Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
2014-January Volume 9 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
2014-January Volume 9 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors

  • Authors:
    • Zhi Cheng Xu
    • Qun Zhang
    • Hong Li
  • View Affiliations / Copyright

    Affiliations: Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, P.R. China
  • Pages: 204-210
    |
    Published online on: November 14, 2013
       https://doi.org/10.3892/mmr.2013.1796
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hair follicle stem cells (HFSCs) possess powerful expansion and multi‑differentiation potential, properties that place them at the forefront of the field of tissue engineering and stem cell‑based therapy. The aim of the present study was to investigate the differentiation of human HFSCs (hHFSCs) into cells of an endothelial lineage. hHFSCs were expanded to the second passage in vitro and then induced by the addition of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) to the culture medium. The expression levels of endothelial cell (EC)‑related markers, including von Willebrand factor (vWF), vascular endothelial cadherin (VE)‑cadherin and cluster of differentiation (CD)31, were detected by immunofluorescence staining, flow cytometric analysis and reverse transcription‑polymerase chain reaction. The hHFSCs expressed vWF, VE‑cadherin and CD31 when exposed to a differentiation medium, similar to the markers expressed by the human umbilical vein ECs. More significantly, differentiated cells were also able to take up low‑density lipoprotein. The data of the present study demonstrated that an efficient strategy may be developed for differentiating hHFSCs into ECs by stimulation with VEGF and bFGF. Thus, hHFSCs represent a novel cell source for vascular tissue engineering and studies regarding the treatment of various forms of ischaemic vascular disease.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Owens GK, Kumar MS and Wamhoff BR: Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 84:767–801. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Sundaram S and Niklason LE: Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs. 195:15–25. 2012.PubMed/NCBI

3 

Xu ZC, Zhang WJ, Li H, Cui L, Cen L, Zhou GD, Liu W and Cao Y: Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials. 29:1464–1472. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM and Niklason LE: Blood vessels engineered from human cells. Lancet. 365:2122–2124. 2005. View Article : Google Scholar : PubMed/NCBI

5 

McKee JA, Banik SS, Boyer MJ, Hamad NM, Lawson JH, Niklason LE and Counter CM: Human arteries engineered in vitro. EMBO Rep. 4:633–638. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Bajpai VK and Andreadis ST: Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng Part B Rev. 18:405–425. 2012.PubMed/NCBI

7 

Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y and Kurosawa H: First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation. 108:1729–1734. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M and Kurosawa H: Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 129:1330–1338. 2005.

9 

Gong ZD and Niklason LE: Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 22:1635–1648. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA, MacLellan WR and Beygui RE: Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs. 187:263–274. 2008.PubMed/NCBI

11 

Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y and Cui L: A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials. 31:621–630. 2010. View Article : Google Scholar

12 

Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN and DiMuzio PJ: Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J Surg Res. 168:306–314. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Hsu YC, Pasolli HA and Fuchs E: Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 144:92–105. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Mistriotis P and Andreadis ST: Hair Follicle: a novel source of multipotent stem cells for tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 19:265–278. 2013.PubMed/NCBI

15 

Jahoda CA, Whitehouse J, Reynolds AJ and Hole N: Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol. 12:849–859. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M and Xu X: Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol. 168:1879–1888. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Drewa T, Joachimiak R, Kaznica A, Sarafian V and Pokrywczynska M: Hair stem cells for bladder regeneration in rats: preliminary results. Transplant Proc. 41:4345–4351. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Lin H, Liu F, Zhang C, Zhang Z, Kong Z, Zhang X and Hoffman RM: Characterization of nerve conduits seeded with neurons and Schwann cells derived from hair follicle neural crest stem cells. Tissue Eng Part A. 17:1691–1698. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S and Akhurst RJ: Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 121:1845–1854. 1995.PubMed/NCBI

20 

Shah NM, Groves AK and Anderson DJ: Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell. 85:331–343. 1996. View Article : Google Scholar : PubMed/NCBI

21 

Grainger DJ, Metcalfe JC, Grace AA and Mosedale DE: Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J Cell Sci. 111:2977–2988. 1998.PubMed/NCBI

22 

Hirschi KK, Rohovsky SA and D’Amore PA: PDGF, TGFbeta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 141:805–814. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Chen S and Lechleider RJ: Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res. 94:1195–1202. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Hirschi KK, Burt JM, Hirschi KD and Dai C: Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ Res. 93:429–437. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT and Verfaillie CM: Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest. 116:3139–3149. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Lindahl P, Johansson BR, Levéen P and Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 277:242–245. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Hellström M, Kalén M, Lindahl P, Abramsson A and Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 126:3047–3055. 1999.PubMed/NCBI

28 

Kim YM, Jeon ES, Kim MR, Jho SK, Ryu SW and Kim JH: Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. Int J Biochem Cell Biol. 40:2482–2491. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Long JL and Tranquillo RT: Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Gong Z and Niklason LE: Blood vessels engineered from human cells. Trends Cardiovasc Med. 16:153–156. 2006. View Article : Google Scholar

31 

Isenberg BC, Williams C and Tranquillo RT: Small-diameter artificial arteries engineered in vitro. Circ Res. 98:25–35. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, Park HY, Jang Y, Chang BC, Choi CY, et al: Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg. 241:506–515. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B and Ignarro LJ: Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA. 103:12167–12172. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardo R, Piazza S, Pignatelli A, et al: Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 110:3438–3446. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Miano JM: Mammalian smooth muscle differentiation: origins, markers and transcriptional control. Results Probl Cell Differ. 38:39–59. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Grainger DJ: Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol. 24:399–404. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Björkerud S: Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells in vitro. Arterioscler Thromb. 11:892–902. 1991.PubMed/NCBI

38 

Deaton RA, Su C, Valencia TG and Grant SR: Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. J Biol Chem. 280:31172–31181. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Hautmann MB, Madsen CS and Owens GK: A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem. 272:10948–10956. 1997. View Article : Google Scholar

40 

Kawai-Kowase K, Sato H, Oyama Y, Kanai H, Sato M, Doi H and Kurabayashi M: Basic fibroblast growth factor antagonizes transforming growth factor-beta1-induced smooth muscle gene expression through extracellular signal-regulated kinase 1/2 signaling pathway activation. Arterioscler Thromb Vasc Biol. 24:1384–1390. 2004. View Article : Google Scholar

41 

Papetti M, Shujath J, Riley KN and Herman IM: FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 44:4994–5005. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Kucich U, Rosenbloom JC, Abrams WR, Bashir MM and Rosenbloom J: Stabilization of elastin mRNA by TGF-beta: initial characterization of signaling pathway. Am J Respir Cell Mol Biol. 17:10–16. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Kucich U, Rosenbloom JC, Abrams WR and Rosenbloom J: Transforming growth factor-beta stabilizes elastin mRNA by a pathway requiring active Smads, protein kinase C-delta, and p38. Am J Respir Cell Mol Biol. 26:183–188. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Hong HH, Uzel MI, Duan C, Sheff MC and Trackman PC: Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Lab Invest. 79:1655–1667. 1999.PubMed/NCBI

45 

Ross JJ and Tranquillo RT: ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22:477–490. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Yao L, Swartz DD, Gugino SF, Russell JA and Andreadis ST: Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng. 11:991–1003. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Sinha S, Hoofnagle MH, Kingston PA, McCanna ME and Owens GK: Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol. 287:C1560–C1568. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Kinner B, Zaleskas JM and Spector M: Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res. 278:72–83. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ and Li S: Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem. 279:43725–43734. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Collins T, Pober JS, Gimbrone MA Jr, Hammacher A, Betsholtz C, Westermark B and Heldin CH: Cultured human endothelial cells express platelet-derived growth factor A chain. Am J Pathol. 126:7–12. 1987.PubMed/NCBI

51 

Westermark B, Siegbahn A, Heldin CH and Claesson-Welsh L: B-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase. Proc Natl Acad Sci USA. 87:128–132. 1990. View Article : Google Scholar

52 

Holmgren L, Glaser A, Pfeifer-Ohlsson S and Ohlsson R: Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development. 113:749–754. 1991.

53 

Hyytiäinen M, Penttinen C and Keski-Oja J: Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci. 41:233–264. 2004.PubMed/NCBI

54 

Derynck R and Akhurst RJ: Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 9:1000–1004. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Liang MS and Andreadis ST: Engineering fibrin-binding TGF-β1 for sustained signaling and contractile function of MSC based vascular constructs. Biomaterials. 32:8684–8693. 2011.PubMed/NCBI

56 

Gallagher JT: Heparan sulfate: growth control with a restricted menu. J Clin Invest. 108:357–361. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu ZC, Zhang Q and Li H: Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Mol Med Rep 9: 204-210, 2014.
APA
Xu, Z.C., Zhang, Q., & Li, H. (2014). Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Molecular Medicine Reports, 9, 204-210. https://doi.org/10.3892/mmr.2013.1796
MLA
Xu, Z. C., Zhang, Q., Li, H."Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors". Molecular Medicine Reports 9.1 (2014): 204-210.
Chicago
Xu, Z. C., Zhang, Q., Li, H."Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors". Molecular Medicine Reports 9, no. 1 (2014): 204-210. https://doi.org/10.3892/mmr.2013.1796
Copy and paste a formatted citation
x
Spandidos Publications style
Xu ZC, Zhang Q and Li H: Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Mol Med Rep 9: 204-210, 2014.
APA
Xu, Z.C., Zhang, Q., & Li, H. (2014). Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Molecular Medicine Reports, 9, 204-210. https://doi.org/10.3892/mmr.2013.1796
MLA
Xu, Z. C., Zhang, Q., Li, H."Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors". Molecular Medicine Reports 9.1 (2014): 204-210.
Chicago
Xu, Z. C., Zhang, Q., Li, H."Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors". Molecular Medicine Reports 9, no. 1 (2014): 204-210. https://doi.org/10.3892/mmr.2013.1796
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team