Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Medicine International
Join Editorial Board Propose a Special Issue
Print ISSN: 2754-3242 Online ISSN: 2754-1304
Journal Cover
March-April 2026 Volume 6 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2026 Volume 6 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Radiation‑induced alterations in the cancer microenvironment (Review)

  • Authors:
    • Haiying Liu
    • Xiaoping Zhu
    • Zhenxing He
    • Jianshe Yang
  • View Affiliations / Copyright

    Affiliations: Medical College, Hexi University, Zhangye, Gansu 734000, P.R. China, Department of General Surgery, The Third People's Hospital of Longgang District, Shenzhen and Shenzhen Clinical Medical School, Guangdong Pharmaceutical University, Shenzhen, Guangdong 518115, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 15
    |
    Published online on: January 23, 2026
       https://doi.org/10.3892/mi.2026.299
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Radiation therapy is routinely used for the treatment of cancer; however, the development of radiation resistance in some tumor cells can lead to poor efficacy. Cancer cells can alter their metabolic status following exposure to radiation to reduce radiation‑induced cytotoxicity, ultimately enabling them to survive radiation injury and adapt to the changed environment. It has been indicated that these metabolic changes in cancer cells affect the cancer microenvironment, and certain metabolite changes within the microenvironment may, in turn, promote cancer cell proliferation. Therefore, combining radiotherapy with targeted metabolic treatments may enhance the effectiveness of cancer therapy. The present review discusses the metabolic reprogramming of cancer cells following radiotherapy, and the resulting microenvironmental metabolic characteristics. Furthermore, the present review introduces the novel findings on innate nano‑confinements, which may influence the cancer microenvironment by regulating energy metabolism and signaling pathways through new mechanisms.

View Figures

Figure 1

Ionizing radiation induces oxidative
stress and metabolic changes, leading to TME alterations in
activity of the glycolysis/pentose phosphate pathways, lipid
metabolism, and redox homeostasis, which promote cancer cell
survival. Novel findings on innate biological nano-confinements may
influence the TME via new mechanisms regulating energy metabolism
and signaling pathways. TME, tumor microenvironment.
View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar

2 

Otsuki Y, Yamasaki J, Suina K, Okazaki S, Koike N, Saya H and Nagano O: Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy. Cancer Sci. 111:127–136. 2020.PubMed/NCBI View Article : Google Scholar

3 

Dandachi D and Morón F: Effects of HIV on the tumor microenvironment. Adv Exp Med Biol. 1263:45–54. 2020.PubMed/NCBI View Article : Google Scholar

4 

Lin J, Liu Y, Liu P, Qi W, Liu J, He X, Liu Q, Liu Z, Yin J, Lin J, et al: SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 42(339)2023.PubMed/NCBI View Article : Google Scholar

5 

Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS and Nagrath D: Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer. 8:855–869. 2022.PubMed/NCBI View Article : Google Scholar

6 

Jia C, Wang Q, Yao X and Yang J: The role of DNA damage induced by low/high dose ionizing radiation in cell carcinogenesis. Explor Res Hypothesis Med. 6:177–184. 2021.

7 

Tang B, Zhu J, Shi Y, Wang Y, Zhang X, Chen B, Fang S, Yang Y, Zheng L, Qiu R, et al: Tumor cell-intrinsic MELK enhanced CCL2-dependent immunosuppression to exacerbate hepatocarcinogenesis and confer resistance of HCC to radiotherapy. Mol Cancer. 23(137)2024.PubMed/NCBI View Article : Google Scholar

8 

Lin X, Liu Z, Dong X, Wang K, Sun Y, Zhang H, Wang F, Chen Y, Ling J, Guo Y, et al: Radiotherapy enhances the anti-tumor effect of CAR-NK cells for hepatocellular carcinoma. J Transl Med. 22(929)2024.PubMed/NCBI View Article : Google Scholar

9 

Dillon MT, Boylan Z, Smith D, Guevara J, Mohammed K, Peckitt C, Saunders M, Banerji U, Clack G, Smith SA, et al: PATRIOT: A phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clin Transl Radiat Oncol. 12:16–20. 2018.PubMed/NCBI View Article : Google Scholar

10 

Dillon MT, Guevara J, Mohammed K, Patin EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, et al: Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J Clin Invest. 134(e175369)2024.PubMed/NCBI View Article : Google Scholar

11 

Kameni LE, Januszyk M, Berry CE, Downer MA Jr, Parker JB, Morgan AG, Valencia C, Griffin M, Li DJ, Liang NE, et al: A review of radiation-induced vascular injury and clinical impact. Ann Plast Surg. 92:181–185. 2024.PubMed/NCBI View Article : Google Scholar

12 

Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, et al: A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res. 21:3716–3726. 2015.PubMed/NCBI View Article : Google Scholar

13 

Wijerathne H, Langston JC, Yang Q, Sun S, Miyamoto C, Kilpatrick LE and Kiani MF: Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol. 158:21–32. 2021.PubMed/NCBI View Article : Google Scholar

14 

Guilbaud E, Naulin F, Meziani L, Deutsch E and Galluzzi L: Impact of radiation therapy on the immunological tumor microenvironment. Cell Chem Biol. 32:678–693. 2025.PubMed/NCBI View Article : Google Scholar

15 

Lee AK, Pan D, Bao X, Hu M, Li F and Li CY: Endogenous retrovirus activation as a key mechanism of anti-tumor immune response in radiotherapy. Radiat Res. 193:305–317. 2020.PubMed/NCBI View Article : Google Scholar

16 

Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8(70)2023.PubMed/NCBI View Article : Google Scholar

17 

Jiang W, Jin WL and Xu AM: Cholesterol metabolism in tumor microenvironment: Cancer hallmarks and therapeutic opportunities. Int J Biol Sci. 20:2044–2071. 2024.PubMed/NCBI View Article : Google Scholar

18 

Li YJ, Zhang C, Martincuks A, Herrmann A and Yu H: STAT proteins in cancer: Orchestration of metabolism. Nat Rev Cancer. 23:115–134. 2023.PubMed/NCBI View Article : Google Scholar

19 

Renaudin X: Reactive oxygen species and DNA damage response in cancer. Int Rev Cell Mol Biol. 364:139–161. 2021.PubMed/NCBI View Article : Google Scholar

20 

An X, Yu W, Liu J, Tang D, Yang L and Chen X: Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 15(556)2024.PubMed/NCBI View Article : Google Scholar

21 

Punnasseril JMJ, Auwal A, Gopalan V, Lam AK and Islam F: Metabolic reprogramming of cancer cells and therapeutics targeting cancer metabolism. Cancer Med. 14(e71244)2025.PubMed/NCBI View Article : Google Scholar

22 

Shimoni-Sebag A, Abramovich I, Agranovich B, Massri R, Stossel C, Atias D, Raites-Gurevich M, Yizhak K, Golan T, Gottlieb E and Lawrence YR: A metabolic switch to the pentose-phosphate pathway induces radiation resistance in pancreatic cancer. Radiother Oncol. 202(110606)2025.PubMed/NCBI View Article : Google Scholar

23 

Zhang H, Ma J, Hou C, Luo X, Zhu S, Peng Y, Peng C, Li P, Meng H, Xia Y, et al: A ROS-mediated oxidation-O-GlcNAcylation cascade governs ferroptosis. Nat Cell Biol. 27:1288–1300. 2025.PubMed/NCBI View Article : Google Scholar

24 

Chen H, Zhang C, Fu Y, Li L, Qiao X, Zhang S, Luo H, Chen S, Liu X and Zhong Q: Repair of damaged lysosomes by TECPR1-mediated membrane tubulation during energy crisis. Cell Res. 36:51–71. 2026.PubMed/NCBI View Article : Google Scholar

25 

Cognet G and Muir A: Identifying metabolic limitations in the tumor microenvironment. Sci Adv. 10(eadq7305)2024.PubMed/NCBI View Article : Google Scholar

26 

Cutshaw G, Joshi N, Wen X, Quam E, Bogatcheva G, Hassan N, Uthaman S, Waite J, Sarkar S, Singh B and Bardhan R: Metabolic response to small molecule therapy in colorectal cancer tracked with Raman spectroscopy and metabolomics. Angew Chem Int Ed Engl. 63(e202410919)2024.PubMed/NCBI View Article : Google Scholar

27 

Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, et al: Identification of global inhibitors of cellular glycosylation. Nat Commun. 14(948)2023.PubMed/NCBI View Article : Google Scholar

28 

Li S, McCraw AJ, Gardner RA, Spencer DIR, Karagiannis SN and Wagner GK: Glycoengineering of therapeutic antibodies with small molecule inhibitors. Antibodies (Basel). 10(44)2021.PubMed/NCBI View Article : Google Scholar

29 

Yamamoto VN, Thylur DS, Bauschard M, Schmale I and Sinha UK: Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol. 63:44–51. 2016.PubMed/NCBI View Article : Google Scholar

30 

Stone HB, Bernhard EJ, Coleman CN, Deye J, Capala J, Mitchell JB and Brown JM: Preclinical data on efficacy of 10 drug-radiation combinations: Evaluations, concerns, and recommendations. Transl Oncol. 9:46–56. 2016.PubMed/NCBI View Article : Google Scholar

31 

Lubet RA, Kumar A, Fox JT, You M, Mohammed A, Juliana MM and Grubbs CJ: Efficacy of EGFR inhibitors and NSAIDs against basal bladder cancers in a rat model: Daily vs weekly dosing, combining EGFR inhibitors with naproxen, and effects on RNA expression. Bladder Cancer. 7:335–345. 2021.PubMed/NCBI View Article : Google Scholar

32 

Beizaei K, Gleißner L, Hoffer K, Bußmann L, Vu AT, Steinmeister L, Laban S, Möckelmann N, Münscher A, Petersen C, et al: Receptor tyrosine kinase MET as potential target of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC. Head Neck. 41:208–215. 2019.PubMed/NCBI View Article : Google Scholar

33 

Yan Y, Hein AL, Greer PM, Wang Z, Kolb RH, Batra SK and Cowan KH: A novel function of HER2/Neu in the activation of G2/M checkpoint in response to γ-irradiation. Oncogene. 34:2215–2226. 2015.PubMed/NCBI View Article : Google Scholar

34 

Liu Z, Ning F, Cai Y, Sheng H, Zheng R, Yin X, Lu Z, Su L, Chen X, Zeng C, et al: The EGFR-P38 MAPK axis up-regulates PD-L1 through miR-675-5p and down-regulates HLA-ABC via hexokinase-2 in hepatocellular carcinoma cells. Cancer Commun (Lond). 41:62–78. 2021.PubMed/NCBI View Article : Google Scholar

35 

Zhang Y, Wang J and Li Z: Association of HIF1-α gene polymorphisms with advanced non-small cell lung cancer prognosis in patients receiving radiation therapy. Aging (Albany NY). 13:6849–6865. 2021.PubMed/NCBI View Article : Google Scholar

36 

Shah SS, Rodriguez GA, Musick A, Walters WM, de Cordoba N, Barbarite E, Marlow MM, Marples B, Prince JS, Komotar RJ, et al: Targeting glioblastoma stem cells with 2-deoxy-D-glucose (2-DG) potentiates radiation-induced unfolded protein response (UPR). Cancers (Basel). 11(159)2019.PubMed/NCBI View Article : Google Scholar

37 

Nile DL, Rae C, Walker DJ, Waddington JC, Vincent I, Burgess K, Gaze MN, Mairs RJ and Chalmers AJ: Inhibition of glycolysis and mitochondrial respiration promotes radiosensitisation of neuroblastoma and glioma cells. Cancer Metab. 9(24)2021.PubMed/NCBI View Article : Google Scholar

38 

Singh D, Banerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL, Ravindranath T and Jain V: Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol. 181:507–514. 2005.PubMed/NCBI View Article : Google Scholar

39 

TeSlaa T, Ralser M, Fan J and Rabinowitz JD: The pentose phosphate pathway in health and disease. Nat Metab. 5:1275–1289. 2023.PubMed/NCBI View Article : Google Scholar

40 

Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V and Rani R: GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol. 100:17–27. 2024.PubMed/NCBI View Article : Google Scholar

41 

Xie Y, Liu X, Xie D, Zhang W, Zhao H, Guan H and Zhou PK: Voltage-dependent anion channel 1 mediates mitochondrial fission and glucose metabolic reprogramming in response to ionizing radiation. Sci Total Environ. 946(174246)2024.PubMed/NCBI View Article : Google Scholar

42 

Li M, Dong Y, Wang Z, Zhao Y, Dai Y and Zhang B: Engineering hypoxia-responsive 6-aminonicotinamide prodrugs for on-demand NADPH depletion and redox manipulation. J Mater Chem B. 12:8067–8075. 2024.PubMed/NCBI View Article : Google Scholar

43 

Yang L, Lu P, Yang X, Li K, Chen X, Zhou Y and Qu S: Downregulation of annexin A3 promotes ionizing radiation-induced EGFR activation and nuclear translocation and confers radioresistance in nasopharyngeal carcinoma. Exp Cell Res. 418(113292)2022.PubMed/NCBI View Article : Google Scholar

44 

Huang R and Zhou PK: DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6(254)2021.PubMed/NCBI View Article : Google Scholar

45 

Farhood B, Ashrafizadeh M, Khodamoradi E, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE and Najafi M: Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 250(117570)2020.PubMed/NCBI View Article : Google Scholar

46 

Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q and Jiang X: Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol. 14(1247268)2023.PubMed/NCBI View Article : Google Scholar

47 

Alonso-González C, González A, Martínez-Campa C, Menéndez-Menéndez J, Gómez-Arozamena J, García-Vidal A and Cos S: Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett. 370:145–152. 2016.PubMed/NCBI View Article : Google Scholar

48 

Giallourou NS, Rowland IR, Rothwell SD, Packham G, Commane DM and Swann JR: Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Eur J Nutr. 58:2377–2391. 2019.PubMed/NCBI View Article : Google Scholar

49 

Qin S, He X, Lin H, Schulte BA, Zhao M, Tew KD and Wang GY: Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med. 169:238–247. 2021.PubMed/NCBI View Article : Google Scholar

50 

Derindağ G, Akgül HM, Kızıltunç A, Özkan Hİ, Kızıltunç Özmen H and Akgül N: Evaluation of saliva glutathione, glutathione peroxidase, and malondialdehyde levels in head-neck radiotherapy patients. Turk J Med Sci. 51:644–649. 2021.PubMed/NCBI View Article : Google Scholar

51 

Lewis JE, Forshaw TE, Boothman DA, Furdui CM and Kemp ML: Personalized genome-scale metabolic models identify targets of redox metabolism in radiation-resistant tumors. Cell Syst. 12:68–81.e11. 2021.PubMed/NCBI View Article : Google Scholar

52 

Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q and Zhang T: Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther. 8(205)2023.PubMed/NCBI View Article : Google Scholar

53 

Read GH, Bailleul J, Vlashi E and Kesarwala AH: Metabolic response to radiation therapy in cancer. Mol Carcinog. 61:200–224. 2022.PubMed/NCBI View Article : Google Scholar

54 

Wang M, Chen S and Ao D: Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (2020). 2:654–691. 2021.PubMed/NCBI View Article : Google Scholar

55 

Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22(96)2023.PubMed/NCBI View Article : Google Scholar

56 

Lin J, Song T, Li C and Mao W: GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 1867(118659)2020.PubMed/NCBI View Article : Google Scholar

57 

Sobanski T, Rose M, Suraweera A, O'Byrne K, Richard DJ and Bolderson E: Cell metabolism and DNA repair pathways: implications for cancer therapy. Front Cell Dev Biol. 9(633305)2021.PubMed/NCBI View Article : Google Scholar

58 

Zheng Y, Li H, Bo X and Chen H: Ionizing radiation damage and repair from 3D-genomic perspective. Trends Genet. 39:1–4. 2023.PubMed/NCBI View Article : Google Scholar

59 

Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT and Tsai JT: Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells. 9(746)2020.PubMed/NCBI View Article : Google Scholar

60 

Morillo-Huesca M, G López-Cepero I, Conesa-Bakkali R, Tomé M, Watts C, Huertas P, Moreno-Bueno G, Durán RV and Martínez-Fábregas J: Radiotherapy resistance driven by asparagine endopeptidase through ATR pathway modulation in breast cancer. J Exp Clin Cancer Res. 44(74)2025.PubMed/NCBI View Article : Google Scholar

61 

Meng W, Palmer JD, Siedow M, Haque SJ and Chakravarti A: Overcoming radiation resistance in gliomas by targeting metabolism and DNA repair pathways. Int J Mol Sci. 23(2246)2022.PubMed/NCBI View Article : Google Scholar

62 

Benjanuwattra J, Chaiyawat P, Pruksakorn D and Koonrungsesomboon N: Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur J Pharmacol. 887(173580)2020.PubMed/NCBI View Article : Google Scholar

63 

Fu S, Li Z, Xiao L, Hu W, Zhang L, Xie B, Zhou Q, He J, Qiu Y, Wen M, et al: Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. Cell Rep. 28:1136–1143.e4. 2019.PubMed/NCBI View Article : Google Scholar

64 

Madsen HB, Peeters MJ, Straten PT and Desler C: Nucleotide metabolism in the regulation of tumor microenvironment and immune cell function. Curr Opin Biotechnol. 84(103008)2023.PubMed/NCBI View Article : Google Scholar

65 

López-Hernández L, Toolan-Kerr P, Bannister AJ and Millán-Zambrano G: Dynamic histone modification patterns coordinating DNA processes. Mol Cell. 85:225–237. 2025.PubMed/NCBI View Article : Google Scholar

66 

Charidemou E and Kirmizis A: A two-way relationship between histone acetylation and metabolism. Trends Biochem Sci. 49:1046–1062. 2024.PubMed/NCBI View Article : Google Scholar

67 

Kitabatake K, Kaji T and Tsukimoto M: ATP and ADP enhance DNA damage repair in γ-irradiated BEAS-2B human bronchial epithelial cells through activation of P2X7 and P2Y12 receptors. Toxicol Appl Pharmacol. 407(115240)2020.PubMed/NCBI View Article : Google Scholar

68 

Koritzinsky M: Metformin: A novel biological modifier of tumor response to radiation therapy. Int J Radiat Oncol Biol Phys. 93:454–464. 2015.PubMed/NCBI View Article : Google Scholar

69 

Scott JS, Nassar ZD, Swinnen JV and Butler LM: Monounsaturated fatty acids: Key regulators of cell viability and intracellular signaling in cancer. Mol Cancer Res. 20:1354–1364. 2022.PubMed/NCBI View Article : Google Scholar

70 

Chen J, Zhang F, Ren X, Wang Y, Huang W, Zhang J and Cui Y: Targeting fatty acid synthase sensitizes human nasopharyngeal carcinoma cells to radiation via downregulating frizzled class receptor 10. Cancer Biol Med. 17:740–752. 2020.PubMed/NCBI View Article : Google Scholar

71 

Zhan N, Li B, Xu X, Xu J and Hu S: Inhibition of FASN expression enhances radiosensitivity in human non-small cell lung cancer. Oncol Lett. 15:4578–4584. 2018.PubMed/NCBI View Article : Google Scholar

72 

Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V, Serrano MA, Zou Y, Liu JY and Zhang JT: FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci USA. 113:E6965–E6973. 2016.PubMed/NCBI View Article : Google Scholar

73 

Chuang HY, Lee YP, Lin WC, Lin YH and Hwang JJ: Fatty acid inhibition sensitizes androgen-dependent and -independent prostate cancer to radiotherapy via FASN/NF-κB pathway. Sci Rep. 9(13284)2019.PubMed/NCBI View Article : Google Scholar

74 

Werner E, Alter A, Deng Q, Dammer EB, Wang Y, Yu DS, Duong DM, Seyfried NT and Doetsch PW: Ionizing radiation induction of cholesterol biosynthesis in lung tissue. Sci Rep. 9(12546)2019.PubMed/NCBI View Article : Google Scholar

75 

You Y, Wang Q, Li H, Ma Y, Deng Y, Ye Z and Bai F: Zoledronic acid exhibits radio-sensitizing activity in human pancreatic cancer cells via inactivation of STAT3/NF-κB signaling. Onco Targets Ther. 12:4323–4330. 2019.PubMed/NCBI View Article : Google Scholar

76 

Peng J, Yin X, Yun W, Meng X and Huang Z: Radiotherapy-induced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett. 559(216108)2023.PubMed/NCBI View Article : Google Scholar

77 

Vitale I, Manic G, Coussens LM, Kroemer G and Galluzzi L: Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30:36–50. 2019.PubMed/NCBI View Article : Google Scholar

78 

Nan D, Yao W, Huang L, Liu R, Chen X, Xia W, Sheng H, Zhang H, Liang X and Lu Y: Glutamine and cancer: Metabolism, immune microenvironment, and therapeutic targets. Cell Commun Signal. 23(45)2025.PubMed/NCBI View Article : Google Scholar

79 

An D, Zhai D, Wan C and Yang K: The role of lipid metabolism in cancer radioresistance. Clin Transl Oncol. 25:2332–2349. 2023.PubMed/NCBI View Article : Google Scholar

80 

Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW and Scott AM: Cancer-associated fibroblasts as therapeutic targets for cancer: Advances, challenges, and future prospects. J Biomed Sci. 32(7)2025.PubMed/NCBI View Article : Google Scholar

81 

Mukherjee A, Bezwada D, Greco F, Zandbergen M, Shen T, Chiang CY, Tasdemir M, Fahrmann J, Grapov D, La Frano MR, et al: Adipocytes reprogram cancer cell metabolism by diverting glucose towards glycerol-3-phosphate thereby promoting metastasis. Nat Metab. 5:1563–1577. 2023.PubMed/NCBI View Article : Google Scholar

82 

Lee PWT, Suwa T, Kobayashi M, Yang H, Koseki LR, Takeuchi S, Chow CCT, Yasuhara T and Harada H: Hypoxia- and Postirradiation reoxygenation-induced HMHA1/ARHGAP45 expression contributes to cancer cell invasion in a HIF-dependent manner. Br J Cancer. 131:37–48. 2024.PubMed/NCBI View Article : Google Scholar

83 

Matschke J, Wiebeck E, Hurst S, Rudner J and Jendrossek V: Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol. 11(75)2016.PubMed/NCBI View Article : Google Scholar

84 

Bai M, Xu P, Cheng R, Li N, Cao S, Guo Q, Wang X, Li C, Bai N, Jiang B, et al: ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment. Oncogene. 44:1609–1619. 2025.PubMed/NCBI View Article : Google Scholar

85 

Basheeruddin M and Qausain S: Hypoxia-inducible factor 1-alpha (HIF-1α) and cancer: Mechanisms of tumor hypoxia and therapeutic targeting. Cureus. 16(e70700)2024.PubMed/NCBI View Article : Google Scholar

86 

Shah R, Ibis B, Kashyap M and Boussiotis VA: The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism. 151(155747)2024.PubMed/NCBI View Article : Google Scholar

87 

Gao F, Liu C, Guo J, Sun W, Xian L, Bai D, Liu H, Cheng Y, Li B, Cui J, et al: Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep. 5(9613)2015.PubMed/NCBI View Article : Google Scholar

88 

Lyssiotis CA and Kimmelman AC: Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27:863–875. 2017.PubMed/NCBI View Article : Google Scholar

89 

Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS: Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 24:2482–2490. 2018.PubMed/NCBI View Article : Google Scholar

90 

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.PubMed/NCBI View Article : Google Scholar

91 

Ko J, Berger R, Lee H, Yoon H, Cho J and Char K: Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem Soc Rev. 50:3585–3628. 2017.PubMed/NCBI View Article : Google Scholar

92 

Liu G, Müller AJ and Wang D: Confined crystallization of polymers within nanopores. Acc Chem Res. 54:3028–3038. 2021.PubMed/NCBI View Article : Google Scholar

93 

Napolitano S, Glynos E and Tito NB: Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep Prog Phys. 80(036602)2017.PubMed/NCBI View Article : Google Scholar

94 

Lu S, Zhao ZQ, Wang Q, Lv ZW and Yang JS: Biological nano confinement: A promising target for inhibiting cancer cell progress and metastasis. Oncologie. 24:591–597. 2022.

95 

Kuttiappan A, Chenchula S, Vardhan KV, Padmavathi R, Varshini TS, Amerneni LS, Amerneni KC and Chavan MR: CAR T-cell therapy in hematologic and solid malignancies: Mechanisms, clinical applications, and future directions. Med Oncol. 42(376)2025.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Liu H, Zhu X, He Z and Yang J: <p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>. Med Int 6: 15, 2026.
APA
Liu, H., Zhu, X., He, Z., & Yang, J. (2026). <p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>. Medicine International, 6, 15. https://doi.org/10.3892/mi.2026.299
MLA
Liu, H., Zhu, X., He, Z., Yang, J."<p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>". Medicine International 6.2 (2026): 15.
Chicago
Liu, H., Zhu, X., He, Z., Yang, J."<p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>". Medicine International 6, no. 2 (2026): 15. https://doi.org/10.3892/mi.2026.299
Copy and paste a formatted citation
x
Spandidos Publications style
Liu H, Zhu X, He Z and Yang J: <p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>. Med Int 6: 15, 2026.
APA
Liu, H., Zhu, X., He, Z., & Yang, J. (2026). <p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>. Medicine International, 6, 15. https://doi.org/10.3892/mi.2026.299
MLA
Liu, H., Zhu, X., He, Z., Yang, J."<p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>". Medicine International 6.2 (2026): 15.
Chicago
Liu, H., Zhu, X., He, Z., Yang, J."<p>Radiation‑induced alterations in the cancer microenvironment (Review)</p>". Medicine International 6, no. 2 (2026): 15. https://doi.org/10.3892/mi.2026.299
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team