|
1
|
Wang A, Rana S and Karumanchi SA:
Preeclampsia: The role of angiogenic factors in its pathogenesis.
Physiology (Bethesda). 24:147–158. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Roberts JM, Taylor RN, Musci TJ, Rodgers
GM, Hubel CA and McLaughlin MK: Preeclampsia: An endothelial cell
disorder. Am J Obstet Gynecol. 161:1200–1204. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Redman CW, Sacks GP and Sargent IL:
Preeclampsia: An excessive maternal inflammatory response to
pregnancy. Am J Obstet Gynecol. 180:499–506. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mongraw-Chaffin ML, Cirllo PM and Cohn BA:
Preeclampsia and cardiovascular disease death: Prospective evidence
from the child health and development studies cohort. Hypertension.
56:166–171. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hubel CA, McLaughlin MK, Evans RW, Hauth
BA, Sims CJ and Roberts JM: Fasting serum triglycerides, free fatty
acids, and malondialdehyde are increased in preeclampsia, are
positively correlated, and decrease within 48 hours post partum. Am
J Obstet Gynecol. 174:975–782. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kaufmann P, Black S and Huooertz B:
Endovascular trophoblast invasion: Implications for the
pathogenesis of intrauterine growth retardation and preeclampsia.
Biol Reprod. 69:1–7. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nusse R, van Ooyen A, Cox D, Fung YK and
Varmus H: Mode of proviral activation of a putative mammary
oncogene (int-1) on mouse chromosome 15. Nature. 307:131–136. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Saito-Diaz K, Chen TW, Wang X, Thorne CA,
Wallace HA, Page-McCaw A and Lee E: The way Wnt works: Components
and mechanism. Growth Factors. 31:1–31. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sonderegger S, Pollheimer J and Knöfler M:
Wnt signalling in implantation, decidualisation and placental
differentiation-review. Placenta. 31:839–847. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ma XR, Sim UH Edmund, Pauline B, Patricia
L and Rahman J: Overexpression of WNT2 and TSG101 genes in
colorectal carcinoma. Trop Biomed. 25:46–57. 2008.PubMed/NCBI
|
|
11
|
Geng M, Cao YC, Chen YJ, Jiang H, Bi LQ
and Liu XH: Loss of Wnt5a and Ror2 protein in hepatocellular
carcinoma associated with poor prognosis. World J Gastroenterol.
18:1328–1338. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bui TD, Zhang L, Rees MC, Bicknell R and
Harris AL: Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a,
7b and 10b in normal human endometrium and endometrial carcinoma.
Br J Cancer. 75:1131–1136. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hirata H, Hinoda Y, Nakajima K, Kawamoto
K, Kikuno N, Ueno K, Yamamura S, Zaman MS, Khatri G, Chen Y, et al:
Wnt antagonist DKK1 acts as a tumor suppressor gene that induces
apoptosis and inhibits proliferation in human renal cell carcinoma.
Int J Cancer. 128:1793–1803. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang Z, Zhang L, Zhang L, Jia L, Wang P
and Gao Y: Association of Wnt2 and sFRP4 Expression in the Third
trimester placenta in women with severe preeclampsia. Reprod Sci.
20:981–989. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Roberts JM and Escudero C: The placenta in
preeclampsia. Pregnancy Hypertens. 2:72–83. 2012.PubMed/NCBI
|
|
16
|
Zhang Z, Li H, Zhang L, Jia L and Wang P:
Differential expression of beta-catenin and dickkopf-1 in the third
trimester placentas from normal and preeclamptic pregnancies: A
comparative study. Reprod Biol Endocrinol. 11:172013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Roberts JM and Gammill HS: Preeclampsia:
Recent insights. Hypertension. 46:1243–1249. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
LaMarca BD, Gilbert J and Granger JP:
Recent progress toward the understanding of the pathophysiology of
hypertension during preeclampsia. Hypertension. 51:982–988. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Red-Horse K, Zhou Y, Genbacev O,
Prakobphol A, Foulk R, McMaster M and Fisher SJ: Trophoblast
differentiation during embryo implantation and formation of the
maternal-fetal interface. J Clin Invest. 114:744–754. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Singh HJ: Pre-eclampsia: Is it all in the
placenta? Malays J Med Sci. 16:7–15. 2009.PubMed/NCBI
|
|
21
|
Cross JC, Werb Z and Fisher SJ:
Implantation and the placenta: Key pieces of the development
puzzle. Science. 266:1508–1518. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Carter AM, Enders AC and Pijnenborg R: The
role of invasive trophoblast in implantation and placentation of
primates. Philos Trans R Soc Lond B Biol Sci. 370:201400702015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Caniggia I, Winter J, Lye SJ and Post M:
Oxygen and placental development during the first trimester:
Implications for the pathophysiology of pre-eclampsia. Placenta. 21
Suppl A:S25–S30. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Knöfler M and Pollheimer J: Human
placental trophoblast invasion and differentiation: A particular
focus on Wnt signaling. Front Genet. 4:1902013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pijnenborg R, Vercruysse L and Hanssens M:
The uterine spiral arteries in human pregnancy: Facts and
controversies. Placenta. 27:939–958. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jauniaux E, Hempstock J, Greenwold N and
Burton GJ: Trophoblastic oxidative stress in relation to temporal
and regional differences in maternal placental blood flow in normal
and abnormal early pregnancies. Am J Pathol. 162:115–125. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bulmer JN, Williams PJ and Lash GE: Immune
cells in the placental bed. Int J Dev Biol. 54:281–294. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Oreshkova T, Dimitrov R and Mourdjeva M: A
cross-talk of decidual stromal cells, trophoblast, and immune
cells: A prerequisite for the success of pregnancy. Am J Reprod
Immunol. 68:366–373. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rauwel B, Mariamè B, Martin H, Nielsen R,
Allart S, Pipy B, Mandrup S, Devignes MD, Evain-Brion D, Fournier T
and Davrinche C: Activation of peroxisome proliferator-activated
receptor gamma by human cytomegalovirus for de novo replication
impairs migration and invasiveness of cytotrophoblasts from early
placentas. J Virol. 84:2946–2954. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hiby SE, Walker JJ, O'shaughnessy KM,
Redman CW, Carrington M, Trowsdale J and Moffett A: Combinations of
maternal KIR and fetal HLA-C genes influence the risk of
preeclampsia and reproductive success. J Exp Med. 200:957–965.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Burton GJ, Jauniaux E and Charnock-Jones
DS: Human early placental development: Potential roles of the
endometrial glands. Placenta. 28 Suppl A:S64–S69. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Burton GJ, Jauniaux E and Charnock-Jones
DS: The influence of the intrauterine environment on human
placental development. Int. Int J Dev Biol. 54:303–312. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Robson A, Harris LK, Innes BA, Lash GE,
Aljunaidy MM, Aplin JD, Baker PN, Robson SC and Bulmer JN: Uterine
natural killer cells initiate spiral artery remodeling in human
pregnancy. FASEB J. 26:4876–4885. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harris LK: IFPA Gabor Than Award lecture:
Transformation of the spiral arteries in human pregnancy: Key
events in the remodelling timeline. Placenta. 32 Suppl 2:S154–S158.
2012. View Article : Google Scholar
|
|
35
|
Tal R: The role of hypoxia and
hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol
Reprod. 87:1342012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pijnenborg R, Anthony J, Davey DA, Rees A,
Tiltman A, Vercruysse L and van Assche A: Placental bed spiral
arteries in the hypertensive disorders of pregnancy. Br J Obstet
Gynaecol. 98:648–655. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou Y, Gormley MJ, Hunkapiller NM,
Kapidzic M, Stolyarov Y, Feng V, Nishida M, Drake PM, Bianco K,
Wang F, et al: Reversal of gene dysregulation in cultured
cytotrophoblasts reveals possible causes of preeclampsia. J Clin
Invest. 123:2862–2872. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109. 1982.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Miller JR: The Wnts. Genome Biol.
3:REVIEWS30012002.PubMed/NCBI
|
|
41
|
Kestler HA and Kühl M: From individual Wnt
pathways towards a Wnt signalling network. Philos Trans R Soc Lond
B Biol Sci. 363:1333–1347. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bender W and Reifer M: Oncogenes take
wing. Cell. 50:519–520. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wodarz A and Nusse R: Mechanisms of Wnt
signaling in development. Annu Rev Cell Dev Biol. 14:59–88. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ng SS, Mahmoudi T, Danenberg E, Bejaoui I,
de Lau W, Korswagen HC, Schutte M and Clevers H:
Phosphatidylinositol 3-kinase signaling does not activate the Wnt
cascade. J Biol Chem. 284:35308–35313. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Valenta T, Hausmann G and Basler K: The
many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kimelman D and Xu W: beta-catenin
destruction complex: Insights and questions from a structural
perspective. Oncogene. 25:7482–7491. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wong HC, Bourdelas A, Krauss A, Lee HJ,
Shao Y, Wu D, Mlodzik M, Shi DL and Zheng J: Direct binding of the
PDZ domain of Dishevelled to a conserved internal sequence in the
C-terminal region of Frizzled. Mol Cell. 12:1251–1260. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jho EH, Zhang T, Domon C, Joo CK, Freund
JN and Costantini F: Wnt/beta-catenin/Tcf signaling induces the
transcription of Axin2, a negative regulator of the signaling
pathway. Mol Cell Biol. 22:1172–1183. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Logan CY and Nusse R: The Wnt signaling
pathway in development and disease. Annu Rev Cell Dev Biol.
20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cadigan KM and Peifer M: Wnt signaling
from development to disease: Insights from model systems. Cold
Spring Harb Perspect Biol. 1:a0028812009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
van Amerongen R and Nusse R: Towards an
integrated view of Wnt signaling in development. Development.
136:3205–3214. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Polakis P: The many ways of Wnt in cancer.
Curr Opin Genet Dev. 17:45–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Polakis P: Drugging Wnt signalling in
cancer. EMBO J. 31:2737–2746. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chien AJ, Conrad WH and Moon RT: A Wnt
survival guide: From flies to human disease. J Invest Dermatol.
129:1614–1627. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Giles RH, van Es JH and Clevers H: Caught
up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta.
1653:1–24. 2003.PubMed/NCBI
|
|
58
|
Phelps RA, Broadbent TJ, Stafforini DM and
Jones DA: New perspectives on APC control of cell fate and
proliferation in colorectal cancer. Cell Cycle. 8:2549–2556. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tarapore RS, Siddiqui IA and Mukhtar H:
Modulation of Wnt/β-catenin signaling pathway by bioactive food
components. Carcinogenesis. 33:483–491. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Georgiades P, Ferguson-Smith AC and Burton
GJ: Comparative developmental anatomy of the murine and human
definitive placentae. Placenta. 23:3–19. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gough NR: Focus issue: Wnt and β-catenin
signaling in development and disease. Sci Signal.
5:eg22012.PubMed/NCBI
|
|
62
|
Sonderegger S, Husslein H, Leisser C and
Knöfler M: Complex expression pattern of Wnt ligands and frizzled
receptors in human placenta and its trophoblast subtypes. Placenta.
28 Suppl A:S97–S102. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tulac S, Nayak NR, Kao LC, van Waes M,
Huang J, Lobo S, Germeyer A, Lessey BA, Taylor RN, Suchanek E and
Giudice LC: Identification, characterization, and regulation of the
canonical Wnt signaling pathway in human endometrium. J Clin
Endocrinol Metab. 88:3860–3866. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Carson DD, Lagow E, Thathiah A, Al-Shami
R, Farach-Carson MC, Vernon M, Yuan L, Fritz MA and Lessey B:
Changes in gene expression during the early to mid-luteal
(receptive phase) transition in human endometrium detected by
high-density microarray screening. Mol Hum Reprod. 8:871–879. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen Y, Zhang Y, Deng Q, Shan N, Peng W,
Luo X, Zhang H, Baker PN, Tong C and Qi H: Wnt5a inhibited human
trophoblast cell line HTR8/SVneo invasion: Implications for early
placentation and preeclampsia. J Matern Fetal Neonatal Med.
29:3532–3538. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng
EH, Yeung WS, Ho PC and Lee KF: Excessive ovarian stimulation
up-regulates the Wnt-signaling molecule DKK1 in human endometrium
and may affect implantation: An in vitro co-culture study. Hum
Reprod. 25:479–490. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hess AP, Hamilton AE, Talbi S, Dosiou C,
Nyegaard M, Nayak N, Genbecev-Krtolica O, Mavrogianis P, Ferrer K,
Kruessel J, et al: Decidual stromal cell response to paracrine
signals from the trophoblast: Amplification of immune and
angiogenic modulators. Biol Reprod. 76:102–117. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chawengsaksophak K, de Graaff W, Rossant
J, Deschamps J and Beck F: Cdx2 is essential for axial elongation
in mouse development. Pro Natl Acad Sci USA. 101:7641–7645. 2004.
View Article : Google Scholar
|
|
69
|
Miller C and Sassoon DA: Wnt-7a maintains
appropriate uterine patterning during the development of the mouse
female reproductive tract. Development. 125:3201–3211.
1998.PubMed/NCBI
|
|
70
|
Vainio S, Heikkilä M, Kispert A, Chin N
and McMahon AP: Female development in mammals is regulated by Wnt-4
signalling. Nature. 397:405–409. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
71
|
Newman AC and Hughes CC: Macrophages and
angiogenesis: A role for Wnt signaling. Vasc Cell. 4:132012.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Herr F, Horndasch M, Howe D, Baal N, Goyal
P, Fischer S, Zygmunt M and Preissner KT: Human placenta-derived
Wnt-5a induces the expression of ICAM-1 and VCAM-1 in
CD133(+)CD34(+)-hematopoietic progenitor cells. Reprod Biol.
14:262–275. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Krivega M, Essahib W and Van de Velde H:
WNT3 and membrane-associated β-catenin regulate trophectoderm
lineage differentiation in human blastocysts. Mol Hum Repro.
21:711–722. 2015. View Article : Google Scholar
|
|
74
|
Meinhardt G, Haider S, Haslinger P,
Proestling K, Fiala C, Pollheimer J and Knöfler M: Wnt-dependent
T-cell factor-4 controls human extravillous trophoblast motility.
Endocrinology. 155:1908–1920. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bilic J, Huang YL, Davidson G, Zimmermann
T, Cruciat CM, Bienz M and Niehrs C: Wnt induces LRP6 signalosomes
and promotes dishevelled-dependent LRP6 phosphorylation. Science.
316:1619–1622. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sonderegger S, Haslinger P, Sabri A,
Leisser C, Otten JV, Fiala C and Knöfler M: Wingless (Wnt)-3A,
induces trophoblast migration and matrix metalloproteinase-2
secretion through canonical Wnt signaling and protein kinase B/AKT
activation. Endocrinology. 151:211–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lu J, Zhang S, Nakano H, Simmons DG, Wang
S, Kong S, Wang Q, Shen L, Tu Z, Wang W, et al: A positive feedback
loop involving Gcm1 and Fzd5 directs chorionic branching
morphogenesis in the placenta. PLoS Biol. 11:e10015362013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pollheimer J, Loregger T, Sonderegger S,
Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P and Knöfler M:
Activation of the canonical wingless/T-cell factor signaling
pathway promotes invasive differentiation of human trophoblast. Am
J Pathol. 168:1134–1147. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Peng S, Li J, Miao C, Jia L, Hu Z, Zhao P,
Li J, Zhang Y, Chen Q and Duan E: Dickkopf-1 secreted by decidual
cells promotes trophoblast cell invasion during murine
placentation. Reproduction. 135:367–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhuang B, Luo X, Rao H, Li Q, Shan N, Liu
X and Qi H: Oxidative stress-induced C/EBPβ inhibits β-catenin
signaling molecule involving in the pathology of preeclampsia.
Placenta. 36:839–846. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lavergne E, Hendaoui I, Coulouarn C,
Ribault C, Leseur J, Eliat PA, Mebarki S, Corlu A, Clément B and
Musso O: Blocking Wnt signaling by SFRP-like molecules inhibits in
vivo cell proliferation and tumor growth in cells carrying active
β-catenin. Oncogene. 30:423–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wong NC, Novakovic B, Weinrich B, Dewi C,
Andronikos R, Sibson M, Macrae F, Morley R, Pertile MD, Craig JM
and Saffery R: Methylation of the adenomatous polyposis coli (APC)
gene in human placenta and hypermethylation in choriocarcinoma
cells. Cancer Lett. 268:56–62. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Novakovic B, Rakyan V, Ng HK, Manuelpillai
U, Dewi C, Wong NC, Morley R, Down T, Beck S, Craig JM and Saffery
R: Specific tumour-associated methylation in normal human term
placenta and first-trimester cytotrophoblasts. Mol Hum Reprod.
14:547–554. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cui H, Li H, Li QL, Chen J, Na Q and Liu
CX: Dickkopf-1 induces apoptosis in the JEG3 and BeWo trophoblast
tumor cell lines through the mitochondrial apoptosis pathway. Int J
Oncol. 46:2555–2561. 2015.PubMed/NCBI
|
|
85
|
Ducat A, Doridot L, Calicchio R, Méhats C,
Vilotte JL, Castille J, Barbaux S, Couderc B, Jacques S, Letourneur
F, et al: Endothelial cell dysfunction and cardiac hypertrophy in
the STOX1 model of preeclampsia. Sci Rep. 6:191962016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Szarka A, Rigó J Jr, Lázár L, Beko G and
Molvarec A: Circulating cytokines, chemokines and adhesion
molecules in normal pregnancy and preeclampsia determined by
multiplex suspension array. BMC Immunol. 11:592010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Crocker I: Gabor Than Award Lecture 2006:
pre-eclampsia and villous trophoblast turnover: perspectives and
possibilities. Placenta. 28 Suppl A:S4–S13. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Goldman-Wohl D and Yagel S: Regulation of
trophoblast invasion: From normal implantation to pre-eclampsia.
Mol Cell Endocrinol. 187:233–238. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Can M, Guven B, Bektas S and Arikan I:
Oxidative stress and apoptosis in preeclampsia. Tissue Cell.
46:477–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Schrocksnadel H, Daxenbichler G, Artner E,
Steckel-Berger G and Dapunt O: Tumor markers in hypertensive
disorders of pregnancy. Gynecol Obstet Invest. 35:204–208. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dey SK, Lim H, Das SK, Reese J, Paria BC,
Daikoku T and Wang H: Molecular cues to implantation. Endocr Rev.
25:341–373. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang J, Dunk CE and Lye SJ: Sphingosine
signaling regulates decidual NK cell angiogenic phenotype and
trophoblast migration. Hum Reprod. 28:3026–3037. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fan M, Xu Y, Hong F, Gao X, Xin G, Hong H,
Dong L and Zhao X: Rac1/β-catenin signalling pathway contributes to
trophoblast cell invasion by targeting snail and MMP9. Cell Physiol
Biochem. 38:1319–1332. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang Zhan, LI Wei, Zhang Lin-Lin, Jia
Li-Ting, Yu Hai-Yang and Liu Li-Sha: Detection of E-cadherin
expression in preeclampsia by placenta tissue microarray. Chinese
Journal of Health Laboratory Technology. 9:1232–1235. 2014.
|