|
1
|
Paget S: The distribution of secondary
growths in cancer of the breast. 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
2
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
|
3
|
Bhowmick NA, Neilson EG and Moses HL:
Stromal fibroblasts in cancer initiation and progression. Nature.
432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hertenstein B, Hambach L, Bacigalupo A,
Schmitz N, McCann S, Slavin S, Gratwohl A, Ferrant A, Elmaagacli A,
Schwertfeger R, et al: Chronic Leukaemia Working Party of the
European Group for Blood and Marrow Transplantation: Development of
leukemia in donor cells after allogeneic stem cell transplantation
- a survey of the European Group for Blood and Marrow
Transplantation (EBMT). Haematologica. 90:969–975. 2005.PubMed/NCBI
|
|
5
|
Sala-Torra O, Hanna C, Loken MR, Flowers
ME, Maris M, Ladne PA, Mason JR, Senitzer D, Rodriguez R, Forman
SJ, et al: Evidence of donor-derived hematologic malignancies after
hematopoietic stem cell transplantation. Biol Blood Marrow
Transplant. 12:511–517. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xiao H, Shi J, Luo Y, Tan Y, He J, Xie W,
Zhang L, Wang Y, Liu L, Wu K, et al: First report of multiple CEBPA
mutations contributing to donor origin of leukemia relapse after
allogeneic hematopoietic stem cell transplantation. Blood.
117:5257–5260. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Raaijmakers MH, Mukherjee S, Guo S, Zhang
S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian
RP, Scadden EO, et al: Bone progenitor dysfunction induces
myelodysplasia and secondary leukaemia. Nature. 464:852–857. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ross FM, Chiecchio L, Dagrada G, Protheroe
RK, Stockley DM, Harrison CJ, Cross NC, Szubert AJ, Drayson MT and
Morgan GJ: UK Myeloma Forum: The t(14;20) is a poor prognostic
factor in myeloma but is associated with long-term stable disease
in monoclonal gammopathies of undetermined significance.
Haematologica. 95:1221–1225. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Walkley CR, Olsen GH, Dworkin S, Fabb SA,
Swann J, McArthur GA, Westmoreland SV, Chambon P, Scadden DT and
Purton LE: A microenvironment-induced myeloproliferative syndrome
caused by retinoic acid receptor gamma deficiency. Cell.
129:1097–1110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Walkley CR, Shea JM, Sims NA, Purton LE
and Orkin SH: Rb regulates interactions between hematopoietic stem
cells and their bone marrow microenvironment. Cell. 129:1081–1095.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sounni NE and Noel A: Targeting the tumor
microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013.
View Article : Google Scholar
|
|
12
|
Zhang J and Liu J: Tumor stroma as targets
for cancer therapy. Pharmacol Ther. 137:200–215. 2013. View Article : Google Scholar :
|
|
13
|
Zhang B, Li M, McDonald T, Holyoake TL,
Moon RT, Campana D, Shultz L and Bhatia R: Microenvironmental
protection of CML stem and progenitor cells from tyrosine kinase
inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood.
121:1824–1838. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Konopleva MY and Jordan CT: Leukemia stem
cells and microenvironment: biology and therapeutic targeting. J
Clin Oncol. 29:591–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eck SM, Côté AL, Winkelman WD and
Brinckerhoff CE: CXCR4 and matrix metalloproteinase-1 are elevated
in breast carcinoma-associated fibroblasts and in normal mammary
fibroblasts exposed to factors secreted by breast cancer cells. Mol
Cancer Res. 7:1033–1044. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gao MQ, Kim BG, Kang S, Choi YP, Park H,
Kang KS and Cho NH: Stromal fibroblasts from the interface zone of
human breast carcinomas induce an epithelial-mesenchymal
transition-like state in breast cancer cells in vitro. J Cell Sci.
123(Pt 20): 3507–3514. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hellevik T, Pettersen I, Berg V, Winberg
JO, Moe BT, Bartnes K, Paulssen RH, Busund LT, Bremnes R, Chalmers
A and Martinez-Zubiaurre I: Cancer-associated fibroblasts from
human NSCLC survive ablative doses of radiation but their invasive
capacity is reduced. Radiat Oncol. 7:592012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Berdiel-Acer M, Bohem ME, López-Doriga A,
Vidal A, Salazar R, Martínez-Iniesta M, Santos C, Sanjuan X,
Villanueva A and Molleví DG: Hepatic carcinoma-associated
fibroblasts promote an adaptative response in colorectal cancer
cells that inhibit proliferation and apoptosis: nonresistant cells
die by nonapoptotic cell death. Neoplasia. 13:931–946.
2011.PubMed/NCBI
|
|
19
|
Mueller L, Goumas FA, Himpel S, Brilloff
S, Rogiers X and Broering DC: Imatinib mesylate inhibits
proliferation and modulates cytokine expression of human
cancer-associated stromal fibroblasts from colorectal metastases.
Cancer Lett. 250:329–338. 2007. View Article : Google Scholar
|
|
20
|
Henriksson ML, Edin S, Dahlin AM,
Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R and
Palmqvist R: Colorectal cancer cells activate adjacent fibroblasts
resulting in FGF1/FGFR3 signaling and increased invasion. Am J
Pathol. 178:1387–1394. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lin ZY, Chuang YH and Chuang WL:
Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and
LOXL2 genes related to promotion of cancer progression in
hepatocellular carcinoma cells. Biomed Pharmacother. 66:525–529.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
True LD, Zhang H, Ye M, Huang CY, Nelson
PS, von Haller PD, Tjoelker LW, Kim JS, Qian WJ, Smith RD, et al:
CD90/THY1 is overexpressed in prostate cancer-associated
fibroblasts and could serve as a cancer biomarker. Mod Pathol.
23:1346–1356. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mao Y, Keller ET, Garfield DH, Shen K and
Wang J: Stromal cells in tumor microenvironment and breast cancer.
Cancer Metastasis Rev. 32:303–315. 2013. View Article : Google Scholar
|
|
24
|
Mishra PJ, Humeniuk R, Medina DJ, Medina
DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D:
Carcinoma-associated fibroblast-like differentiation of human
mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lecomte J, Masset A, Blacher S, Maertens
L, Gothot A, Delgaudine M, Bruyère F, Carnet O, Paupert J, Illemann
M, et al: Bone marrow-derived myofibroblasts are the providers of
pro-invasive matrix metalloproteinase 13 in primary tumor.
Neoplasia. 14:943–951. 2012.PubMed/NCBI
|
|
26
|
Fassnacht M, Lee J, Milazzo C, Boczkowski
D, Su Z, Nair S and Gilboa E: Induction of CD4(+) and CD8(+) T-cell
responses to the human stromal antigen, fibroblast activation
protein: implication for cancer immunotherapy. Clin Cancer Res.
11:5566–5571. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cheng JD, Valianou M, Canutescu AA, Jaffe
EK, Lee HO, Wang H, Lai JH, Bachovchin WW and Weiner LM: Abrogation
of fibroblast activation protein enzymatic activity attenuates
tumor growth. Mol Cancer Ther. 4:351–360. 2005.PubMed/NCBI
|
|
28
|
Loeffler M, Kruger JA, Niethammer AG and
Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer
chemotherapy by increasing intratumoral drug uptake. J Clin Invest.
116:1955–1962. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Santos AM, Jung J, Aziz N, Kissil JL and
Puré E: Targeting fibroblast activation protein inhibits tumor
stromagenesis and growth in mice. J Clin Invest. 119:3613–3625.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kraman M, Bambrough PJ, Arnold JN, Roberts
EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT:
Suppression of antitumor immunity by stromal cells expressing
fibroblast activation protein-alpha. Science. 330:827–830. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rettig WJ, Chesa PG, Beresford HR,
Feickert HJ, Jennings MT, Cohen J, Oettgen HF and Old LJ:
Differential expression of cell surface antigens and glial
fibrillary acidic protein in human astrocytoma subsets. Cancer Res.
46(12 Pt 2): 6406–6412. 1986.PubMed/NCBI
|
|
32
|
Rettig WJ, Garin-Chesa P, Beresford HR,
Oettgen HF, Melamed MR and Old LJ: Cell-surface glycoproteins of
human sarcomas: differential expression in normal and malignant
tissues and cultured cells. Proc Natl Acad Sci USA. 85:3110–3114.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rettig WJ, Garin-Chesa P, Healey JH, Su
SL, Ozer HL, Schwab M, Albino AP and Old LJ: Regulation and
heteromeric structure of the fibroblast activation protein in
normal and transformed cells of mesenchymal and neuroectodermal
origin. Cancer Res. 53:3327–3335. 1993.PubMed/NCBI
|
|
34
|
Rettig WJ, Su SL, Fortunato SR, Scanlan
MJ, Raj BK, Garin-Chesa P, Healey JH and Old LJ: Fibroblast
activation protein: purification, epitope mapping and induction by
growth factors. Int J Cancer. 58:385–392. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Scanlan MJ, Raj BK, Calvo B, Garin-Chesa
P, Sanz-Moncasi MP, Healey JH, Old LJ and Rettig WJ: Molecular
cloning of fibroblast activation protein alpha, a member of the
serine protease family selectively expressed in stromal fibroblasts
of epithelial cancers. Proc Natl Acad Sci USA. 91:5657–5661. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Welt S, Divgi CR, Scott AM, Garin-Chesa P,
Finn RD, Graham M, Carswell EA, Cohen A, Larson SM, Old LJ, et al:
Antibody targeting in metastatic colon cancer: a phase I study of
monoclonal antibody F19 against a cell-surface protein of reactive
tumor stromal fibroblasts. J Clin Oncol. 12:1193–1203.
1994.PubMed/NCBI
|
|
37
|
Niedermeyer J, Scanlan MJ, Garin-Chesa P,
Daiber C, Fiebig HH, Old LJ, Rettig WJ and Schnapp A: Mouse
fibroblast activation protein: molecular cloning, alternative
splicing and expression in the reactive stroma of epithelial
cancers. Int J Cancer. 71:383–389. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Aoyama A and Chen WT: A 170-kDa
membrane-bound protease is associated with the expression of
invasiveness by human malignant melanoma cells. Proc Natl Acad Sci
USA. 87:8296–8300. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Monsky WL, Lin CY, Aoyama A, Kelly T,
Akiyama SK, Mueller SC and Chen WT: A potential marker protease of
invasiveness, seprase, is localized on invadopodia of human
malignant melanoma cells. Cancer Res. 54:5702–5710. 1994.PubMed/NCBI
|
|
40
|
Piñeiro-Sánchez ML, Goldstein LA, Dodt J,
Howard L, Yeh Y, Tran H, Argraves WS and Chen WT: Identification of
the 170-kDa melanoma membrane-bound gelatinase (seprase) as a
serine integral membrane protease. J Biol Chem. 272:7595–7601.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mathew S, Scanlan MJ, Mohan Raj BK, Murty
VV, Garin-Chesa P, Old LJ, Rettig WJ and Chaganti RS: The gene for
fibroblast activation protein alpha (FAP), a putative cell
surface-bound serine protease expressed in cancer stroma and wound
healing, maps to chromosome band 2q23. Genomics. 25:335–337. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kelly T: Fibroblast activation
protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface
proteases that activate cell signaling and are potential targets
for cancer therapy. Drug Resist Updat. 8:51–58. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Aertgeerts K, Levin I, Shi L, Snell GP,
Jennings A, Prasad GS, Zhang Y, Kraus ML, Salakian S, Sridhar V, et
al: Structural and kinetic analysis of the substrate specificity of
human fibroblast activation protein alpha. J Biol Chem.
280:19441–19444. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rosenblum JS and Kozarich JW: Prolyl
peptidases: a serine protease subfamily with high potential for
drug discovery. Curr Opin Chem Biol. 7:496–504. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yazbeck R, Howarth GS and Abbott CA:
Dipeptidyl peptidase inhibitors, an emerging drug class for
inflammatory disease? Trends Pharmacol Sci. 30:600–607. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sedo A and Malík R: Dipeptidyl peptidase
IV-like molecules: homologous proteins or homologous activities?
Biochim Biophys Acta. 1550:107–116. 2001. View Article : Google Scholar
|
|
47
|
Qi SY, Riviere PJ, Trojnar J, Junien JL
and Akinsanya KO: Cloning and characterization of dipeptidyl
peptidase 10, a new member of an emerging subgroup of serine
proteases. Biochem J. 373(Pt 1): 179–189. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ghersi G, Zhao Q, Salamone M, Yeh Y,
Zucker S and Chen WT: The protease complex consisting of dipeptidyl
peptidase IV and seprase plays a role in the migration and invasion
of human endothelial cells in collagenous matrices. Cancer Res.
66:4652–4661. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Park JE, Lenter MC, Zimmermann RN,
Garin-Chesa P, Old LJ and Rettig WJ: Fibroblast activation protein,
a dual specificity serine protease expressed in reactive human
tumor stromal fibroblasts. J Biol Chem. 274:36505–36512. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Abbott CA, Baker E, Sutherland GR and
McCaughan GW: Genomic organization, exact localization, and tissue
expression of the human CD26 (dipeptidyl peptidase IV) gene.
Immunogenetics. 40:331–338. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Abbott CA, Yu DM, Woollatt E, Sutherland
GR, McCaughan GW and Gorrell MD: Cloning, expression and
chromosomal localization of a novel human dipeptidyl peptidase
(DPP) IV homolog, DPP8. Eur J Biochem. 267:6140–6150. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yokotani N, Doi K, Wenthold RJ and Wada K:
Non-conservation of a catalytic residue in a dipeptidyl
aminopeptidase IV-related protein encoded by a gene on human
chromosome 7. Hum Mol Genet. 2:1037–1039. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang J, Valianou M and Cheng JD:
Identification and characterization of the promoter of fibroblast
activation protein. Front Biosci (Elite Ed). 2:1154–1163. 2010.
View Article : Google Scholar :
|
|
54
|
Garin-Chesa P, Old LJ and Rettig WJ: Cell
surface glycoprotein of reactive stromal fibroblasts as a potential
antibody target in human epithelial cancers. Proc Natl Acad Sci U S
A. 87:7235–7239. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kelly T, Kechelava S, Rozypal TL, West KW
and Korourian S: Seprase, a membrane-bound protease, is
overexpressed by invasive ductal carcinoma cells of human breast
cancers. Mod Pathol. 11:855–863. 1998.PubMed/NCBI
|
|
56
|
Levy MT, McCaughan GW, Abbott CA, Park JE,
Cunningham AM, Müller E, Rettig WJ and Gorrell MD: Fibroblast
activation protein: a cell surface dipeptidyl peptidase and
gelatinase expressed by stellate cells at the tissue remodelling
interface in human cirrhosis. Hepatology. 29:1768–1778. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Acharya PS, Zukas A, Chandan V,
Katzenstein AL and Puré E: Fibroblast activation protein: a serine
protease expressed at the remodeling interface in idiopathic
pulmonary fibrosis. Hum Pathol. 37:352–360. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bauer S, Jendro MC, Wadle A, Kleber S,
Stenner F, Dinser R, Reich A, Faccin E, Gödde S, Dinges H, et al:
Fibroblast activation protein is expressed by rheumatoid
myofibroblast-like synoviocytes. Arthritis Res Ther. 8:R1712006.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rovedatti L, Di Sabatino A, Knowles CH,
Sengupta N, Biancheri P, Corazza GR and MacDonald TT: Fibroblast
activation protein expression in Crohn’s disease strictures.
Inflamm Bowel Dis. 17:1251–1253. 2011. View Article : Google Scholar
|
|
60
|
Brokopp CE, Schoenauer R, Richards P,
Bauer S, Lohmann C, Emmert MY, Weber B, Winnik S, Aikawa E, Graves
K, et al: Fibroblast activation protein is induced by inflammation
and degrades type I collagen in thin-cap fibroatheromata. Eur Heart
J. 32:2713–2722. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ge Y, Zhan F, Barlogie B, Epstein J,
Shaughnessy J Jr and Yaccoby S: Fibroblast activation protein (FAP)
is upregulated in myelomatous bone and supports myeloma cell
survival. Br J Haematol. 133:83–92. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bae S, Park CW, Son HK, Ju HK, Paik D,
Jeon CJ, Koh GY, Kim J and Kim H: Fibroblast activation protein
alpha identifies mesenchymal stromal cells from human bone marrow.
Br J Haematol. 142:827–830. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Haniffa MA, Collin MP, Buckley CD and
Dazzi F: Mesenchymal stem cells: the fibroblasts’ new clothes?
Haematologica. 94:258–263. 2009. View Article : Google Scholar :
|
|
64
|
Shi M, Yu DH, Chen Y, Zhao CY, Zhang J,
Liu QH, Ni CR and Zhu MH: Expression of fibroblast activation
protein in human pancreatic adenocarcinoma and its
clinicopathological significance. World J Gastroenterol.
18:840–846. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Iwasa S, Okada K, Chen WT, Jin X, Yamane
T, Ooi A and Mitsumata M: Increased expression of seprase, a
membrane-type serine protease, is associated with lymph node
metastasis in human colorectal cancer. Cancer Lett. 227:229–236.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mori Y, Kono K, Matsumoto Y, Fujii H,
Yamane T, Mitsumata M and Chen WT: The expression of a type II
transmembrane serine protease (Seprase) in human gastric carcinoma.
Oncology. 67:411–419. 2004. View Article : Google Scholar
|
|
67
|
Jin X, Iwasa S, Okada K, Mitsumata M and
Ooi A: Expression patterns of seprase, a membrane serine protease,
in cervical carcinoma and cervical intraepithelial neoplasm.
Anticancer Res. 23:3195–3198. 2003.PubMed/NCBI
|
|
68
|
Mentlein R, Hattermann K, Hemion C,
Jungbluth AA and Held-Feindt J: Expression and role of the cell
surface protease seprase/fibroblast activation protein-α (FAP-α) in
astroglial tumors. Biol Chem. 392:199–207. 2011. View Article : Google Scholar
|
|
69
|
Wäster P, Rosdahl I, Gilmore BF and
Seifert O: Ultraviolet exposure of melanoma cells induces
fibroblast activation protein-α in fibroblasts: Implications for
melanoma invasion. Int J Oncol. 39:193–202. 2011.
|
|
70
|
Cheng JD, Dunbrack RL Jr, Valianou M,
Rogatko A, Alpaugh RK and Weiner LM: Promotion of tumor growth by
murine fibroblast activation protein, a serine protease, in an
animal model. Cancer Res. 62:4767–4772. 2002.PubMed/NCBI
|
|
71
|
Huang Y, Wang S and Kelly T: Seprase
promotes rapid tumor growth and increased microvessel density in a
mouse model of human breast cancer. Cancer Res. 64:2712–2716. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Goodman JD, Rozypal TL and Kelly T:
Seprase, a membrane-bound protease, alleviates the serum growth
requirement of human breast cancer cells. Clin Exp Metastasis.
20:459–470. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lai D, Ma L and Wang F: Fibroblast
activation protein regulates tumor-associated fibroblasts and
epithelial ovarian cancer cells. Int J Oncol. 41:541–550.
2012.PubMed/NCBI
|
|
74
|
Fischer E, Chaitanya K, Wüest T, Wadle A,
Scott AM, van den Broek M, Schibli R, Bauer S and Renner C:
Radioimmunotherapy of fibroblast activation protein positive tumors
by rapidly internalizing antibodies. Clin Cancer Res. 18:6208–6218.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pennisi A, Li X, Ling W, Khan S, Gaddy D,
Suva LJ, Barlogie B, Shaughnessy JD, Aziz N and Yaccoby S:
Inhibitor of DASH proteases affects expression of adhesion
molecules in osteoclasts and reduces myeloma growth and bone
disease. Br J Haematol. 145:775–787. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Adams S, Miller GT, Jesson MI, Watanabe T,
Jones B and Wallner BP: PT-100, a small molecule dipeptidyl
peptidase inhibitor, has potent antitumor effects and augments
antibody-mediated cytotoxicity via a novel immune mechanism. Cancer
Res. 64:5471–5480. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
van der Bruggen P, Traversari C, Chomez P,
Lurquin C, De Plaen E, Van den Eynde B, Knuth A and Boon T: A gene
encoding an antigen recognized by cytolytic T lymphocytes on a
human melanoma. Science. 254:1643–1647. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liao D, Luo Y, Markowitz D, Xiang R and
Reisfeld RA: Cancer associated fibroblasts promote tumor growth and
metastasis by modulating the tumor immune microenvironment in a 4T1
murine breast cancer model. PLoS One. 4:e79652009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huber MA, Kraut N, Park JE, Schubert RD,
Rettig WJ, Peter RU and Garin-Chesa P: Fibroblast activation
protein: differential expression and serine protease activity in
reactive stromal fibroblasts of melanocytic skin tumors. J Invest
Dermatol. 120:182–188. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tsujimoto H, Nishizuka S, Redpath JL and
Stanbridge EJ: Differential gene expression in tumorigenic and
nontumorigenic HeLa × normal human fibroblast hybrid cells. Mol
Carcinog. 26:298–304. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Brown DD, Wang Z, Furlow JD, Kanamori A,
Schwartzman RA, Remo BF and Pinder A: The thyroid hormone-induced
tail resorption program during Xenopus laevis metamorphosis. Proc
Natl Acad Sci USA. 93:1924–1929. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ramirez-Montagut T, Blachere NE,
Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P and Houghton
AN: FAPalpha, a surface peptidase expressed during wound healing,
is a tumor suppressor. Oncogene. 23:5435–5446. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Roberts EW, Deonarine A, Jones JO, Denton
AE, Feig C, Lyons SK, Espeli M, Kraman M, McKenna B, Wells RJ, et
al: Depletion of stromal cells expressing fibroblast activation
protein-α from skeletal muscle and bone marrow results in cachexia
and anemia. J Exp Med. 210:1137–1151. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Niedermeyer J, Kriz M, Hilberg F,
Garin-Chesa P, Bamberger U, Lenter MC, Park J, Viertel B, Püschner
H, Mauz M, Rettig WJ and Schnapp A: Targeted disruption of mouse
fibroblast activation protein. Mol Cell Biol. 20:1089–1094. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jacob M, Chang L and Puré E: Fibroblast
activation protein in remodeling tissues. Curr Mol Med.
12:1220–1243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ghersi G, Dong H, Goldstein LA, Yeh Y,
Hakkinen L, Larjava HS and Chen WT: Regulation of fibroblast
migration on collagenous matrix by a cell surface peptidase
complex. J Biol Chem. 277:29231–29241. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen WT and Kelly T: Seprase complexes in
cellular invasiveness. Cancer Metastasis Rev. 22:259–269. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
O’Brien P and O’Connor BF: Seprase: an
overview of an important matrix serine protease. Biochim Biophys
Acta. 1784:1130–1145. 2008. View Article : Google Scholar
|
|
89
|
Lee HO, Mullins SR, Franco-Barraza J,
Valianou M, Cukierman E and Cheng JD: FAP-overexpressing
fibroblasts produce an extracellular matrix that enhances invasive
velocity and directionality of pancreatic cancer cells. BMC Cancer.
11:2452011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang XM, Yu DM, McCaughan GW and Gorrell
MD: Fibroblast activation protein increases apoptosis, cell
adhesion, and migration by the LX-2 human stellate cell line.
Hepatology. 42:935–945. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wikberg ML, Edin S, Lundberg IV, Van
Guelpen B, Dahlin AM, Rutegård J, Stenling R, Oberg A and Palmqvist
R: High intratumoral expression of fibroblast activation protein
(FAP) in colon cancer is associated with poorer patient prognosis.
Tumour Biol. 34:1013–1020. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cohen SJ, Alpaugh RK, Palazzo I, Meropol
NJ, Rogatko A, Xu Z, Hoffman JP, Weiner LM and Cheng JD: Fibroblast
activation protein and its relationship to clinical outcome in
pancreatic adenocarcinoma. Pancreas. 37:154–158. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Henry LR, Lee HO, Lee JS, Klein-Szanto A,
Watts P, Ross EA, Chen WT and Cheng JD: Clinical implications of
fibroblast activation protein in patients with colon cancer. Clin
Cancer Res. 13:1736–1741. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Saigusa S, Toiyama Y, Tanaka K, Yokoe T,
Okugawa Y, Fujikawa H, Matsusita K, Kawamura M, Inoue Y, Miki C and
Kusunoki M: Cancer-associated fibroblasts correlate with poor
prognosis in rectal cancer after chemoradiotherapy. Int J Oncol.
38:655–663. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ariga N, Sato E, Ohuchi N, Nagura H and
Ohtani H: Stromal expression of fibroblast activation
protein/seprase, a cell membrane serine proteinase and gelatinase,
is associated with longer survival in patients with invasive ductal
carcinoma of breast. Int J Cancer. 95:67–72. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lee KN, Jackson KW, Christiansen VJ, Chung
KH and McKee PA: A novel plasma proteinase potentiates
alpha2-antiplasmin inhibition of fibrin digestion. Blood.
103:3783–3788. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lee KN, Jackson KW, Christiansen VJ, Lee
CS, Chun JG and McKee PA: Antiplasmin-cleaving enzyme is a soluble
form of fibroblast activation protein. Blood. 107:1397–1404. 2006.
View Article : Google Scholar
|
|
98
|
Keane FM, Nadvi NA, Yao TW and Gorrell MD:
Neuropeptide Y, B-type natriuretic peptide, substance P and peptide
YY are novel substrates of fibroblast activation protein-α. FEBS J.
278:1316–1332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Huang CH, Suen CS, Lin CT, Chien CH, Lee
HY, Chung KM, Tsai TY, Jiaang WT, Hwang MJ and Chen X:
Cleavage-site specificity of prolyl endopeptidase FAP investigated
with a full-length protein substrate. J Biochem. 149:685–692. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Scott AM, Wiseman G, Welt S, Adjei A, Lee
FT, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN, et al: A
Phase I dose-escalation study of sibrotuzumab in patients with
advanced or metastatic fibroblast activation protein-positive
cancer. Clin Cancer Res. 9:1639–1647. 2003.PubMed/NCBI
|
|
101
|
Hofheinz RD, al-Batran SE, Hartmann F,
Hartung G, Jäger D, Renner C, Tanswell P, Kunz U, Amelsberg A,
Kuthan H and Stehle G: Stromal antigen targeting by a humanised
monoclonal antibody: an early phase II trial of sibrotuzumab in
patients with metastatic colorectal cancer. Onkologie. 26:44–48.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee
CC, Restifo NP and Rosenberg SA: Immune targeting of fibroblast
activation protein triggers recognition of multipotent bone marrow
stromal cells and cachexia. J Exp Med. 210:1125–1135. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Petrausch U, Schuberth PC, Hagedorn C,
Soltermann A, Tomaszek S, Stahel R, Weder W and Renner C:
Re-directed T cells for the treatment of fibroblast activation
protein (FAP)-positive malignant pleural mesothelioma (FAPME-1).
BMC Cancer. 12:6152012. View Article : Google Scholar : PubMed/NCBI
|