Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2015 Volume 11 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2015 Volume 11 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation

  • Authors:
    • Xu Chang Geng
    • Zhou Pang Hu
    • Guo Yong Lian
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China, Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
  • Pages: 3860-3865
    |
    Published online on: January 8, 2015
       https://doi.org/10.3892/mmr.2015.3157
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Erythropoietin (EPO) is a hematopoietic hormone that protects against renal interstitial fibrosis in animal models; however, the mechanism underlying the anti‑fibrotic activity of EPO has remained elusive. The present study aimed to elucidate this mechanism. Twenty‑four male C57BL6 mice were randomly divided into four groups, each comprising six mice: (i) control group (Sh); (ii) unilateral ureteral obstruction (UUO) plus vehicle group (U+V); (ⅲ) UUO plus 300 U/kg body weight recombinant human (rh)EPO (U+E1) and (ⅳ) UUO plus 1,000 U/kg body weight rhEPO (U+E2). Seven days post‑surgery, the mice were sacrificed for examination. UUO induced significant deposition of extracellular matrix, detected by picro‑sirius red staining, which was decreased following rhEPO treatment. UUO also induced deposition of collagen I and fibronectin, rhEPO treatment was able to attenuate this effect at protein and mRNA levels. Compared with the control groups, UUO resulted in the accumulation of α‑smooth muscle actin‑positive cells in the interstitium, an effect which was ameliorated by rhEPO. Furthermore, rhEPO abrogated the UUO‑induced increase in the number of bone marrow‑derived myofibroblasts. Mechanistically, it was discovered that rhEPO decreased CXC chemokine ligand 16 (CXCL16) expression at protein level. However, treatment with rhEPO did not alter the protein expression of CC chemokine ligand 21 or CXCL12. These results suggested that rhEPO decreased fibrocyte accumulation via the suppression of renal CXCL16, which resulted in the attenuation of renal fibrosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Duffield JS: Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 124:2299–2306. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Boor P and Floege J: The renal (myo-) fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant. 27:3027–3036. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Grgic I, Duffield JS and Humphreys BD: The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 27:183–193. 2012. View Article : Google Scholar

4 

Bellini A and Mattoli S: The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 87:858–870. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Pilling D and Gomer RH: Differentiation of circulating monocytes into fibroblast-like cells. Methods Mol Biol. 904:191–206. 2012.PubMed/NCBI

6 

Iwano M, Plieth D, Danoff TM, Xue C, Okada H and Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 110:341–350. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Li J, Deane JA, Campanale NV, Bertram JF and Ricardo SD: The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells. 25:697–706. 2007. View Article : Google Scholar

8 

Sakai N, Wada T, Yokoyama H, et al: Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA. 103:14098–14103. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Chen G, Lin SC, Chen J, et al: CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol. 22:1876–1886. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Reich B, Schmidbauer K, Rodriguez Gomez M, et al: Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int. 84:78–89. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Yang J, Lin SC, Chen G, et al: Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J Am Soc Nephrol. 24:1644–1659. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Oba S, Suzuki E, Nishimatsu H, et al: Renoprotective effect of erythropoietin in ischemia/reperfusion injury: possible roles of the Akt/endothelial nitric oxide synthase-dependent pathway. Int J Urol. 19:248–255. 2012. View Article : Google Scholar

13 

Kaynar K, Aliyazioglu R, Ersoz S, et al: Role of erythropoietin in prevention of amikacin-induced nephropathy. J Nephrol. 25:744–749. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Wang W and Zhang J: Protective effect of erythropoietin against aristolochic acid-induced apoptosis in renal tubular epithelial cells. Eur J Pharmacol. 588:135–140. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Imamura R, Isaka Y, Sandoval RM, et al: A nonerythropoietic derivative of erythropoietin inhibits tubulointerstitial fibrosis in remnant kidney. Clin Exp Nephrol. 16:852–862. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Chen CL, Chou KJ, Lee PT, et al: Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines. Exp Cell Res. 316:1109–1118. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Kitamura H, Isaka Y, Takabatake Y, et al: Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrol Dial Transplant. 23:1521–1528. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Park SH, Choi MJ, Song IK, et al: Erythropoietin decreases renal fibrosis in mice with ureteral obstruction: role of inhibiting TGF-beta-induced epithelial-to-mesenchymal transition. J Am Soc Nephrol. 18:1497–1507. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Chevalier RL, Forbes MS and Thornhill BA: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Grande MT, Fuentes-Calvo I, Arévalo M, et al: Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice. Kidney Int. 77:509–518. 2010. View Article : Google Scholar

21 

Kim DH, Moon SO, Jung YJ, et al: Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int. 75:1031–1038. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Li L, Huang L, Sung SS, et al: The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 74:1526–1537. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Formentini I, Bobadilla M, Haefliger C, et al: Current drug development challenges in chronic kidney disease (CKD) - identification of individualized determinants of renal progression and premature cardiovascular disease (CVD). Nephrol Dial Transplant. 27(Suppl 3): iii81–iii88. 2012. View Article : Google Scholar

24 

Strutz F and Zeisberg M: Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol. 17:2992–2998. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Meran S and Steadman R: Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol. 92:158–167. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Kriz W, Kaissling B and Le Hir M: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 121:468–474. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Broekema M, Harmsen MC, van Luyn MJ, et al: Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol. 18:165–175. 2007. View Article : Google Scholar

28 

Niedermeier M, Reich B, Rodriguez Gomez M, et al: CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci USA. 106:17892–17897. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Bucala R, Spiegel LA, Chesney J, Hogan M and Cerami A: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1:71–81. 1994.PubMed/NCBI

30 

Wada T, Sakai N, Matsushima K and Kaneko S: Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 72:269–273. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Chung AC and Lan HY: Chemokines in renal injury. J Am Soc Nephrol. 22:802–809. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Phillips RJ, Burdick MD, Hong K, et al: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 114:438–446. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Boor P, Ostendorf T and Floege J: Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 6:643–656. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Geng XC, Hu ZP and Lian GY: Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation. Mol Med Rep 11: 3860-3865, 2015.
APA
Geng, X.C., Hu, Z.P., & Lian, G.Y. (2015). Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation. Molecular Medicine Reports, 11, 3860-3865. https://doi.org/10.3892/mmr.2015.3157
MLA
Geng, X. C., Hu, Z. P., Lian, G. Y."Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation". Molecular Medicine Reports 11.5 (2015): 3860-3865.
Chicago
Geng, X. C., Hu, Z. P., Lian, G. Y."Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation". Molecular Medicine Reports 11, no. 5 (2015): 3860-3865. https://doi.org/10.3892/mmr.2015.3157
Copy and paste a formatted citation
x
Spandidos Publications style
Geng XC, Hu ZP and Lian GY: Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation. Mol Med Rep 11: 3860-3865, 2015.
APA
Geng, X.C., Hu, Z.P., & Lian, G.Y. (2015). Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation. Molecular Medicine Reports, 11, 3860-3865. https://doi.org/10.3892/mmr.2015.3157
MLA
Geng, X. C., Hu, Z. P., Lian, G. Y."Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation". Molecular Medicine Reports 11.5 (2015): 3860-3865.
Chicago
Geng, X. C., Hu, Z. P., Lian, G. Y."Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation". Molecular Medicine Reports 11, no. 5 (2015): 3860-3865. https://doi.org/10.3892/mmr.2015.3157
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team