|
1
|
Raggatt LJ and Partridge NC: Cellular and
molecular mechanisms of bone remodeling. J Biol Chem.
285:25103–25108. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Boyce BF, Xing L, Shakespeare W, Wang Y,
Dalgarno D, Iuliucci J and Sawyer T: Regulation of bone remodeling
and emerging breakthrough drugs for osteoporosis and osteolytic
bone metastases. Kidney Int. 63:S2–S5. 2003. View Article : Google Scholar
|
|
3
|
van Oers RF, Ruimerman R, Tanck E, et al:
A unified theory for osteonal and hemi-osteonal remodeling. Bone.
42:250–259. 2008. View Article : Google Scholar
|
|
4
|
Boyce BF and Xing L: Functions of
RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem
Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Greenfield EM, Bi Y and Miyauchi A:
Regulation of osteoclast activity. Life Sci. 65:1087–1102. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lacey D, Timms E, Tan H-L, Kelley M,
Dunstan C, Burgess T, Elliott R, Colombero A, Elliott G and Scully
S: Osteoprotegerin ligand is a cytokine that regulates osteoclast
differentiation and activation. Cell. 93:165–176. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Simonet W, Lacey D, Dunstan C, Kelley M,
Chang M-S, Lüthy R, Nguyen H, Wooden S, Bennett L and Boone T:
Osteoprotegerin: a novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Anderson DM, Maraskovsky E, Billingsley
WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D
and Galibert L: A homologue of the TNF receptor and its ligand
enhance T-cell growth and dendritic-cell function. Nature.
390:175–179. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hanada R, Leibbrandt A, Hanada T, Kitaoka
S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, et
al: Central control of fever and female body temperature by
RANKL/RANK. Nature. 462:505–509. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Karsenty G and Wagner EF: Reaching a
genetic and molecular understanding of skeletal development. Dev
Cell. 2:389–406. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yasuda H, Shima N, Nakagawa N, Yamaguchi
K, Kinosaki M, Mochizuki S-i, Tomoyasu A, Yano K, Goto M, et al:
Osteoclast differentiation factor is a ligand for
osteoprotegerin/osteoclastogenesis-inhibitory factor and is
identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 95:3597–3602.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wong BR, Josien R, Lee SY, et al: TRANCE
(tumor necrosis factor [TNF]-related activation-induced cytokine),
a new TNF family member predominantly expressed in T cells, is a
dendritic cell-specific survival factor. J Exp Med. 186:2075–2080.
1997. View Article : Google Scholar
|
|
13
|
Rodan GA and Martin TJ: Role of
osteoblasts in hormonal control of bone resorption - a hypothesis.
Calcif Tissue Int. 33:349–351. 1981. View Article : Google Scholar
|
|
14
|
Yasuda H, Shima N, Nakagawa N, Mochizuki
S-I, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K and Kuriyama M:
Identity of osteoclastogenesis inhibitory factor (OCIF) and
osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits
osteoclastogenesis in vitro. Endocrinology. 139:1329–1337.
1998.PubMed/NCBI
|
|
15
|
Tat SK, Pelletier J-P, Velasco CR,
Padrines M and Martel-Pelletier J: New perspective in
osteoarthritis: the OPG and RANKL system as a potential therapeutic
target? Keio J Med. 58:29–40. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Caetano-Lopes J, Canhao H and Fonseca JE:
Osteoblasts and bone formation. Acta Reumatol Port.
32:1032007.PubMed/NCBI
|
|
17
|
Boyce BF and Xing L: Biology of RANK,
RANKL, and osteoprotegerin. Arthritis Res Ther. 9:S12007.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lum L, Wong BR, Josien R, Becherer JD,
Erdjument-Bromage H, Schlöndorff J, Tempst P, Choi Y and Blobel CP:
Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting
enzyme-like protease in shedding of TRANCE, a TNF family member
involved in osteoclastogenesis and dendritic cell survival. J Biol
Chem. 274:13613–13618. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wong BR, Rho J, Arron J, Robinson E,
Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS and Frankel
WN: TRANCE is a novel ligand of the tumor necrosis factor receptor
family that activates c-Jun N-terminal kinase in T cells. J Biol
Chem. 272:25190–25194. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kong Y-Y, Yoshida H, Sarosi I, Tan H-L,
Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G and
Itie A: OPGL is a key regulator of osteoclastogenesis, lymphocyte
development and lymph-node organogenesis. Nature. 397:315–323.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Haynes DR, Barg E, Crotti TN, Holding C,
Weedon H, Atkins GJ, Zannetino A, Ahern M, Coleman M and
Roberts-Thomson PJ: Osteoprotegerin expression in synovial tissue
from patients with rheumatoid arthritis, spondyloarthropathies and
osteoarthritis and normal controls. Rheumatology (Oxford).
42:123–134. 2003. View Article : Google Scholar
|
|
22
|
Hsu H, Lacey DL, Dunstan CR, Solovyev I,
Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ and Sarosi I:
Tumor necrosis factor receptor family member RANK mediates
osteoclast differentiation and activation induced by
osteoprotegerin ligand. Proc Natl Acad Sci USA. 96:3540–3545. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li J, Sarosi I, Yan X-Q, Morony S,
Capparelli C, Tan H-L, McCabe S, Elliott R, Scully S and Van G:
RANK is the intrinsic hematopoietic cell surface receptor that
controls osteoclastogenesis and regulation of bone mass and calcium
metabolism. Proc Natl Acad Sci USA. 97:1566–1571. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Galibert L, Tometsko ME, Anderson DM, et
al: The involvement of multiple tumor necrosis factor receptor
(TNFR)-associated factors in the signaling mechanisms of receptor
activator of NF-kappaB, a member of the TNFR superfamily. J Biol
Chem. 273:34120–34127. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ye H, Arron JR, Lamothe B, Cirilli M,
Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, et al:
Distinct molecular mechanism for initiating TRAF6 signalling.
Nature. 418:443–447. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Takayanagi H, Ogasawara K, Hida S, Chiba
T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, et al:
T-cell-mediated regulation of osteoclastogenesis by signalling
cross-talk between RANKL and IFN-gamma. Nature. 408:600–605. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Takayanagi H, Kim S, Koga T, Nishina H,
Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, et al:
Induction and activation of the transcription factor NFATc1 (NFAT2)
integrate RANKL signaling in terminal differentiation of
osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim H-H, Lee DE, Shin JN, Lee YS, Jeon YM,
Chung C-H, Ni J, Kwon BS and Lee ZH: Receptor activator of NF-κB
recruits multiple TRAF family adaptors and activates c-Jun
N-terminal kinase. FEBS Lett. 443:297–302. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Darnay BG, Haridas V, Ni J, et al:
Characterization of the intracellular domain of receptor activator
of NF-kappaB (RANK). Interaction with tumor necrosis factor
receptor-associated factors and activation of NF-kappab and c-Jun
N-terminal kinase. J Biol Chem. 273:20551–20555. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Naito A, Azuma S, Tanaka S, Miyazaki T,
Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M and Yamamoto T:
Severe osteopetrosis, defective interleukin-1 signalling and lymph
node organogenesis in TRAF6-deficient mice. Genes Cells. 4:353–362.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lomaga MA, Yeh W-C, Sarosi I, Duncan GS,
Furlonger C, Ho A, Morony S, Capparelli C, Van G and Kaufman S:
TRAF6 deficiency results in osteopetrosis and defective
interleukin-1, CD40, and LPS signaling. Genes Dev. 13:1015–1024.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wada T, Nakashima T, Oliveira-dos-Santos
AJ, Gasser J, Hara H, Schett G and Penninger JM: The molecular
scaffold Gab2 is a crucial component of RANK signaling and
osteoclastogenesis. Nat Med. 11:394–399. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X,
Takeshita S, Liu J, Teale M and Feng X: Functional identification
of three receptor activator of NF-κB cytoplasmic motifs mediating
osteoclast differentiation and function. J Biol Chem.
279:54759–54769. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wong BR, Besser D, Kim N, Arron JR,
Vologodskaia M, Hanafusa H and Choi Y: TRANCE, a TNF family member,
activates Akt/PKB through a signaling complex involving TRAF6 and
c-Src. Mol Cell. 4:1041–1049. 1999. View Article : Google Scholar
|
|
35
|
Asagiri M, Sato K, Usami T, Ochi S,
Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW and Serfling E:
Autoamplification of NFATc1 expression determines its essential
role in bone homeostasis. J Exp Med. 202:1261–1269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Koga T, Matsui Y, Asagiri M, Kodama T, de
Crombrugghe B, Nakashima K and Takayanagi H: NFAT and Osterix
cooperatively regulate bone formation. Nat Med. 11:880–885. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Theoleyre S, Wittrant Y, Tat SK, Fortun Y,
Redini F and Heymann D: The molecular triad OPG/RANK/RANKL:
involvement in the orchestration of pathophysiological bone
remodeling. Cytokine Growth Factor Rev. 15:457–475. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bai S, Kopan R, Zou W, Hilton MJ, Ong C-t,
Long F, Ross FP and Teitelbaum SL: NOTCH1 regulates
osteoclastogenesis directly in osteoclast precursors and indirectly
via osteoblast lineage cells. J Biol Chem. 283:6509–6518. 2008.
View Article : Google Scholar
|
|
39
|
Seeman E and Delmas PD: Bone quality-the
material and structural basis of bone strength and fragility. N
Engl J Med. 354:2250–2261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Takayanagi H: Osteoimmunology: shared
mechanisms and crosstalk between the immune and bone systems. Nat
Rev Immunol. 7:292–304. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Roodman GD: Cell biology of the
osteoclast. Exp Hematol. 27:1229–1241. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Walsh MC, Kim N, Kadono Y, et al:
Osteoimmunology: interplay between the immune system and bone
metabolism. Annu Rev Immunol. 24:33–63. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Takayanagi H: New developments in
osteoimmunology. Nat Rev Rheumatol. 8:684–689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Takayanagi H: Osteoimmunology and the
effects of the immune system on bone. Nat Rev Rheumatol. 5:667–676.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-γ: an overview of signals, mechanisms and functions.
J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar
|
|
46
|
Takayanagi H, Kim S, Matsuo K, Suzuki H,
Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K and Ida N: RANKL
maintains bone homeostasis through c-Fos-dependent induction of
interferon-β. Nature. 416:744–749. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dougall WC, Glaccum M, Charrier K,
Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME and
Maliszewski CR: RANK is essential for osteoclast and lymph node
development. Genes Dev. 13:2412–2424. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim D, Mebius RE, MacMicking JD, Jung S,
Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R and Kim N:
Regulation of peripheral lymph node genesis by the tumor necrosis
factor family member TRANCE. J Exp Med. 192:1467–1478. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Raisz LG: Pathogenesis of osteoporosis:
concepts, conflicts, and prospects. J Clin Invest. 115:3318–3325.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ghannam NN: Book review: Assessment of
fracture risk and its application to screening for postmenopausal
osteoporosis. Ann Saudi Med. 14:5271994.PubMed/NCBI
|
|
51
|
Ominsky MS, Li X, Asuncion FJ, Barrero M,
Warmington KS, Dwyer D, Stolina M, Geng Z, Grisanti M and Tan HL:
RANKL inhibition with osteoprotegerin increases bone strength by
improving cortical and trabecular bone architecture in
ovariectomized rats. J Bone Mine Res. 23:672–682. 2008. View Article : Google Scholar
|
|
52
|
Cummings SR, Martin JS, McClung MR, Siris
ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M and Wang A:
Denosumab for prevention of fractures in postmenopausal women with
osteoporosis. N Engl J Med. 361:756–765. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Vega D, Maalouf NM and Sakhaee K: The role
of receptor activator of nuclear factor-κB (RANK)/RANK
ligand/osteoprotegerin: clinical implications. J Clin Endocrinol
Metab. 92:4514–4521. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pettit A, Walsh N, Manning C, Goldring S
and Gravallese E: RANKL protein is expressed at the pannus-bone
interface at sites of articular bone erosion in rheumatoid
arthritis. Rheumatology (Oxford). 45:1068–1076. 2006. View Article : Google Scholar
|
|
55
|
Ainola M, Mandelin J, Liljestrom M,
Konttinen Y and Salo J: Imbalanced expression of RANKL and
osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis. Clin
Exp Rheumatol. 26:2402008.PubMed/NCBI
|
|
56
|
Haynes D, Crotti T, Weedon H, Slavotinek
J, Au V, Coleman M, Roberts-Thomson PJ, Ahern M and Smith MD:
Modulation of RANKL and osteoprotegerin expression in synovial
tissue from patients with rheumatoid arthritis in response to
disease-modifying antirheumatic drug treatment and correlation with
radiologic outcome. Arthritis Rheum. 59:911–920. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Whyte MP, Obrecht SE, Finnegan PM, Jones
JL, Podgornik MN, McAlister WH and Mumm S: Osteoprotegerin
deficiency and juvenile Paget’s disease. N Engl J Med. 347:175–184.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cundy T, Hegde M, Naot D, Chong B, King A,
Wallace R, Mulley J, Love DR, Seidel J and Fawkner M: A mutation in
the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic
hyperphosphatasia phenotype. Hum Mol Genet. 11:2119–2127. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hughes AE, Ralston SH, Marken J, Bell C,
MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K and Hovy
L: Mutations in TNFRSF11A, affecting the signal peptide of RANK,
cause familial expansile osteolysis. Nat Genet. 24:45–48. 2000.
View Article : Google Scholar
|
|
60
|
Sobacchi C, Frattini A, Guerrini MM,
Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A and
Bishop N: Osteoclast-poor human osteopetrosis due to mutations in
the gene encoding RANKL. Nat Genet. 39:960–962. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mori K, Le Goff B, Berreur M, Riet A,
Moreau A, Blanchard F, Chevalier C, Guisle-Marsollier I, Leger J
and Guicheux J: Human osteosarcoma cells express functional
receptor activator of nuclear factor-kappa B. J Pathol.
211:555–562. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Giuliani N, Colla S, Sala R, Moroni M,
Lazzaretti M, La Monica S, Bonomini S, Hojden M, Sammarelli G and
Barillè S: Human myeloma cells stimulate the receptor activator of
nuclear factor-κB ligand (RANKL) in T lymphocytes: a potential role
in multiple myeloma bone disease. Blood. 100:4615–4621. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mundy GR: Metastasis: Metastasis to bone:
causes, consequences and therapeutic opportunities. Nat Rev Cancer.
2:584–593. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Weigelt B, Peterse JL and van’t Veer LJ:
Breast cancer metastasis: markers and models. Nat Rev Cancer.
5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dougall WC and Chaisson M: The
RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer
Metastasis Rev. 25:541–549. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fata JE, Kong Y-Y, Li J, Sasaki T,
Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB and
Lacey DL: The osteoclast differentiation factor
osteoprotegerin-ligand is essential for mammary gland development.
Cell. 103:41–50. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Srivastava S, Matsuda M, Hou Z, Bailey JP,
Kitazawa R, Herbst MP and Horseman ND: Receptor activator of NF-κB
ligand induction via Jak2 and Stat5a in mammary epithelial cells. J
Biol Chem. 278:46171–46178. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cao Y, Bonizzi G, Seagroves TN, Greten FR,
Johnson R, Schmidt EV and Karin M: IKKα provides an essential link
between RANK signaling and cyclin D1 expression during mammary
gland development. Cell. 107:763–775. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Nakagawa N, Kinosaki M, Yamaguchi K, Shima
N, Yasuda H, Yano K, Morinaga T and Higashio K: RANK is the
essential signaling receptor for osteoclast differentiation factor
in osteoclastogenesis. Biochem Biophys Res Commun. 253:395–400.
1998. View Article : Google Scholar
|
|
70
|
Kartsogiannis V, Zhou H, Horwood N, Thomas
R, Hards D, Quinn J, Niforas P, Ng K, Martin T and Gillespie M:
Localization of RANKL (receptor activator of NFκB ligand) mRNA and
protein in skeletal and extraskeletal tissues. Bone. 25:525–534.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chau D, Becker DL, Coombes ME, et al:
Cost-effectiveness of denosumab in the treatment of postmenopausal
osteoporosis in Canada. J Med Econ. 15(Suppl 1): 3–14. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dempster DW, Lambing CL, Kostenuik PJ and
Grauer A: Role of RANK ligand and denosumab, a targeted RANK ligand
inhibitor, in bone health and osteoporosis: a review of preclinical
and clinical data. Clin Ther. 34:521–536. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lacey DL, Boyle WJ, Simonet WS, et al:
Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the
development of denosumab. Nat Rev Drug Discov. 11:401–419. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lipton A, Fizazi K, Stopeck AT, et al:
Superiority of denosumab to zoledronic acid for prevention of
skeletal-related events: a combined analysis of 3 pivotal,
randomised, phase 3 trials. Eur J Cancer. 48:3082–3092. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
McClung MR, Lewiecki EM, Geller ML, et al:
Effect of denosumab on bone mineral density and biochemical markers
of bone turnover: 8-year results of a phase 2 clinical trial.
Osteoporos Int. 24:227–235. 2013. View Article : Google Scholar :
|