|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Otsuki Y, Yamasaki J, Suina K, Okazaki S,
Koike N, Saya H and Nagano O: Vasodilator oxyfedrine inhibits
aldehyde metabolism and thereby sensitizes cancer cells to
xCT-targeted therapy. Cancer Sci. 111:127–136. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Dandachi D and Morón F: Effects of HIV on
the tumor microenvironment. Adv Exp Med Biol. 1263:45–54.
2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Lin J, Liu Y, Liu P, Qi W, Liu J, He X,
Liu Q, Liu Z, Yin J, Lin J, et al: SNHG17 alters anaerobic
glycolysis by resetting phosphorylation modification of PGK1 to
foster pro-tumor macrophage formation in pancreatic ductal
adenocarcinoma. J Exp Clin Cancer Res. 42(339)2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mittal A, Nenwani M, Sarangi I, Achreja A,
Lawrence TS and Nagrath D: Radiotherapy-induced metabolic hallmarks
in the tumor microenvironment. Trends Cancer. 8:855–869.
2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Jia C, Wang Q, Yao X and Yang J: The role
of DNA damage induced by low/high dose ionizing radiation in cell
carcinogenesis. Explor Res Hypothesis Med. 6:177–184. 2021.
|
|
7
|
Tang B, Zhu J, Shi Y, Wang Y, Zhang X,
Chen B, Fang S, Yang Y, Zheng L, Qiu R, et al: Tumor cell-intrinsic
MELK enhanced CCL2-dependent immunosuppression to exacerbate
hepatocarcinogenesis and confer resistance of HCC to radiotherapy.
Mol Cancer. 23(137)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Lin X, Liu Z, Dong X, Wang K, Sun Y, Zhang
H, Wang F, Chen Y, Ling J, Guo Y, et al: Radiotherapy enhances the
anti-tumor effect of CAR-NK cells for hepatocellular carcinoma. J
Transl Med. 22(929)2024.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Dillon MT, Boylan Z, Smith D, Guevara J,
Mohammed K, Peckitt C, Saunders M, Banerji U, Clack G, Smith SA, et
al: PATRIOT: A phase I study to assess the tolerability, safety and
biological effects of a specific ataxia telangiectasia and
Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in
combination with palliative radiation therapy in patients with
solid tumours. Clin Transl Radiat Oncol. 12:16–20. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Dillon MT, Guevara J, Mohammed K, Patin
EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, et
al: Durable responses to ATR inhibition with ceralasertib in tumors
with genomic defects and high inflammation. J Clin Invest.
134(e175369)2024.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Kameni LE, Januszyk M, Berry CE, Downer MA
Jr, Parker JB, Morgan AG, Valencia C, Griffin M, Li DJ, Liang NE,
et al: A review of radiation-induced vascular injury and clinical
impact. Ann Plast Surg. 92:181–185. 2024.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J,
Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, et al: A hypoxia-induced
vascular endothelial-to-mesenchymal transition in development of
radiation-induced pulmonary fibrosis. Clin Cancer Res.
21:3716–3726. 2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wijerathne H, Langston JC, Yang Q, Sun S,
Miyamoto C, Kilpatrick LE and Kiani MF: Mechanisms of
radiation-induced endothelium damage: Emerging models and
technologies. Radiother Oncol. 158:21–32. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Guilbaud E, Naulin F, Meziani L, Deutsch E
and Galluzzi L: Impact of radiation therapy on the immunological
tumor microenvironment. Cell Chem Biol. 32:678–693. 2025.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Lee AK, Pan D, Bao X, Hu M, Li F and Li
CY: Endogenous retrovirus activation as a key mechanism of
anti-tumor immune response in radiotherapy. Radiat Res.
193:305–317. 2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: Molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther.
8(70)2023.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Jiang W, Jin WL and Xu AM: Cholesterol
metabolism in tumor microenvironment: Cancer hallmarks and
therapeutic opportunities. Int J Biol Sci. 20:2044–2071.
2024.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li YJ, Zhang C, Martincuks A, Herrmann A
and Yu H: STAT proteins in cancer: Orchestration of metabolism. Nat
Rev Cancer. 23:115–134. 2023.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Renaudin X: Reactive oxygen species and
DNA damage response in cancer. Int Rev Cell Mol Biol. 364:139–161.
2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
An X, Yu W, Liu J, Tang D, Yang L and Chen
X: Oxidative cell death in cancer: Mechanisms and therapeutic
opportunities. Cell Death Dis. 15(556)2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Punnasseril JMJ, Auwal A, Gopalan V, Lam
AK and Islam F: Metabolic reprogramming of cancer cells and
therapeutics targeting cancer metabolism. Cancer Med.
14(e71244)2025.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Shimoni-Sebag A, Abramovich I, Agranovich
B, Massri R, Stossel C, Atias D, Raites-Gurevich M, Yizhak K, Golan
T, Gottlieb E and Lawrence YR: A metabolic switch to the
pentose-phosphate pathway induces radiation resistance in
pancreatic cancer. Radiother Oncol. 202(110606)2025.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Zhang H, Ma J, Hou C, Luo X, Zhu S, Peng
Y, Peng C, Li P, Meng H, Xia Y, et al: A ROS-mediated
oxidation-O-GlcNAcylation cascade governs ferroptosis. Nat Cell
Biol. 27:1288–1300. 2025.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Chen H, Zhang C, Fu Y, Li L, Qiao X, Zhang
S, Luo H, Chen S, Liu X and Zhong Q: Repair of damaged lysosomes by
TECPR1-mediated membrane tubulation during energy crisis. Cell Res.
36:51–71. 2026.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cognet G and Muir A: Identifying metabolic
limitations in the tumor microenvironment. Sci Adv.
10(eadq7305)2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Cutshaw G, Joshi N, Wen X, Quam E,
Bogatcheva G, Hassan N, Uthaman S, Waite J, Sarkar S, Singh B and
Bardhan R: Metabolic response to small molecule therapy in
colorectal cancer tracked with Raman spectroscopy and metabolomics.
Angew Chem Int Ed Engl. 63(e202410919)2024.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Sørensen DM, Büll C, Madsen TD,
Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R,
Pijnenborg JFA, Yin X, et al: Identification of global inhibitors
of cellular glycosylation. Nat Commun. 14(948)2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Li S, McCraw AJ, Gardner RA, Spencer DIR,
Karagiannis SN and Wagner GK: Glycoengineering of therapeutic
antibodies with small molecule inhibitors. Antibodies (Basel).
10(44)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yamamoto VN, Thylur DS, Bauschard M,
Schmale I and Sinha UK: Overcoming radioresistance in head and neck
squamous cell carcinoma. Oral Oncol. 63:44–51. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Stone HB, Bernhard EJ, Coleman CN, Deye J,
Capala J, Mitchell JB and Brown JM: Preclinical data on efficacy of
10 drug-radiation combinations: Evaluations, concerns, and
recommendations. Transl Oncol. 9:46–56. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lubet RA, Kumar A, Fox JT, You M, Mohammed
A, Juliana MM and Grubbs CJ: Efficacy of EGFR inhibitors and NSAIDs
against basal bladder cancers in a rat model: Daily vs weekly
dosing, combining EGFR inhibitors with naproxen, and effects on RNA
expression. Bladder Cancer. 7:335–345. 2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Beizaei K, Gleißner L, Hoffer K, Bußmann
L, Vu AT, Steinmeister L, Laban S, Möckelmann N, Münscher A,
Petersen C, et al: Receptor tyrosine kinase MET as potential target
of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC.
Head Neck. 41:208–215. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yan Y, Hein AL, Greer PM, Wang Z, Kolb RH,
Batra SK and Cowan KH: A novel function of HER2/Neu in the
activation of G2/M checkpoint in response to γ-irradiation.
Oncogene. 34:2215–2226. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu Z, Ning F, Cai Y, Sheng H, Zheng R,
Yin X, Lu Z, Su L, Chen X, Zeng C, et al: The EGFR-P38 MAPK axis
up-regulates PD-L1 through miR-675-5p and down-regulates HLA-ABC
via hexokinase-2 in hepatocellular carcinoma cells. Cancer Commun
(Lond). 41:62–78. 2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhang Y, Wang J and Li Z: Association of
HIF1-α gene polymorphisms with advanced non-small cell lung cancer
prognosis in patients receiving radiation therapy. Aging (Albany
NY). 13:6849–6865. 2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Shah SS, Rodriguez GA, Musick A, Walters
WM, de Cordoba N, Barbarite E, Marlow MM, Marples B, Prince JS,
Komotar RJ, et al: Targeting glioblastoma stem cells with
2-deoxy-D-glucose (2-DG) potentiates radiation-induced unfolded
protein response (UPR). Cancers (Basel). 11(159)2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Nile DL, Rae C, Walker DJ, Waddington JC,
Vincent I, Burgess K, Gaze MN, Mairs RJ and Chalmers AJ: Inhibition
of glycolysis and mitochondrial respiration promotes
radiosensitisation of neuroblastoma and glioma cells. Cancer Metab.
9(24)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Singh D, Banerji AK, Dwarakanath BS,
Tripathi RP, Gupta JP, Mathew TL, Ravindranath T and Jain V:
Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose
escalation studies in patients with glioblastoma multiforme.
Strahlenther Onkol. 181:507–514. 2005.PubMed/NCBI View Article : Google Scholar
|
|
39
|
TeSlaa T, Ralser M, Fan J and Rabinowitz
JD: The pentose phosphate pathway in health and disease. Nat Metab.
5:1275–1289. 2023.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yadav D, Yadav A, Bhattacharya S, Dagar A,
Kumar V and Rani R: GLUT and HK: Two primary and essential key
players in tumor glycolysis. Semin Cancer Biol. 100:17–27.
2024.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Xie Y, Liu X, Xie D, Zhang W, Zhao H, Guan
H and Zhou PK: Voltage-dependent anion channel 1 mediates
mitochondrial fission and glucose metabolic reprogramming in
response to ionizing radiation. Sci Total Environ.
946(174246)2024.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Li M, Dong Y, Wang Z, Zhao Y, Dai Y and
Zhang B: Engineering hypoxia-responsive 6-aminonicotinamide
prodrugs for on-demand NADPH depletion and redox manipulation. J
Mater Chem B. 12:8067–8075. 2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Yang L, Lu P, Yang X, Li K, Chen X, Zhou Y
and Qu S: Downregulation of annexin A3 promotes ionizing
radiation-induced EGFR activation and nuclear translocation and
confers radioresistance in nasopharyngeal carcinoma. Exp Cell Res.
418(113292)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Huang R and Zhou PK: DNA damage repair:
Historical perspectives, mechanistic pathways and clinical
translation for targeted cancer therapy. Signal Transduct Target
Ther. 6(254)2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Farhood B, Ashrafizadeh M, Khodamoradi E,
Hoseini-Ghahfarokhi M, Afrashi S, Musa AE and Najafi M: Targeting
of cellular redox metabolism for mitigation of radiation injury.
Life Sci. 250(117570)2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao
Q and Jiang X: Mechanisms and applications of radiation-induced
oxidative stress in regulating cancer immunotherapy. Front Immunol.
14(1247268)2023.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Alonso-González C, González A,
Martínez-Campa C, Menéndez-Menéndez J, Gómez-Arozamena J,
García-Vidal A and Cos S: Melatonin enhancement of the
radiosensitivity of human breast cancer cells is associated with
the modulation of proteins involved in estrogen biosynthesis.
Cancer Lett. 370:145–152. 2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Giallourou NS, Rowland IR, Rothwell SD,
Packham G, Commane DM and Swann JR: Metabolic targets of watercress
and PEITC in MCF-7 and MCF-10A cells explain differential
sensitisation responses to ionising radiation. Eur J Nutr.
58:2377–2391. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Qin S, He X, Lin H, Schulte BA, Zhao M,
Tew KD and Wang GY: Nrf2 inhibition sensitizes breast cancer stem
cells to ionizing radiation via suppressing DNA repair. Free Radic
Biol Med. 169:238–247. 2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Derindağ G, Akgül HM, Kızıltunç A, Özkan
Hİ, Kızıltunç Özmen H and Akgül N: Evaluation of saliva
glutathione, glutathione peroxidase, and malondialdehyde levels in
head-neck radiotherapy patients. Turk J Med Sci. 51:644–649.
2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lewis JE, Forshaw TE, Boothman DA, Furdui
CM and Kemp ML: Personalized genome-scale metabolic models identify
targets of redox metabolism in radiation-resistant tumors. Cell
Syst. 12:68–81.e11. 2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C,
Huang J, Wei Q and Zhang T: Radiation-induced tumor immune
microenvironments and potential targets for combination therapy.
Signal Transduct Target Ther. 8(205)2023.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Read GH, Bailleul J, Vlashi E and
Kesarwala AH: Metabolic response to radiation therapy in cancer.
Mol Carcinog. 61:200–224. 2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Wang M, Chen S and Ao D: Targeting DNA
repair pathway in cancer: Mechanisms and clinical application.
MedComm (2020). 2:654–691. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Wu Y, Song Y, Wang R and Wang T: Molecular
mechanisms of tumor resistance to radiotherapy. Mol Cancer.
22(96)2023.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Lin J, Song T, Li C and Mao W: GSK-3β in
DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy
of cancer. Biochim Biophys Acta Mol Cell Res.
1867(118659)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sobanski T, Rose M, Suraweera A, O'Byrne
K, Richard DJ and Bolderson E: Cell metabolism and DNA repair
pathways: implications for cancer therapy. Front Cell Dev Biol.
9(633305)2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Zheng Y, Li H, Bo X and Chen H: Ionizing
radiation damage and repair from 3D-genomic perspective. Trends
Genet. 39:1–4. 2023.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh
CT and Tsai JT: Elevated PDK1 expression drives PI3K/AKT/MTOR
signaling promotes radiation-resistant and dedifferentiated
phenotype of hepatocellular carcinoma. Cells. 9(746)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Morillo-Huesca M, G López-Cepero I,
Conesa-Bakkali R, Tomé M, Watts C, Huertas P, Moreno-Bueno G, Durán
RV and Martínez-Fábregas J: Radiotherapy resistance driven by
asparagine endopeptidase through ATR pathway modulation in breast
cancer. J Exp Clin Cancer Res. 44(74)2025.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Meng W, Palmer JD, Siedow M, Haque SJ and
Chakravarti A: Overcoming radiation resistance in gliomas by
targeting metabolism and DNA repair pathways. Int J Mol Sci.
23(2246)2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Benjanuwattra J, Chaiyawat P, Pruksakorn D
and Koonrungsesomboon N: Therapeutic potential and molecular
mechanisms of mycophenolic acid as an anticancer agent. Eur J
Pharmacol. 887(173580)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Fu S, Li Z, Xiao L, Hu W, Zhang L, Xie B,
Zhou Q, He J, Qiu Y, Wen M, et al: Glutamine synthetase promotes
radiation resistance via facilitating nucleotide metabolism and
subsequent DNA damage repair. Cell Rep. 28:1136–1143.e4.
2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Madsen HB, Peeters MJ, Straten PT and
Desler C: Nucleotide metabolism in the regulation of tumor
microenvironment and immune cell function. Curr Opin Biotechnol.
84(103008)2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
López-Hernández L, Toolan-Kerr P,
Bannister AJ and Millán-Zambrano G: Dynamic histone modification
patterns coordinating DNA processes. Mol Cell. 85:225–237.
2025.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Charidemou E and Kirmizis A: A two-way
relationship between histone acetylation and metabolism. Trends
Biochem Sci. 49:1046–1062. 2024.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kitabatake K, Kaji T and Tsukimoto M: ATP
and ADP enhance DNA damage repair in γ-irradiated BEAS-2B human
bronchial epithelial cells through activation of P2X7 and P2Y12
receptors. Toxicol Appl Pharmacol. 407(115240)2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Koritzinsky M: Metformin: A novel
biological modifier of tumor response to radiation therapy. Int J
Radiat Oncol Biol Phys. 93:454–464. 2015.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Scott JS, Nassar ZD, Swinnen JV and Butler
LM: Monounsaturated fatty acids: Key regulators of cell viability
and intracellular signaling in cancer. Mol Cancer Res.
20:1354–1364. 2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Chen J, Zhang F, Ren X, Wang Y, Huang W,
Zhang J and Cui Y: Targeting fatty acid synthase sensitizes human
nasopharyngeal carcinoma cells to radiation via downregulating
frizzled class receptor 10. Cancer Biol Med. 17:740–752.
2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Zhan N, Li B, Xu X, Xu J and Hu S:
Inhibition of FASN expression enhances radiosensitivity in human
non-small cell lung cancer. Oncol Lett. 15:4578–4584.
2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V,
Serrano MA, Zou Y, Liu JY and Zhang JT: FASN regulates cellular
response to genotoxic treatments by increasing PARP-1 expression
and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci USA.
113:E6965–E6973. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Chuang HY, Lee YP, Lin WC, Lin YH and
Hwang JJ: Fatty acid inhibition sensitizes androgen-dependent and
-independent prostate cancer to radiotherapy via FASN/NF-κB
pathway. Sci Rep. 9(13284)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Werner E, Alter A, Deng Q, Dammer EB, Wang
Y, Yu DS, Duong DM, Seyfried NT and Doetsch PW: Ionizing radiation
induction of cholesterol biosynthesis in lung tissue. Sci Rep.
9(12546)2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
You Y, Wang Q, Li H, Ma Y, Deng Y, Ye Z
and Bai F: Zoledronic acid exhibits radio-sensitizing activity in
human pancreatic cancer cells via inactivation of STAT3/NF-κB
signaling. Onco Targets Ther. 12:4323–4330. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Peng J, Yin X, Yun W, Meng X and Huang Z:
Radiotherapy-induced tumor physical microenvironment remodeling to
overcome immunotherapy resistance. Cancer Lett.
559(216108)2023.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Vitale I, Manic G, Coussens LM, Kroemer G
and Galluzzi L: Macrophages and metabolism in the tumor
microenvironment. Cell Metab. 30:36–50. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Nan D, Yao W, Huang L, Liu R, Chen X, Xia
W, Sheng H, Zhang H, Liang X and Lu Y: Glutamine and cancer:
Metabolism, immune microenvironment, and therapeutic targets. Cell
Commun Signal. 23(45)2025.PubMed/NCBI View Article : Google Scholar
|
|
79
|
An D, Zhai D, Wan C and Yang K: The role
of lipid metabolism in cancer radioresistance. Clin Transl Oncol.
25:2332–2349. 2023.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cao Z, Quazi S, Arora S, Osellame LD,
Burvenich IJ, Janes PW and Scott AM: Cancer-associated fibroblasts
as therapeutic targets for cancer: Advances, challenges, and future
prospects. J Biomed Sci. 32(7)2025.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Mukherjee A, Bezwada D, Greco F,
Zandbergen M, Shen T, Chiang CY, Tasdemir M, Fahrmann J, Grapov D,
La Frano MR, et al: Adipocytes reprogram cancer cell metabolism by
diverting glucose towards glycerol-3-phosphate thereby promoting
metastasis. Nat Metab. 5:1563–1577. 2023.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lee PWT, Suwa T, Kobayashi M, Yang H,
Koseki LR, Takeuchi S, Chow CCT, Yasuhara T and Harada H: Hypoxia-
and Postirradiation reoxygenation-induced HMHA1/ARHGAP45 expression
contributes to cancer cell invasion in a HIF-dependent manner. Br J
Cancer. 131:37–48. 2024.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Matschke J, Wiebeck E, Hurst S, Rudner J
and Jendrossek V: Role of SGK1 for fatty acid uptake, cell survival
and radioresistance of NCI-H460 lung cancer cells exposed to acute
or chronic cycling severe hypoxia. Radiat Oncol.
11(75)2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Bai M, Xu P, Cheng R, Li N, Cao S, Guo Q,
Wang X, Li C, Bai N, Jiang B, et al: ROS-ATM-CHK2 axis stabilizes
HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment.
Oncogene. 44:1609–1619. 2025.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Basheeruddin M and Qausain S:
Hypoxia-inducible factor 1-alpha (HIF-1α) and cancer: Mechanisms of
tumor hypoxia and therapeutic targeting. Cureus.
16(e70700)2024.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Shah R, Ibis B, Kashyap M and Boussiotis
VA: The role of ROS in tumor infiltrating immune cells and cancer
immunotherapy. Metabolism. 151(155747)2024.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Gao F, Liu C, Guo J, Sun W, Xian L, Bai D,
Liu H, Cheng Y, Li B, Cui J, et al: Radiation-driven lipid
accumulation and dendritic cell dysfunction in cancer. Sci Rep.
5(9613)2015.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Lyssiotis CA and Kimmelman AC: Metabolic
interactions in the tumor microenvironment. Trends Cell Biol.
27:863–875. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Ashton TM, McKenna WG, Kunz-Schughart LA
and Higgins GS: Oxidative phosphorylation as an emerging target in
cancer therapy. Clin Cancer Res. 24:2482–2490. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31.
2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Ko J, Berger R, Lee H, Yoon H, Cho J and
Char K: Electronic effects of nano-confinement in functional
organic and inorganic materials for optoelectronics. Chem Soc Rev.
50:3585–3628. 2017.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Liu G, Müller AJ and Wang D: Confined
crystallization of polymers within nanopores. Acc Chem Res.
54:3028–3038. 2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Napolitano S, Glynos E and Tito NB: Glass
transition of polymers in bulk, confined geometries, and near
interfaces. Rep Prog Phys. 80(036602)2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Lu S, Zhao ZQ, Wang Q, Lv ZW and Yang JS:
Biological nano confinement: A promising target for inhibiting
cancer cell progress and metastasis. Oncologie. 24:591–597.
2022.
|
|
95
|
Kuttiappan A, Chenchula S, Vardhan KV,
Padmavathi R, Varshini TS, Amerneni LS, Amerneni KC and Chavan MR:
CAR T-cell therapy in hematologic and solid malignancies:
Mechanisms, clinical applications, and future directions. Med
Oncol. 42(376)2025.PubMed/NCBI View Article : Google Scholar
|