Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2017 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2017 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Post-translational modifications and their applications in eye research (Review)

  • Authors:
    • Bing‑Jie Chen
    • Thomas Chuen Lam
    • Long‑Qian Liu
    • Chi‑Ho To
  • View Affiliations / Copyright

    Affiliations: Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
  • Pages: 3923-3935
    |
    Published online on: April 28, 2017
       https://doi.org/10.3892/mmr.2017.6529
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gene expression is the process by which genetic information is used for the synthesis of a functional gene product, and ultimately regulates cell function. The increase of biological complexity from genome to proteome is vast, and the post-translational modification (PTM) of proteins contribute to this complexity. The study of protein expression and PTMs has attracted attention in the post‑genomic era. Due to the limited capability of conventional biochemical techniques in the past, large‑scale PTM studies were technically challenging. The introduction of effective protein separation methods, specific PTM purification strategies and advanced mass spectrometers has enabled the global profiling of PTMs and the identification of a targeted PTM within the proteome. The present review provides an overview of current proteomic technologies being applied in eye research, with a particular focus on studies of PTMs in ocular tissues and ocular diseases.
View Figures
View References

1 

Gygi SP, Rochon Y, Franza BR and Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 19:1720–1730. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Black DL: Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem. 72:291–336. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Belle A, Tanay A, Bitincka L, Shamir R and O'Shea EK: Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA. 103:pp. 13004–13009. 2006; View Article : Google Scholar : PubMed/NCBI

4 

Higgins SJ and Hames BD: Post-translational Processing: A Practical Approach. Oxford University Press; Oxford: 1999

5 

Amniai L, Barbier P, Sillen A, Wieruszeski JM, Peyrot V, Lippens G and Landrieu I: Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 23:1146–1152. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Augustinack JC, Schneider A, Mandelkow EM and Hyman BT: Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol. 103:26–35. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey RJ, Vinson J, Sweeney CJ and Novotny MV: Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res. 6:1822–1832. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Zhao J, Qiu W, Simeone DM and Lubman DM: N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. J Proteome Res. 6:1126–1138. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Rombouts Y, Willemze A, Van Beers JJ, Shi J, Kerkman PF, Van Toorn L, Janssen GM, Zaldumbide A, Hoeben RC, Pruijn GJ, et al: Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann Rheum Dis. 75:578–585. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Ceciliani F, Eckersall D, Burchmore R and Lecchi C: Proteomics in veterinary medicine: Applications and trends in disease pathogenesis and diagnostics. Vet Pathol. 51:351–362. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Rabilloud T: Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics. 2:3–10. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Williams A and Frasca V: Ion-Exchange Chromatography. Curr Protoc Protein Sci Chapter. 8:Unit8.22001.

13 

Queiroz J, Tomaz C and Cabral J: Hydrophobic interaction chromatography of proteins. J Biotechnol. 87:143–159. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Lecchi P, Gupte AR, Perez RE, Stockert LV and Abramson FP: Size-exclusion chromatography in multidimensional separation schemes for proteome analysis. J Biochem Biophys Methods. 56:141–152. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Lee WC and Lee KH: Applications of affinity chromatography in proteomics. Anal Biochem. 324:1–10. 2004. View Article : Google Scholar : PubMed/NCBI

16 

McCue JT: Theory and use of hydrophobic interaction chromatography in protein purification applications. Methods Enzymol. 463:405–414. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Issaq HJ, Chan KC, Blonder J, Ye X and Veenstra TD: Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A. 1216:1825–1837. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Petrovic M and Barceló D: Liquid chromatography-mass spectrometry in the analysis of emerging environmental contaminants. Anal Bioanal Chem. 385:422–424. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Rivier L: Criteria for the identification of compounds by liquid chromatography-mass spectrometry and liquid chromatography-multiple mass spectrometry in forensic toxicology and doping analysis. Analytica Chimica Acta. 492:69–82. 2003. View Article : Google Scholar

20 

Chace DH: Mass spectrometry in the clinical laboratory. Chem Rev. 101:445–477. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Deutsch EW, Lam H and Aebersold R: Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics. 33:18–25. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Zaluzec EJ, Gage DA and Watson JT: Matrix-assisted laser desorption ionization mass spectrometry: Applications in peptide and protein characterization. Protein Expr Purif. 6:109–123. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Kaufmann R: Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: A novel analytical tool in molecular biology and biotechnology. J Biotechnol. 41:155–175. 1995. View Article : Google Scholar : PubMed/NCBI

24 

Dole M, Mack LL and more RL Hines: Molecular beams of macroions. J Chemical Physics. 49:22401968. View Article : Google Scholar

25 

Yamashita M and Fenn JB: Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 88:4451–4459. 1984. View Article : Google Scholar

26 

Kinter M and Sherman NE: Protein Sequencing and Identification Using Tandem Mass Spectrometry. Wiley-Interscience; 2000, View Article : Google Scholar

27 

Kraj A and Silberring J: Proteomics: Introduction to Methods and Applications. John Wiley & Sons; Hoboken, NJ: 2008

28 

Elviri L: ETD and ECD mass spectrometry fragmentation for the characterization of protein post translational modificationsTandem Mass Spectrometry-Applications and Principles. Prasain JK: InTech; pp. 161–178. 2012

29 

Quan L and Liu M: CID, ETD and HCD fragmentation to study protein post-translational modifications. Mod Chem Appl. 1:e1022013.

30 

Hayakawa S, Matsumoto S, Hashimoto M, Iwamoto K, Nagao H, Toyoda M, Shigeri Y, Tajiri M and Wada Y: High-energy electron transfer dissociation (HE-ETD) using alkali metal targets for sequence analysis of post-translational peptides. J Am Soc Mass Spectrom. 21:1482–1489. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Guthals A and Bandeira N: Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteomics. 11:550–557. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Altelaar AM, Mohammed S, Brans MA, Adan RA and Heck AJ: Improved identification of endogenous peptides from murine nervous tissue by multiplexed peptide extraction methods and multiplexed mass spectrometric analysis. J Proteome Res. 8:870–876. 2009. View Article : Google Scholar : PubMed/NCBI

33 

van den Toorn HW, Mohammed S, Gouw JW, van Breukelen B and Heck AJ: Targeted scx based peptide fractionation for optimal sequencing by collision induced, and electron transfer dissociation. J Proteomics Bioinform. 1:379–388. 2008. View Article : Google Scholar

34 

Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R and Gygi SP: Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics. 10:M111.0099102011. View Article : Google Scholar : PubMed/NCBI

35 

Nagaraj N, D'Souza RC, Cox J, Olsen JV and Mann M: Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res. 9:6786–6794. 2010. View Article : Google Scholar

36 

Saba J, Dutta S, Hemenway E and Viner R: Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics. 2012:5603912012. View Article : Google Scholar :

37 

Liu M, Talmadge JE and Ding SJ: Development and application of site-specific proteomic approach for study protein S-nitrosylation. Amino acids. 42:1541–1551. 2012. View Article : Google Scholar

38 

Palumbo AM, Tepe JJ and Reid GE: Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. J Proteome Res. 7:771–779. 2008. View Article : Google Scholar

39 

Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Højrup P, et al: Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics. 10:M000031–MCP201. 2011. View Article : Google Scholar

40 

Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB and Kessler BM: Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom. 20:1652–1659. 2009. View Article : Google Scholar

41 

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et al: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 3:1154–1169. 2004. View Article : Google Scholar

42 

Paradela A, Marcilla M, Navajas R, Ferreira L, Ramos-Fernandez A, Fernández M, Mariscotti JF, García-del Portillo F and Albar JP: Evaluation of isotope-coded protein labeling (ICPL) in the quantitative analysis of complex proteomes. Talanta. 80:1496–1502. 2010. View Article : Google Scholar

43 

Hsu JL, Huang SY and Chen SH: Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis. 27:3652–3660. 2006. View Article : Google Scholar

44 

Liu H, Sadygov RG and Yates JR III: A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 76:4193–4201. 2004. View Article : Google Scholar

45 

Bondarenko PV, Chelius D and Shaler TA: Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem. 74:4741–4749. 2002. View Article : Google Scholar

46 

Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J, Shan B and Zhang Y: SWATH enables precise label-free quantification on proteome-scale. Proteomics. 15:1215–1223. 2015. View Article : Google Scholar

47 

Mueller LN, Brusniak MY, Mani DR and Aebersold R: An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res. 7:51–61. 2008. View Article : Google Scholar

48 

Rajcevic U, Niclou SP and Jimenez CR: Proteomics strategies for target identification and biomarker discovery in cancer. Front Biosci (Landmark Ed). 14:3292–3303. 2009. View Article : Google Scholar

49 

Räst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L and Aebersold R: OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 32:219–223. 2014. View Article : Google Scholar

50 

Khoury GA, Baliban RC and Floudas CA: Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci Rep. 1:pii: srep000902011. View Article : Google Scholar

51 

Yarbrough ML and Orth K: AMPylation is a new post-translational modiFICation. Nat Chem Biol. 5:378–379. 2009. View Article : Google Scholar

52 

Mann M and Jensen ON: Proteomic analysis of post-translational modifications. Nat Biotechnol. 21:255–261. 2003. View Article : Google Scholar

53 

Manning G, Plowman GD, Hunter T and Sudarsanam S: Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 27:514–520. 2002. View Article : Google Scholar

54 

Graves JD and Krebs EG: Protein phosphorylation and signal transduction. Pharmacol Ther. 82:111–121. 1999. View Article : Google Scholar

55 

Hunter T: Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell. 80:225–236. 1995. View Article : Google Scholar

56 

Cohen P: The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem Sci. 25:596–601. 2000. View Article : Google Scholar

57 

Kersten B, Agrawal GK, Iwahashi H and Rakwal R: Plant phosphoproteomics: A long road ahead. Proteomics. 6:5517–5528. 2006. View Article : Google Scholar

58 

Jung K, Fried L, Behr S and Heermann R: Histidine kinases and response regulators in networks. Curr Opin Microbiol. 15:118–124. 2012. View Article : Google Scholar

59 

Kruppa M and Calderone R: Two-component signal transduction in human fungal pathogens. FEMS Yeast Res. 6:149–159. 2006. View Article : Google Scholar

60 

Klumpp S and Krieglstein J: Reversible phosphorylation of histidine residues in proteins from vertebrates. Sci Signal. 2:pe132009. View Article : Google Scholar

61 

Han SX, Wang LJ, Zhao J, Zhang Y, Li M, Zhou X, Wang J and Zhu Q: 14-kDa Phosphohistidine phosphatase plays an important role in hepatocellular carcinoma cell proliferation. Oncol Lett. 4:658–664. 2012.

62 

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al: The sequence of the human genome. Science. 291:1304–1351. 2001. View Article : Google Scholar

63 

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar

64 

Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, et al: An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 382:275–278. 1996. View Article : Google Scholar

65 

Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S and Brunak S: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 4:1633–1649. 2004. View Article : Google Scholar

66 

Tian Y and Zhang H: Characterization of disease-associated N-linked glycoproteins. Proteomics. 13:504–511. 2013. View Article : Google Scholar

67 

Cylwik B, Lipartowska K, Chrostek L and Gruszewska E: Congenital disorders of glycosylation. Part II. Defects of protein O-glycosylation. Acta Biochim Pol. 60:361–368. 2013.

68 

Furmanek A and Hofsteenge J: Protein C-mannosylation: Facts and questions. Acta Biochim Pol. 47:781–789. 2000.

69 

Kinoshita T, Fujita M and Maeda Y: Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: Recent progress. J Biochem. 144:287–294. 2008. View Article : Google Scholar

70 

Wong CH: Protein glycosylation: New challenges and opportunities. J Org Chem. 70:4219–4225. 2005. View Article : Google Scholar

71 

Murakami Y: Pathogenesis of paroxysmal nocturnal hemoglobinuria. Rinsho Ketsueki. 57:1900–1907. 2016.

72 

Lee RT, Lauc G and Lee YC: Glycoproteomics: Protein modifications for versatile functions. Meeting on glycoproteomics. EMBO Rep. 6:1018–1022. 2005. View Article : Google Scholar :

73 

Hart GW and Copeland RJ: Glycomics hits the big time. Cell. 143:672–676. 2010. View Article : Google Scholar :

74 

Shahbazian MD and Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 76:75–100. 2007. View Article : Google Scholar

75 

Brooks CL and Gu W: Ubiquitination, phosphorylation and acetylation: The molecular basis for p53 regulation. Curr Opin Cell Biol. 15:164–171. 2003. View Article : Google Scholar

76 

Hammond JW, Cai D and Verhey KJ: Tubulin modifications and their cellular functions. Curr Opin Cell Biol. 20:71–76. 2008. View Article : Google Scholar :

77 

Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F and Gevaert K: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA. 106:pp. 8157–8162. 2009; View Article : Google Scholar :

78 

Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K and Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 7:e10021692011. View Article : Google Scholar :

79 

Brown JL: A comparison of the turnover of alpha-N-acetylated and nonacetylated mouse L-cell proteins. J Biol Chem. 254:1447–1449. 1979.

80 

Guo L, Münzberg H, Stuart RC, Nillni EA and Bjørbæk C: N-acetylation of hypothalamic alpha-melanocyte-stimulating hormone and regulation by leptin. Proc Natl Acad Sci USA. 101:pp. 11797–11802. 2004; View Article : Google Scholar :

81 

Hwang CS, Shemorry A and Varshavsky A: N-terminal acetylation of cellular proteins creates specific degradation signals. Science. 327:973–977. 2010. View Article : Google Scholar :

82 

Behnia R, Panic B, Whyte JR and Munro S: Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol. 6:405–413. 2004. View Article : Google Scholar

83 

Forte GM, Pool MR and Stirling CJ: N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9:e10010732011. View Article : Google Scholar :

84 

Gromyko D, Arnesen T, Ryningen A, Varhaug JE and Lillehaug JR: Depletion of the human Nα-terminal acetyltransferase A induces p53-dependent apoptosis and p53-independent growth inhibition. Int J Cancer. 127:2777–2789. 2010. View Article : Google Scholar

85 

Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, Heffron GJ, Heiden MG Vander, Yang R, Li F, Locasale JW, et al: Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell. 146:607–620. 2011. View Article : Google Scholar :

86 

Kamita M, Kimura Y, Ino Y, Kamp RM, Polevoda B, Sherman F and Hirano H: N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. J Proteomics. 74:431–441. 2011. View Article : Google Scholar

87 

Allfrey VG, Faulkner R and Mirsky AE: Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc Natl Acad Sci USA. 51:pp. 786–794. 1964; View Article : Google Scholar :

88 

Gershey EL, Vidali G and Allfrey VG: Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone. J Biol Chem. 243:5018–5022. 1968.

89 

Yang XJ and Seto E: Lysine acetylation: Codified crosstalk with other posttranslational modifications. Mol Cell. 31:449–461. 2008. View Article : Google Scholar :

90 

Haberland M, Montgomery RL and Olson EN: The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet. 10:32–42. 2009. View Article : Google Scholar :

91 

Shakespear MR, Halili MA, Irvine KM, Fairlie DP and Sweet MJ: Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32:335–343. 2011. View Article : Google Scholar

92 

Villagra A, Sotomayor E and Seto E: Histone deacetylases and the immunological network: Implications in cancer and inflammation. Oncogene. 29:157–173. 2010. View Article : Google Scholar

93 

Mukherjee S, Hao YH and Orth K: A newly discovered post-translational modification-the acetylation of serine and threonine residues. Trends Biochem Sci. 32:210–216. 2007. View Article : Google Scholar

94 

Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini CV, Goutagny N, Weber AN, Lane WS, et al: Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci USA. 109:pp. 12710–12715. 2012; View Article : Google Scholar :

95 

Ciechanover A and Iwai K: The ubiquitin system: From basic mechanisms to the patient bed. IUBMB Life. 56:193–201. 2004. View Article : Google Scholar

96 

Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM and Boehning D: Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem. 286:35689–35698. 2011. View Article : Google Scholar :

97 

Ciechanover A and Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron. 40:427–446. 2003. View Article : Google Scholar

98 

Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63:1129–1136. 1990. View Article : Google Scholar

99 

Dantuma NP and Masucci MG: The ubiquitin/proteasome system in Epstein-Barr virus latency and associated malignancies. Semin Cancer Biol. 13:69–76. 2003. View Article : Google Scholar

100 

Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar

101 

Shamu CE, Story CM, Rapoport TA and Ploegh HL: The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol. 147:45–58. 1999. View Article : Google Scholar :

102 

Sarge KD and Park-Sarge OK: Sumoylation and human disease pathogenesis. Trends Biochem Sci. 34:200–205. 2009. View Article : Google Scholar :

103 

Desterro JM, Rodriguez MS, Kemp GD and Hay RT: Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem. 274:10618–10624. 1999. View Article : Google Scholar

104 

Gong L, Kamitani T, Fujise K, Caskey LS and Yeh ET: Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem. 272:28198–28201. 1997. View Article : Google Scholar

105 

Reverter D and Lima CD: Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 435:687–692. 2005. View Article : Google Scholar :

106 

Zhao J: Sumoylation regulates diverse biological processes. Cell Mol Life Sci. 64:3017–3033. 2007. View Article : Google Scholar

107 

Kim KI and Baek SH: SUMOylation code in cancer development and metastasis. Mol Cells. 22:247–253. 2006.

108 

Lin X, Sun B, Liang M, Liang YY, Gast A, Hildebrand J, Brunicardi FC, Melchior F and Feng XH: Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell. 11:1389–1396. 2003. View Article : Google Scholar

109 

Sternsdorf T, Jensen K, Reich B and Will H: The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem. 274:12555–12566. 1999. View Article : Google Scholar

110 

Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T and Yeh ET: Identification of three major sentrinization sites in PML. J Biol Chem. 273:26675–26682. 1998. View Article : Google Scholar

111 

Melchior F: SUMO-nonclassical ubiquitin. Annu Rev Cell Dev Biol. 16:591–626. 2000. View Article : Google Scholar

112 

Zheng G and Yang YC: ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J Biol Chem. 279:42410–42421. 2004. View Article : Google Scholar

113 

Pichler A, Knipscheer P, Oberhofer E, Van Dijk WJ, Körner R, Olsen JV, Jentsch S, Melchior F and Sixma TK: SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol. 12:264–269. 2005. View Article : Google Scholar

114 

Matunis MJ, Coutavas E and Blobel G: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 135:1457–1470. 1996. View Article : Google Scholar :

115 

Mahajan R, Delphin C, Guan T, Gerace L and Melchior F: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88:97–107. 1997. View Article : Google Scholar

116 

Cheng TS, Chang LK, Howng SL, Lu PJ, Lee CI and Hong YR: SUMO-1 modification of centrosomal protein hNinein promotes hNinein nuclear localization. Life Sci. 78:1114–1120. 2006. View Article : Google Scholar

117 

Desterro JM, Rodriguez MS and Hay RT: SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 2:233–239. 1998. View Article : Google Scholar

118 

Stadtman ER: Protein oxidation and aging. Science. 257:1220–1224. 1992. View Article : Google Scholar

119 

Chang TC, Chou WY and Chang GG: Protein Oxidation and Turnover. J Biomed Sci. 7:357–363. 2000. View Article : Google Scholar

120 

Lee DY, Teyssier C, Strahl BD and Stallcup MR: Role of protein methylation in regulation of transcription. Endocr Rev. 26:147–170. 2005. View Article : Google Scholar

121 

Aletta JM, Cimato TR and Ettinger MJ: Protein methylation: A signal event in post-translational modification. Trends Biochem Sci. 23:89–91. 1998. View Article : Google Scholar

122 

Nadolski MJ and Linder ME: Protein lipidation. FEBS J. 274:5202–5210. 2007. View Article : Google Scholar

123 

Casey P: Protein lipidation in cell signaling. Science. 268:221–225. 1995. View Article : Google Scholar

124 

Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar

125 

Ong SE, Mittler G and Mann M: Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods. 1:119–126. 2004. View Article : Google Scholar

126 

Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV and Zhao Y: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 8:215–225. 2009. View Article : Google Scholar :

127 

Vocadlo DJ, Hang HC, Kim EJ, Hanover JA and Bertozzi CR: A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA. 100:pp. 9116–9121. 2003; View Article : Google Scholar :

128 

Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N and Isobe T: Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 21:667–672. 2003. View Article : Google Scholar

129 

Derakhshan B, Wille PC and Gross SS: Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat Protoc. 2:1685–1691. 2007. View Article : Google Scholar

130 

Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR and Zhao Y: Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res. 4:950–957. 2005. View Article : Google Scholar

131 

Kostiuk MA, Corvi MM, Keller BO, Plummer G, Prescher JA, Hangauer MJ, Bertozzi CR, Rajaiah G, Falck JR and Berthiaume LG: Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J. 22:721–732. 2008. View Article : Google Scholar

132 

Xiong L, Andrews D and Regnier F: Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res. 2:618–625. 2003. View Article : Google Scholar

133 

Yang Z, Harris LE, Palmer-Toy DE and Hancock WS: Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem. 52:1897–1905. 2006. View Article : Google Scholar

134 

Madera M, Mann B, Mechref Y and Novotny MV: Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography. J Sep Sci. 31:2722–2732. 2008. View Article : Google Scholar :

135 

Andersson L and Porath J: Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 154:250–254. 1986. View Article : Google Scholar

136 

Posewitz MC and Tempst P: Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 71:2883–2892. 1999. View Article : Google Scholar

137 

Dubrovska A and Souchelnytskyi S: Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics. 5:4678–4683. 2005. View Article : Google Scholar

138 

Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B and Heck AJ: Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 76:3935–3943. 2004. View Article : Google Scholar

139 

Larsen MR, Thingholm TE, Jensen ON, Roepstorff P and Jørgensen TJD: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular Cellular Proteomics. 4:873–886. 2005. View Article : Google Scholar

140 

Thingholm TE, Jensen ON, Robinson PJ and Larsen MR: SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 7:661–671. 2008. View Article : Google Scholar

141 

Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L, Muthappan V and Passi SF: Artificial tears potpourri: A literature review. Clin Ophthalmol. 8:1419–1433. 2014.

142 

Okrojek R, Grus FH, Matheis N and Kahaly GJ: Proteomics in autoimmune thyroid eye disease. Horm Metab Res. 41:465–470. 2009. View Article : Google Scholar

143 

Zhou L, Beuerman RW, Chew AP, Koh SK, Cafaro TA, Urrets-Zavalia EA, Urrets-Zavalia JA, Li SF and Serra HM: Quantitative Analysis of N-Linked Glycoproteins in Tear Fluid of Climatic Droplet Keratopathy by Glycopeptide Capture and iTRAQ. J Proteome Res. 8:1992–2003. 2009. View Article : Google Scholar

144 

de Souza GA, de Godoy LM and Mann M: Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 7:R722006. View Article : Google Scholar :

145 

Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR and Beuerman RW: In-depth analysis of the human tear proteome. J Proteomics. 75:3877–3885. 2012. View Article : Google Scholar

146 

Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, Tong L, Liu S, Stern ME and Tan D: Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 8:4889–4905. 2009. View Article : Google Scholar

147 

Lema I, Brea D, Rodríguez-González R, Díez-Feijoo E and Sobrino T: Proteomic analysis of the tear film in patients with keratoconus. Mol Vis. 16:2055–2061. 2010.

148 

Csősz É, Boross P, Csutak A, Berta A, Tóth F, Póliska S, Török Z and Tőzsér J: Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics Proteomics Proteomics. 75:2196–2204. 2012. View Article : Google Scholar

149 

Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, Yu SJ, Koh SK and Beuerman RW: Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci. 52:7385–7391. 2011. View Article : Google Scholar

150 

Argueso P and Sumiyoshi M: Characterization of a carbohydrate epitope defined by the monoclonal antibody H185: Sialic acid O-acetylation on epithelial cell-surface mucins. Glycobiology. 16:1219–1228. 2006. View Article : Google Scholar :

151 

Lei Z, Beuerman RW, Chew AP, Koh SK, Cafaro TA, Urrets-Zavalia EA, Urrets-Zavalia JA, Li SF and Serra HM: Quantitative analysis of N-linked glycoproteins in tear fluid of climatic droplet keratopathy by glycopeptide capture and iTRAQ. J Proteome Res. 8:1992–2003. 2009. View Article : Google Scholar

152 

You J, Fitzgerald A, Cozzi PJ, Zhao Z, Graham P, Russell PJ, Walsh BJ, Willcox M, Zhong L, Wasinger V and Li Y: Post-translation modification of proteins in tears. Electrophoresis. 31:1853–1861. 2010. View Article : Google Scholar

153 

Vieira AC, An HJ, Ozcan S, Kim JH, Lebrilla CB and Mannis MJ: Glycomic analysis of tear and saliva in ocular rosacea patients: The search for a biomarker. Ocul Surf. 10:184–192. 2012. View Article : Google Scholar

154 

Dickinson DP and Thiesse M: A major human lacrimal gland mRNA encodes a new proline-rich protein family member. Invest Ophthalmol Vis Sci. 36:2020–2031. 1995.

155 

Perumal N, Funke S, Pfeiffer N and Grus FH: Characterization of Lacrimal Proline-Rich Protein 4 (PRR4) in human tear proteome. Proteomics. 14:1698–1709. 2014. View Article : Google Scholar

156 

Dyrlund TF, Poulsen ET, Scavenius C, Nikolajsen CL, Thøgersen IB, Vorum H and Enghild JJ: Human cornea proteome: Identification and quantitation of the proteins of the three main layers including epithelium, stroma and endothelium. J Proteome Res. 11:4231–4239. 2012. View Article : Google Scholar :

157 

Narayan M, Mirza SP and Twining SS: Identification of phosphorylation sites on extracellular corneal epithelial cell maspin. Proteomics. 11:1382–1390. 2011. View Article : Google Scholar :

158 

Kehasse A, Rich CB, Lee A, McComb ME, Costello CE and Trinkaus-Randall V: Epithelial wounds induce differential phosphorylation changes in response to purinergic and EGF receptor activation. Am J Pathol. 183:1841–1852. 2013. View Article : Google Scholar

159 

Iwatsuka K, Iwamoto H, Kinoshita M, Inada K, Yasueda S and Kakehi K: Comparative studies of N-glycans and glycosaminoglycans present in SIRC (Statens Seruminstitut rabbit cornea) cells and corneal epithelial cells from rabbit eyes. Curr Eye Res. 39:686–694. 2014. View Article : Google Scholar

160 

Truscott RJ: Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 80:709–725. 2005. View Article : Google Scholar

161 

Michael R and Bron AJ: The ageing lens and cataract: A model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci. 366:1278–1292. 2011. View Article : Google Scholar :

162 

Lampi KJ, Wilmarth PA, Murray MR and David LL: Lens β-crystallins: The role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol. 115:21–31. 2014. View Article : Google Scholar :

163 

Sharma KK and Santhoshkumar P: Lens aging: Effects of crystallins. Biochim Biophys Acta. 1790:1095–1108. 2009. View Article : Google Scholar :

164 

Asomugha CO, Gupta R and Srivastava OP: Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling. Mol Vis. 16:476–494. 2010.

165 

Fujii N, Sakaue H and Sasaki H: A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. J Biol Chem. 287:39992–40002. 2012. View Article : Google Scholar :

166 

Hains PG and Truscott RJ: Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res. 6:3935–3943. 2007. View Article : Google Scholar

167 

Kamei A, Takeuchi N, Nagai M and Mori S: Post-translational modification of betaH-crystallin of bovine lens with aging. Biol Pharm Bull. 26:1715–1720. 2003. View Article : Google Scholar

168 

Schaefer H, Chamrad DC, Herrmann M, Stuwe J, Becker G, Klose J, Blueggel M, Meyer HE and Marcus K: Study of posttranslational modifications in lenticular alphaA-Crystallin of mice using proteomic analysis techniques. Biochim Biophys Acta. 1764:1948–1962. 2006. View Article : Google Scholar

169 

Truscott RJ, Mizdrak J, Friedrich MG, Hooi MY, Lyons B, Jamie JF, Davies MJ, Wilmarth PA and David LL: Is protein methylation in the human lens a result of non-enzymatic methylation by S-adenosylmethionine? Exp Eye Res. 99:48–54. 2012. View Article : Google Scholar :

170 

Ueda Y, Duncan MK and David LL: Lens proteomics: The accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci. 43:205–215. 2002.

171 

Yanshole LV, Cherepanov IV, Snytnikova OA, Yanshole VV, Sagdeev RZ and Tsentalovich YP: Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens. Mol Vis. 19:2196–2208. 2013.

172 

Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG and Chen YJ: Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Mol Vis. 16:294–302. 2010.

173 

Huang CH, Wang YT, Tsai CF, Chen YJ, Lee JS and Chiou SH: Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses. Mol Vis. 17:186–198. 2011.

174 

Ball LE, Garland DL, Crouch RK and Schey KL: Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: Spatial and temporal occurrence. Biochemistry. 43:9856–9865. 2004. View Article : Google Scholar

175 

Wang Z, Han J and Schey KL: Spatial differences in an integral membrane proteome detected in laser capture microdissected samples. J Proteome Res. 7:2696–2702. 2008. View Article : Google Scholar :

176 

Schey KL, Gutierrez DB, Wang Z, Wei J and Grey AC: Novel fatty acid acylation of lens integral membrane protein aquaporin-0. Biochemistry. 49:9858–9865. 2010. View Article : Google Scholar

177 

Kim T, Kim SJ, Kim K, Kang UB, Lee C, Park KS, Yu HG and Kim Y: Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients. Proteomics. 7:4203–4215. 2007. View Article : Google Scholar

178 

Bahk SC, Jang JU, Choi CU, Lee SH, Park ZY, Yang JY, Kim JD, Yang YS and Chung HT: Post-translational modification of crystallins in vitreous body from experimental autoimmune uveitis of rats. J Proteome Res. 6:3891–3898. 2007. View Article : Google Scholar

179 

Hong SM and Yang YS: A potential role of crystallin in the vitreous bodies of rats after ischemia-reperfusion injury. Korean J Ophthalmol. 26:248–254. 2012. View Article : Google Scholar :

180 

Griciuc A, Roux MJ, Merl J, Giangrande A, Hauck SM, Aron L and Ueffing M: Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci. 34:2797–2812. 2014. View Article : Google Scholar

181 

Keenan TD, Clark SJ, Unwin RD, Ridge LA, Day AJ and Bishop PN: Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci. 53:7528–7538. 2012. View Article : Google Scholar :

182 

Tababat-Khani P, de la Torre C, Canals F, Bennet H, Simo R, Hernandez C, Fex M, Agardh CD, Hansson O and Agardh E: Photocoagulation of human retinal pigment epithelium in vitro: Unravelling the effects on ARPE-19 by transcriptomics and proteomics. Acta ophthalmol. 93:348–354. 2015. View Article : Google Scholar

183 

Zhang SY, Li BY, Li XL, Cheng M, Cai Q, Yu F, Wang WD, Tan M, Yan G, Hu SL and Gao HQ: Effects of phlorizin on diabetic retinopathy according to isobaric tags for relative and absolute quantification-based proteomics in db/db mice. Mol Vis. 19:812–821. 2013.

184 

Ablonczy Z, Goletz P, Knapp DR and Crouch RK: Mass spectrometric analysis of porcine rhodopsin. Photochem Photobiol. 75:316–321. 2002. View Article : Google Scholar

185 

Saraswathy S and Rao NA: Posttranslational modification of differentially expressed mitochondrial proteins in the retina during early experimental autoimmune uveitis. Mol Vis. 17:1814–1821. 2011.

186 

Chen F, Ng PS, Faull KF and Lee RH: Cone photoreceptor betagamma-transducin: Posttranslational modification and interaction with phosducin. Invest Ophthalmol Vis Sci. 44:4622–4629. 2003. View Article : Google Scholar

187 

Kassai H, Satomi Y, Fukada Y and Takao T: Top-down analysis of protein isoprenylation by electrospray ionization hybrid quadrupole time-of-flight tandem mass spectrometry; the mouse Tgamma protein. Rapid Commun Mass Spectrom. 19:269–274. 2005. View Article : Google Scholar

188 

Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA and Palczewski K: Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry. 51:214–224. 2011. View Article : Google Scholar :

189 

Tsybovsky Y, Wang B, Quazi F, Molday RS and Palczewski K: Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4. Biochemistry. 50:6855–6866. 2011. View Article : Google Scholar :

190 

Zhao X, Sidoli S, Wang L, Wang W, Guo L, Jensen ON and Zheng L: Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury. J Proteome Res. 13:2175–2186. 2014. View Article : Google Scholar

191 

Morgan IG, Ohno-Matsui K and Saw SM: Myopia. Lancet. 379:1739–1748. 2012. View Article : Google Scholar

192 

Pan CW, Ramamurthy D and Saw SM: Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 32:3–16. 2012. View Article : Google Scholar

193 

Lin LL, Shih YF, Hsiao CK and Chen CJ: Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 33:27–33. 2004.

194 

Sun J, Zhou J, Zhao P, Lian J, Zhu H, Zhou Y, Sun Y, Wang Y, Zhao L, Wei Y, et al: High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Invest Ophthalmol Vis Sci. 53:7504–7509. 2012. View Article : Google Scholar

195 

Wallman J, Gottlieb MD, Rajaram V and Fugate-Wentzek LA: Local retinal regions control local eye growth and myopia. Science. 237:73–77. 1987. View Article : Google Scholar

196 

Hodos W and Kuenzel WJ: Retinal-image degradation produces ocular enlargement in chicks. Invest Ophthalmol Vis Sci. 25:652–659. 1984.

197 

Lam TC, Li KK, Lo SC, Guggenheim JA and To CH: Application of fluorescence difference gel electrophoresis technology in searching for protein biomarkers in chick myopia. J Proteome Res. 6:4135–4149. 2007. View Article : Google Scholar

198 

Jostrup R, Shen W, Burrows JT, Sivak JG, McConkey BJ and Singer TD: Identification of myopia-related marker proteins in tilapia retinal, RPE, and choroidal tissue following induced form deprivation. Curr Eye Res. 34:966–975. 2009. View Article : Google Scholar

199 

Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, Ho C, Iuvone PM, Beuerman RW and Zhou L: Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res. 13:4647–4658. 2014. View Article : Google Scholar :

200 

Chen B, Yu F, Li KK, Chun RK, Lam TC and To CH: Qualitative and quantitative phosphoproteomics analysis of chick retina of Tio2-enriched strategy. Presented at the 13th Annual World Congress of the Human Proteome Organization. 2014; http://hdl.handle.net/10397/59149

201 

Lee H, Chung H, Lee SH and Jahng WJ: Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol. 48:194–201. 2011. View Article : Google Scholar

202 

Kanan Y, Siefert JC, Kinter M and Al-Ubaidi MR: Complement factor H, vitronectin, and opticin are tyrosine-sulfated proteins of the retinal pigment epithelium. PLoS One. 9:e1054092014. View Article : Google Scholar :

203 

Lee H, Chung H, Arnouk H, Lamoke F, Hunt RC, Hrushesky WJ, Wood PA, Lee SH and Jahng WJ: Cleavage of the retinal pigment epithelium-specific protein RPE65 under oxidative stress. Int J Biol Macromol. 47:104–108. 2010. View Article : Google Scholar :

204 

Yuan Q, Kaylor JJ, Miu A, Bassilian S, Whitelegge JP and Travis GH: Rpe65 isomerase associates with membranes through an electrostatic interaction with acidic phospholipid headgroups. J Biol Chem. 285:988–999. 2010. View Article : Google Scholar

205 

DiMauro MA, Nandi SK, Raghavan CT, Kar RK, Wang B, Bhunia A, Nagaraj RH and Biswas A: Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. Biochemistry. 53:7269–7282. 2014. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen BJ, Lam TC, Liu LQ and To CH: Post-translational modifications and their applications in eye research (Review). Mol Med Rep 15: 3923-3935, 2017.
APA
Chen, B., Lam, T.C., Liu, L., & To, C. (2017). Post-translational modifications and their applications in eye research (Review). Molecular Medicine Reports, 15, 3923-3935. https://doi.org/10.3892/mmr.2017.6529
MLA
Chen, B., Lam, T. C., Liu, L., To, C."Post-translational modifications and their applications in eye research (Review)". Molecular Medicine Reports 15.6 (2017): 3923-3935.
Chicago
Chen, B., Lam, T. C., Liu, L., To, C."Post-translational modifications and their applications in eye research (Review)". Molecular Medicine Reports 15, no. 6 (2017): 3923-3935. https://doi.org/10.3892/mmr.2017.6529
Copy and paste a formatted citation
x
Spandidos Publications style
Chen BJ, Lam TC, Liu LQ and To CH: Post-translational modifications and their applications in eye research (Review). Mol Med Rep 15: 3923-3935, 2017.
APA
Chen, B., Lam, T.C., Liu, L., & To, C. (2017). Post-translational modifications and their applications in eye research (Review). Molecular Medicine Reports, 15, 3923-3935. https://doi.org/10.3892/mmr.2017.6529
MLA
Chen, B., Lam, T. C., Liu, L., To, C."Post-translational modifications and their applications in eye research (Review)". Molecular Medicine Reports 15.6 (2017): 3923-3935.
Chicago
Chen, B., Lam, T. C., Liu, L., To, C."Post-translational modifications and their applications in eye research (Review)". Molecular Medicine Reports 15, no. 6 (2017): 3923-3935. https://doi.org/10.3892/mmr.2017.6529
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team