Scholar

181 

Biswas P, Sikander S and Kulkarni P: Recent advances in robot-assisted surgical systems. Biomed Eng Adv. 6(100109)2023.

182 

Haltaufderheide J, Pfisterer-Heise S, Pieper D and Ranisch R: The ethical landscape of robot-assisted surgery: A systematic review. J Robot Surg. 19(102)2025.PubMed/NCBI View Article : Google Scholar

183 

Wood EA, Ange BL and Miller DD: Are we ready to integrate artificial intelligence literacy into Medical school curriculum: Students and faculty survey. J Med Educ Curric Dev. 8(23821205211024078)2021.PubMed/NCBI View Article : Google Scholar

184 

Jackson P, Ponath Sukumaran G, Babu C, Tony MC, Jack DS, Reshma VR, Davis D, Kurian N and John A: Artificial intelligence in medical education: Perception among medical students. BMC Med Educ. 24(804)2024.PubMed/NCBI View Article : Google Scholar

185 

Warraich HJ, Tazbaz T and Califf RM: FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA. 333:241–247. 2025.PubMed/NCBI View Article : Google Scholar

186 

Isch EL, Monzy J, Thota B, Somers S, Self DM and Caterson E: Assessing AI accuracy in generating CPT codes from surgical operative notes. J Craniofac Surg. 36:1584–1587. 2025.PubMed/NCBI View Article : Google Scholar

187 

Sun E and Littenberg G: Reimbursement and regulatory landscape for artificial intelligence in medical technology. Gastrointest Endosc Clin N Am. 35:469–484. 2025.PubMed/NCBI View Article : Google Scholar

188 

Shah SJ, Devon-Sand A, Ma SP, Jeong Y, Crowell T, Smith M, Liang AS, Delahaie C, Hsia C, Shanafelt T, et al: Ambient artificial intelligence scribes: Physician burnout and perspectives on usability and documentation burden. J Am Med Inform Assoc. 32:375–380. 2025.PubMed/NCBI View Article : Google Scholar

189 

Duggan MJ, Gervase J, Schoenbaum A, Hanson W, Howell JT III, Sheinberg M and Johnson KB: Clinician experiences with ambient scribe technology to assist with documentation burden and efficiency. JAMA Netw Open. 8(e2460637)2025.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Thomas KS, Edpuganti S, Puthooran DM, Thomas A, Joy A and Latheef S: Artificial intelligence in modern clinical practice (Review). Med Int 6: 5, 2026.
APA
Thomas, K.S., Edpuganti, S., Puthooran, D.M., Thomas, A., Joy, A., & Latheef, S. (2026). Artificial intelligence in modern clinical practice (Review). Medicine International, 6, 5. https://doi.org/10.3892/mi.2025.289
MLA
Thomas, K. S., Edpuganti, S., Puthooran, D. M., Thomas, A., Joy, A., Latheef, S."Artificial intelligence in modern clinical practice (Review)". Medicine International 6.1 (2026): 5.
Chicago
Thomas, K. S., Edpuganti, S., Puthooran, D. M., Thomas, A., Joy, A., Latheef, S."Artificial intelligence in modern clinical practice (Review)". Medicine International 6, no. 1 (2026): 5. https://doi.org/10.3892/mi.2025.289
Copy and paste a formatted citation
x
Spandidos Publications style
Thomas KS, Edpuganti S, Puthooran DM, Thomas A, Joy A and Latheef S: Artificial intelligence in modern clinical practice (Review). Med Int 6: 5, 2026.
APA
Thomas, K.S., Edpuganti, S., Puthooran, D.M., Thomas, A., Joy, A., & Latheef, S. (2026). Artificial intelligence in modern clinical practice (Review). Medicine International, 6, 5. https://doi.org/10.3892/mi.2025.289
MLA
Thomas, K. S., Edpuganti, S., Puthooran, D. M., Thomas, A., Joy, A., Latheef, S."Artificial intelligence in modern clinical practice (Review)". Medicine International 6.1 (2026): 5.
Chicago
Thomas, K. S., Edpuganti, S., Puthooran, D. M., Thomas, A., Joy, A., Latheef, S."Artificial intelligence in modern clinical practice (Review)". Medicine International 6, no. 1 (2026): 5. https://doi.org/10.3892/mi.2025.289
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team