Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2017 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2017 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells

  • Authors:
    • Manabu Inoue
    • Junko Yamada
    • Emiko Aomatsu‑Kikuchi
    • Kazuro Satoh
    • Hisatomo Kondo
    • Akira Ishisaki
    • Naoyuki Chosa
  • View Affiliations / Copyright

    Affiliations: Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan, Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020‑8505, Japan, Department of Prosthodontics and Oral Implantology, Iwate Medical University School of Dentistry, Morioka, Iwate 020‑8505, Japan
    Copyright: © Inoue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4069-4076
    |
    Published online on: April 20, 2017
       https://doi.org/10.3892/mmr.2017.6492
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recently, we identified the scrapie responsive gene 1 (SCRG1) secreted from mesenchymal stem cells (MSCs) and its receptor bone marrow stromal cell antigen 1 (BST1) as positive regulators of stem cell qualities such as self‑renewal, migration abilities, and osteogenic differentiation potential. Here, we examined the effect of the paracrine activity of SCRG1 in macrophages. The mouse macrophage‑like cell line Raw264.7 expressed BST1/β1 or BST1/β2 integrin as possible SCRG1 receptors. Unexpectedly, recombinant SCRG1 did not enhance cell proliferation, migration, or adhesion in these macrophages. However, further examination of the effect of SCRG1 in Raw264.7 cells did reveal a potent anti‑inflammatory effect whereby SCRG1 suppressed LPS‑induced CCL22 production. SCRG1 also induced the phosphorylation of extracellular signal‑regulated kinase 1/2 (ERK1/2) in these cells and, moreover, a mitogen‑activated protein kinase (MAPK)/ERK kinase inhibitor U0126 significantly suppressed the effect of SCRG1 on LPS‑induced chemokine CCL22 production. Taken together, these data indicate that SCRG1 signals through the MAPK pathway and suppresses the LPS signaling pathway. CCL22 is generally known to be chemotactic for monocytes, dendritic cells, natural killer cells and chronically activated T lymphocytes, suggesting that MSC‑derived SCRG1 may block infiltration of these cells. A mechanism is proposed by which MSCs play their immunosuppressive role through suppressing chemokine expression in monocyte/macrophage lineage cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 276:71–74. 1997. View Article : Google Scholar

2 

Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008. View Article : Google Scholar

3 

Shi Y, Su J, Roberts AI, Shou P, Rabson AB and Ren G: How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33:136–143. 2012. View Article : Google Scholar :

4 

Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M and Ringdén O: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 363:1439–1441. 2004. View Article : Google Scholar

5 

Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M and Wenning GK: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: Immunomodulation and neuroprotection. PLoS One. 6:e198082011. View Article : Google Scholar :

6 

Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K and Phinney DG: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA. 104:pp. 11002–11007. 2007; View Article : Google Scholar :

7 

Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P and Prockop DJ: Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 5:54–63. 2009. View Article : Google Scholar :

8 

Tögel F, Hu Z, Weiss K, Isaac J, Lange C and Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 289:F31–F42. 2005. View Article : Google Scholar

9 

Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S and Kim SU: Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: Contribution of fractalkine and IL-5. Neurobiol Dis. 41:717–724. 2011. View Article : Google Scholar

10 

Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE and Bae JS: Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells. 28:329–343. 2010.

11 

Lda S Meirelles, Fontes AM, Covas DT and Caplan AI: Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20:419–427. 2009. View Article : Google Scholar

12 

Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S and Gianni AM: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 99:3838–3843. 2002. View Article : Google Scholar

13 

Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, Israf DA and Vidyadaran S: Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol. 10:1532–1540. 2010. View Article : Google Scholar

14 

Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, et al: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 15:42–49. 2009. View Article : Google Scholar

15 

Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, Miura H, Ishisaki A and Chosa N: Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 4:36522014. View Article : Google Scholar :

16 

Dandoy-Dron F, Guillo F, Benboudjema L, Deslys JP, Lasmézas C, Dormont D, Tovey MG and Dron M: Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J Biol Chem. 273:7691–7697. 1998. View Article : Google Scholar

17 

Dron M, Bailly Y, Beringue V, Haeberlé AM, Griffond B, Risold PY, Tovey MG, Laude H and Dandoy-Dron F: Scrg1 is induced in TSE and brain injuries and associated with autophagy. Eur J Neurosci. 22:133–146. 2005. View Article : Google Scholar

18 

Dron M, Bailly Y, Beringue V, Haeberlé AM, Griffond B, Risold PY, Tovey MG, Laude H and Dandoy-Dron F: SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies. Autophagy. 2:58–60. 2006. View Article : Google Scholar

19 

Dron M, Dandoy-Dron F, Guillo F, Benboudjema L, Hauw JJ, Lebon P, Dormont D and Tovey MG: Characterization of the human analogue of a Scrapie-responsive gene. J Biol Chem. 273:18015–18018. 1998. View Article : Google Scholar

20 

Dron M, Tartare X, Guillo F, Haik S, Barbin G, Maury C, Tovey M and Dandoy-Dron F: Mouse scrapie responsive gene 1 (Scrg1): Genomic organization, physical linkage to sap30, genetic mapping on chromosome 8 and expression in neuronal primary cell cultures. Genomics. 70:140–149. 2000. View Article : Google Scholar

21 

Aggarwal S and Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105:1815–1822. 2005. View Article : Google Scholar

22 

Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC and Moretta L: Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 111:1327–1333. 2008. View Article : Google Scholar

23 

Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K and Ozawa K: Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 109:228–234. 2007. View Article : Google Scholar

24 

Lee RH, Oh JY, Choi H and Bazhanov N: Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem. 112:3073–3078. 2011. View Article : Google Scholar

25 

Sawada S, Chosa N, Takizawa N, Yokota J, Igarashi Y, Tomoda K, Kondo H, Yaegashi T and Ishisaki A: Establishment of mesenchymal stem cell lines derived from the bone marrow of green fluorescent protein-transgenic mice exhibiting a diversity in intracellular transforming growth factor-β and bone morphogenetic protein signaling. Mol Med Rep. 13:2023–2031. 2016.

26 

Igarashi Y, Chosa N, Sawada S, Kondo H, Yaegashi T and Ishisaki A: VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes. Int J Mol Med. 37:1005–1013. 2016.

27 

Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A and Gray PW: Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells and natural killer cells. J Exp Med. 185:1595–1604. 1997. View Article : Google Scholar :

28 

Chang Ms, McNinch J, Elias C III, Manthey CL, Grosshans D, Meng T, Boone T and Andrew DP: Molecular cloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on activated T lymphocytes. J Biol Chem. 272:25229–25237. 1997. View Article : Google Scholar

29 

Schaniel C, Pardali E, Sallusto F, Speletas M, Ruedl C, Shimizu T, Seidl T, Andersson J, Melchers F, Rolink AG and Sideras P: Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med. 188:451–463. 1998. View Article : Google Scholar :

30 

Mantovani A, Gray PA, Van Damme J and Sozzani S: Macrophage-derived chemokine (MDC). J Leukoc Biol. 68:400–404. 2000.

31 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

32 

Lavagno L, Ferrero E, Ortolan E, Malavasi F and Funaro A: CD157 is part of a supramolecular complex with CD11b/CD18 on the human neutrophil cell surface. J Biol Regul Homeost Agents. 21:5–11. 2007.

33 

Arthur JS and Ley SC: Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 13:679–692. 2013. View Article : Google Scholar

34 

Huang G, Shi LZ and Chi H: Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine. 48:161–169. 2009. View Article : Google Scholar :

35 

Ishihara K and Hirano T: BST-1/CD157 regulates the humoral immune responses in vivo. Chem Immunol. 75:235–255. 2000. View Article : Google Scholar

36 

Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T and Aydin S: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 88:841–886. 2008. View Article : Google Scholar

37 

Kaisho T, Ishikawa J, Oritani K, Inazawa J, Tomizawa H, Muraoka O, Ochi T and Hirano T: BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc Natl Acad Sci USA. 91:pp. 5325–5329. 1994; View Article : Google Scholar :

38 

Goldstein SC and Todd RF III: Structural and biosynthetic features of the Mo5 human myeloid differentiation antigen. Tissue Antigens. 41:214–218. 1993. View Article : Google Scholar

39 

Funaro A, Ortolan E, Bovino P, Lo Buono N, Nacci G, Parrotta R, Ferrero E and Malavasi F: Ectoenzymes and innate immunity: The role of human CD157 in leukocyte trafficking. Front Biosci (Landmark Ed). 14:929–943. 2009. View Article : Google Scholar

40 

Hussain AM, Lee HC and Chang CF: Functional expression of secreted mouse BST-1 in yeast. Protein Expr Purif. 12:133–137. 1998. View Article : Google Scholar

41 

Okuyama Y, Ishihara K, Kimura N, Hirata Y, Sato K, Itoh M, Ok LB and Hirano T: Human BST-1 expressed on myeloid cells functions as a receptor molecule. Biochem Biophys Res Commun. 228:838–845. 1996. View Article : Google Scholar

42 

Lo Buono N, Parrotta R, Morone S, Bovino P, Nacci G, Ortolan E, Horenstein AL, Inzhutova A, Ferrero E and Funaro A: The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes. J Biol Chem. 286:18681–18691. 2011. View Article : Google Scholar :

43 

Funaro A, Ortolan E, Ferranti B, Gargiulo L, Notaro R, Luzzatto L and Malavasi F: CD157 is an important mediator of neutrophil adhesion and migration. Blood. 104:4269–4278. 2004. View Article : Google Scholar

44 

Takeda K, Kaisho T and Akira S: Toll-like receptors. Annu Rev Immunol. 21:335–376. 2003. View Article : Google Scholar

45 

Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science. 282:2085–2088. 1998. View Article : Google Scholar

46 

Qureshi ST, Larivière L, Leveque G, Clermont S, Moore KJ, Gros P and Malo D: Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med. 189:615–625. 1999. View Article : Google Scholar :

47 

Wright SD: CD14 and innate recognition of bacteria. J Immunol. 155:6–8. 1995.

48 

Ulevitch RJ and Tobias PS: Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 13:437–457. 1995. View Article : Google Scholar

49 

Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K and Kimoto M: MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med. 189:1777–1782. 1999. View Article : Google Scholar :

50 

Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M and Miyake K: Cutting edge: Cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol. 164:3471–3475. 2000. View Article : Google Scholar

51 

Viriyakosol S, Tobias PS, Kitchens RL and Kirkland TN: MD-2 binds to bacterial lipopolysaccharide. J Biol Chem. 276:38044–38051. 2001.

52 

O'Neill LA, Dunne A, Edjeback M, Gray P, Jefferies C and Wietek C: Mal and MyD88: Adapter proteins involved in signal transduction by toll-like receptors. J Endotoxin Res. 9:55–59. 2003. View Article : Google Scholar

53 

Kawai T, Adachi O, Ogawa T, Takeda K and Akira S: Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 11:115–122. 1999. View Article : Google Scholar

54 

Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, Hoshino K and Akira S: Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 167:5887–5894. 2001. View Article : Google Scholar

55 

West AP, Koblansky AA and Ghosh S: Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 22:409–437. 2006. View Article : Google Scholar

56 

Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109:S81–S96. 2002. View Article : Google Scholar

57 

Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar

58 

Nathan C: Points of control in inflammation. Nature. 420:846–852. 2002. View Article : Google Scholar

59 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar

60 

Nathan C and Ding A: Nonresolving inflammation. Cell. 140:871–882. 2010. View Article : Google Scholar

61 

Martinez FO, Gordon S, Locati M and Mantovani A: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol. 177:7303–7311. 2006. View Article : Google Scholar

62 

Rao KM: MAP kinase activation in macrophages. J Leukoc Biol. 69:3–10. 2001.

63 

Rao KM, Meighan T and Bowman L: Role of mitogen-activated protein kinase activation in the production of inflammatory mediators: Differences between primary rat alveolar macrophages and macrophage cell lines. J Toxicol Environ Health A. 65:757–768. 2002. View Article : Google Scholar

64 

Bain J, Plater L, Elliott M, Shapiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR and Cohen P: The selectivity of protein kinase inhibitors: A further update. Biochem J. 408:297–315. 2007. View Article : Google Scholar :

65 

Akhtar M, Watson JL, Nazli A and McKay DM: Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-kappaB-independent pathway. FASEB J. 17:1319–1321. 2003.

66 

Fiebich BL, Schleicher S, Butcher RD, Craig A and Lieb K: The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B. J Immunol. 165:5606–5611. 2000. View Article : Google Scholar

67 

Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, Valente AJ and Chandrasekar B: Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem. 282:27229–27238. 2007. View Article : Google Scholar

68 

Tokuda M, Miyamoto R, Sakuta T, Nagaoka S and Torii M: Substance P activates p38 mitogen-activated protein kinase to promote IL-6 induction in human dental pulp fibroblasts. Connect Tissue Res. 46:153–158. 2005. View Article : Google Scholar

69 

Zampetaki A, Mitsialis SA, Pfeilschifter J and Kourembanas S: Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-kappaB: The prominent role of p42/p44 and PI3 kinase pathways. FASEB J. 18:1090–1092. 2004.

70 

Yamashita U and Kuroda E: Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev Immunol. 22:105–114. 2002. View Article : Google Scholar

71 

Layseca-Espinosa E, Korniotis S, Montandon R, Gras C, Bouillié M, Gonzalez-Amaro R, Dy M and Zavala F: CCL22-producing CD8α- myeloid dendritic cells mediate regulatory T cell recruitment in response to G-CSF treatment. J Immunol. 191:2266–2272. 2013. View Article : Google Scholar

72 

Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F and D'Ambrosio D: Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 194:847–853. 2001. View Article : Google Scholar :

73 

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar

74 

Li YQ, Liu FF, Zhang XM, Guo XJ, Ren MJ and Fu L: Tumor secretion of CCL22 activates intratumoral treg infiltration and is independent prognostic predictor of breast cancer. PLoS One. 8:e763792013. View Article : Google Scholar :

75 

Flytlie HA, Hvid M, Lindgreen E, Kofod-Olsen E, Petersen EL, Jørgensen A, Deleuran M, Vestergaard C and Deleuran B: Expression of MDC/CCL22 and its receptor CCR4 in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Cytokine. 49:24–29. 2010. View Article : Google Scholar

76 

Yanai M, Sato K, Aoki N, Takiyama Y, Oikawa K, Kobayashi H, Kimura S, Harabuchi Y and Tateno M: The role of CCL22/macrophage-derived chemokine in allergic rhinitis. Clin Immunol. 125:291–298. 2007. View Article : Google Scholar

77 

Nakazato J, Kishida M, Kuroiwa R, Fujiwara J, Shimoda M and Shinomiya N: Serum levels of Th2 chemokines, CCL17, CCL22 and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatr Allergy Immunol. 19:605–613. 2008.

78 

Niens M, Visser L, Nolte IM, van der Steege G, Diepstra A, Cordano P, Jarrett RF, Te Meerman GJ, Poppema S and van den Berg A: Serum chemokine levels in hodgkin lymphoma patients: Highly increased levels of CCL17 and CCL22. Br J Haematol. 140:527–536. 2008. View Article : Google Scholar

79 

Jafarzadeh A, Ebrahimi HA, Bagherzadeh S, Zarkesh F, Iranmanesh F, Najafzadeh A, Khosravimashizi A, Nemati M, Sabahi A, Hajghani H, et al: Lower serum levels of Th2-related chemokine CCL22 in women patients with multiple sclerosis: A comparison between patients and healthy women. Inflammation. 37:604–610. 2014. View Article : Google Scholar

80 

Nagata S: Apoptosis and autoimmune diseases. Ann N Y Acad Sci. 1209:10–16. 2010. View Article : Google Scholar

81 

Szondy Z, Garabuczi E, Joós G, Tsay GJ and Sarang Z: Impaired clearance of apoptotic cells in chronic inflammatory diseases: Therapeutic implications. Front Immunol. 5:3542014. View Article : Google Scholar :

82 

Furukawa S, Kuwajima Y, Chosa N, Satoh K, Ohtsuka M and Miura H, Kimura M, Inoko H, Ishisaki A, Fujimura A and Miura H: Establishment of immortalized mesenchymal stem cells derived from the submandibular glands of td to mato transgenic mice. Exp Ther Med. 10:1380–1386. 2015.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Inoue M, Yamada J, Aomatsu‑Kikuchi E, Satoh K, Kondo H, Ishisaki A and Chosa N: SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells. Mol Med Rep 15: 4069-4076, 2017.
APA
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., & Chosa, N. (2017). SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells. Molecular Medicine Reports, 15, 4069-4076. https://doi.org/10.3892/mmr.2017.6492
MLA
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., Chosa, N."SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells". Molecular Medicine Reports 15.6 (2017): 4069-4076.
Chicago
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., Chosa, N."SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells". Molecular Medicine Reports 15, no. 6 (2017): 4069-4076. https://doi.org/10.3892/mmr.2017.6492
Copy and paste a formatted citation
x
Spandidos Publications style
Inoue M, Yamada J, Aomatsu‑Kikuchi E, Satoh K, Kondo H, Ishisaki A and Chosa N: SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells. Mol Med Rep 15: 4069-4076, 2017.
APA
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., & Chosa, N. (2017). SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells. Molecular Medicine Reports, 15, 4069-4076. https://doi.org/10.3892/mmr.2017.6492
MLA
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., Chosa, N."SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells". Molecular Medicine Reports 15.6 (2017): 4069-4076.
Chicago
Inoue, M., Yamada, J., Aomatsu‑Kikuchi, E., Satoh, K., Kondo, H., Ishisaki, A., Chosa, N."SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells". Molecular Medicine Reports 15, no. 6 (2017): 4069-4076. https://doi.org/10.3892/mmr.2017.6492
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team