|
1
|
Schengrund CL: The role(s) of gangliosides
in neural differentiation and repair: A perspective. Brain Res
Bull. 24:131–141. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hakomori S: Structure, organization, and
function of glycosphingolipids in membrane. Curr Opin Hematol.
10:16–24. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yu RK, Nakatani Y and Yanagisawa M: The
role of glycosphingolipid metabolism in the developing brain. J
Lipid Res. 50 Suppl:S440–S445. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Anderson RG: The caveolae membrane system.
Annu Rev Biochem. 67:199–225. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Simons K and Toomre D: Lipid rafts and
signal transduction. Nat Rev Mol Cell Biol. 1:31–39. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hakomori S, Yamamura S and Handa AK:
Signal transduction through glyco(sphingo)lipids. Introduction and
recent studies on glyco(sphingo)lipid-enriched microdomains. Ann N
Y Acad Sci. 845:1–10. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yu RK, Tsai YT, Ariga T and Yanagisawa M:
Structures, biosynthesis, and functions of gangliosides-an
overview. J Oleo Sci. 60:537–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fortier LA: Stem cells: Classifications,
controversies, and clinical applications. Vet Surg. 34:415–423.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Smith AG: Embryo-derived stem cells: Of
mice and men. Annu Rev Cell Dev Biol. 17:435–462. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ko K, Tapia N, Wu G, Kim JB, Bravo MJ,
Sasse P, Glaser T, Ruau D, Han DW, Greber B, et al: Induction of
pluripotency in adult unipotent germline stem cells. Cell Stem
Cell. 5:87–96. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ko K, Araúzo-Bravo MJ, Kim J, Stehling M
and Schöler HR: Conversion of adult mouse unipotent germline stem
cells into pluripotent stem cells. Nature Protoc. 5:921–928. 2010.
View Article : Google Scholar
|
|
13
|
Kim JB, Zaehres H, Wu G, Gentile L, Ko K,
Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M and Schöler
HR: Pluripotent stem cells induced from adult neural stem cells by
reprogramming with two factors. Nature. 454:646–650. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kim JB, Sebastiano V, Wu G, Araúzo-Bravo
MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, et
al: Oct4-induced pluripotency in adult neural stem cells. Cell.
136:411–419. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Molyneaux BJ, Arlotta P, Menezes JR and
Macklis JD: Neuronal subtype specification in the cerebral cortex.
Nat Rev Neurosci. 8:427–437. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shamblott MJ, Axelman J, Wang S, Bugg EM,
Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR and Gearhart
JD: Derivation of pluripotent stem cells from cultured human
primordial germ cells. Proc Natl Acad Sci USA. 95:13726–13731.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Solter D and Knowles BB: Monoclonal
antibody defining a stage-specific mouse embryonic antigen
(SSEA-1). Proc Natl Acad Sci USA. 75:5565–5569. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xu J, Hardin H, Zhang R, Sundling K,
Buehler D and Lloyd RV: Stage-specific embryonic antigen-1 (SSEA-1)
expression in thyroid tissues. Endocr Pathol. 27:271–275. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liebert M, Jaffe R, Taylor RJ, Ballou BT,
Solter D and Hakala TR: Detection of SSEA-1 on human renal tumors.
Cancer. 59:1404–1408. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Suzuki Y, Haraguchi N, Takahashi H, Uemura
M, Nishimura J, Hata T, Takemasa I, Mizushima T, Ishii H, Doki Y,
et al: SSEA-3 as a novel amplifying cancer cell surface marker in
colorectal cancers. Int J Oncol. 42:161–167. 2013.PubMed/NCBI
|
|
21
|
Cheung SK, Chuang PK, Huang HW,
Hwang-Verslues WW, Cho CH, Yang WB, Shen CN, Hsiao M, Hsu TL, Chang
CF and Wong CH: Stage-specific embryonic antigen-3 (SSEA-3) and
β3GalT5 are cancer specific and significant markers for breast
cancer stem cells. Proc Natl Acad Sci USA. 113:960–965. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Noto Z, Yoshida T, Okabe M, Koike C, Fathy
M, Tsuno H, Tomihara K, Arai N, Noguchi M and Nikaido T: CD44 and
SSEA-4 positive cells in an oral cancer cell line HSC-4 possess
cancer stem-like cell characteristics. Oral Oncol. 49:787–795.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gottschling S, Jensen K, Warth A, Herth
FJ, Thomas M, Schnabel PA and Herpel E: Stage-specific embryonic
antigen-4 is expressed in basaloid lung cancer and associated with
poor prognosis. Eur Respir J. 41:656–663. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Knowles BB, Aden DP and Solter D:
Monoclonal antibody detecting a stage-specific embryonic antigen
(SSEA-1) on preimplantation mouse embryos and teratocarcinoma
cells. Curr Top Microbiol Immunol. 81:51–53. 1978.PubMed/NCBI
|
|
25
|
Fox N, Damjanov I, Martinez-Hernandez A,
Knowles BB and Solter D: Immunohistochemical localization of the
early embryonic antigen (SSEA-1) in postimplantation mouse embryos
and fetal and adult tissues. Dev Biol. 83:391–398. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fox N, Shevinsky L, Knowles BB, Solter D
and Dawjanov I: Distribution of murine stage-specific embryonic
antigens in the kidneys of three rodent species. Exp Cell Res.
140:331–339. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kannagi R, Cochran NA, Ishigami F,
Hakomori S, Andrews PW, Knowles BB and Solter D: Stage-specific
embryonic antigens (SSEA-3 and −4) are epitopes of a unique
globo-series ganglioside isolated from human teratocarcinoma cells.
EMBO J. 2:2355–2361. 1983.PubMed/NCBI
|
|
28
|
Tettamanti G:
Ganglioside/glycosphingolipid turnover: New concepts. Glycoconj J.
20:301–317. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Basu S, Kaufman B and Roseman S: Enzymatic
synthesis of glucocerebroside by a glucosyltransferase from
embryonic chicken brain. J Biol Chem. 248:1388–1394.
1973.PubMed/NCBI
|
|
30
|
Ichikawa S, Sakiyama H, Suzuki G, Hidari
KI and Hirabayashi Y: Expression cloning of a cDNA for human
ceramide glucosyltransferase that catalyzes the first glycosylation
step of glycosphingolipid synthesis. Proc Natl Acad Sci USA.
93:4638–4643. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Paul P, Kamisaka Y, Marks DL and Pagano
RE: Purification and characterization of UDP-glucose: Ceramide
glucosyltransferase from rat liver Golgi membranes. J Biol Chem.
271:2287–2293. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Basu S, Kaufman B and Roseman S: Enzymatic
synthesis of ceramide-glucose and ceramide-lactose by
glycosyltransferases from embryonic chicken brain. J Biol Chem.
243:5802–5804. 1968.PubMed/NCBI
|
|
33
|
Nomura T, Takizawa M, Aoki J, Arai H,
Inoue K, Wakisaka E, Yoshizuka N, Imokawa G, Dohmae N, Takio K, et
al: Purification, cDNA cloning, and expression of UDP-Gal:
Glucosylceramide beta-1,4-galactosyltransferase from rat brain. J
Biol Chem. 273:13570–13577. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sundaram KS and Lev M: Purification and
activation of brain sulfotransferase. J Biol Chem. 267:24041–24044.
1992.PubMed/NCBI
|
|
35
|
Huwiler A, Kolter T, Pfeilschifter J and
Sandhoff K: Physiology and pathophysiology of sphingolipid
metabolism and signaling. Biochim Biophys Acta. 1485:63–99. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kolter T, Proia RL and Sandhoff K:
Combinatorial ganglioside biosynthesis. J Biol Chem.
277:25859–25862. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Martin GR: Isolation of a pluripotent cell
line from early mouse embryos cultured in medium conditioned by
teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638.
1981. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kimber SJ, Brown DG, Pahlsson P and
Nilsson B: Carbohydrate antigen expression in murine embryonic stem
cells and embryos. II. Sialylated antigens and glycolipid analysis.
Histochem J. 25:628–641. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ryu JS, Chang KT, Lee JT, Lim MU, Min HK,
Na YJ, Lee SB, Moussavou G, Kim SU, Kim JS, et al: Ganglioside GM1
influences the proliferation rate of mouse induced pluripotent stem
cells. BMB Rep. 45:713–718. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yamashita T, Wada R, Sasaki T, Deng C,
Bierfreund U, Sandhoff K and Proia RL: A vital role for
glycosphingolipid synthesis during development and differentiation.
Proc Natl Acad Sci USA. 96:9142–9147. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jung JU, Ko K, Lee DH, Ko K, Chang KT and
Choo YK: The roles of glycosphingolipids in the proliferation and
neural differentiation of mouse embryonic stem cells. Exp Mol Med.
41:935–345. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kwak DH, Yu K, Kim SM, Lee DH, Kim SM,
Jung JU, Seo JW, Kim N, Lee S, Jung KY, et al: Dynamic changes of
gangliosides expression during the differentiation of embryonic and
mesenchymal stem cells into neural cells. Exp Mol Med. 38:668–676.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lee DH, Koo DB, Ko K, Ko K, Kim SM, Jung
JU, Ryu JS, Jin JW, Yang HJ, Do SI, et al: Effects of daunorubicin
on ganglioside expression and neuronal differentiation of mouse
embryonic stem cells. Biochem Biophys Res Commun. 362:313–318.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Azevedo-Pereira RL, Morrot A, Machado GS,
Paredes BD, Dde C Rodrigues, de Carvalho AC and Mendez-Otero R:
Expression of ganglioside 9-O acetyl GD3 in undifferentiated
embryonic stem cells. Cell Biol Int. 39:121–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cheresh DA, Pierschbacher MD, Herzig MA
and Mujoo K: Disialogangliosides GD2 and GD3 are involved in the
attachment of human melanoma and neuroblastoma cells to
extracellular matrix proteins. J Cell Biol. 102:688–696. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kwak DH, Rho YI, Kwon OD, Ahan SH, Song
JH, Choo YK, Kim SJ, Choi BK and Jung KY: Decreases of ganglioside
GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci.
72:1997–2006. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Duan JG, Xiang T, Chen H and Liu M: Role
of extrinsic ganglioside GM1 in proliferation and differentiation
of neural stem cells. Sichuan Da Xue Xue Bao Yi Xue Ban.
38:260–263. 2007.(In Chinese). PubMed/NCBI
|
|
48
|
Gouni-Berthold I, Seul C, Ko Y, Hescheler
J and Sachinidis A: Gangliosides GM1 and GM2 induce vascular smooth
muscle cell proliferation via extracellular signal-regulated kinase
1/2 pathway. Hypertension. 38:1030–1037. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nishio M, Tajima O and Furukawa K, Urano T
and Furukawa K: Over-expression of GM1 enhances cell proliferation
with epidermal growth factor without affecting the receptor
localization in the microdomain in PC12 cells. Int J Oncol.
26:191–199. 2005.PubMed/NCBI
|
|
50
|
Lee SW, Lee HJ, Hwang HS and Ko K, Han DW
and Ko K: Optimization of Matrigel-based culture for expansion of
neural stem cells. Anim Cells Syst. 19:175–180. 2015. View Article : Google Scholar
|
|
51
|
Itokazu Y, Kato-Negishi M, Nakatani Y,
Ariga T and Yu RK: Effects of amyloid β-peptides and gangliosides
on mouse neural stem cells. Neurochem Res. 38:2019–2027. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Klassen H, Schwartz MR, Bailey AH and
Young MJ: Surface markers expressed by multipotent human and mouse
neural progenitor cells include tetraspanins and non-protein
epitopes. Neurosci Lett. 312:180–182. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nakatani Y, Yanagisawa M, Suzuki Y and Yu
RK: Characterization of GD3 ganglioside as a novel biomarker of
mouse neural stem cells. Glycobiology. 20:78–86. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang J, Cheng A, Wakade C and Yu RK:
Ganglioside GD3 is required for neurogenesis and long-term
maintenance of neural stem cells in the postnatal mouse brain. J
Neurosci. 34:13790–13800. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang J and Yu RK: Interaction of
ganglioside GD3 with an EGF receptor sustains the self-renewal
ability of mouse neural stem cells in vitro. Proc Natl Acad Sci
USA. 110:19137–19142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Irvine RA and Seyfried TN: Phylogenetic
conservation of ganglioside GD3 expression during early vertebrate
ontogeny. Comp Biochem Physiol B Biochem Mol Biol. 109:603–612.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Seyfried TN and Yu RK: Ganglioside GD3:
Structure, cellular distribution, and possible function. Mol Cell
Biochem. 68:3–10. 1985.PubMed/NCBI
|
|
58
|
Yanagisawa M, Nakamura K and Taga T: Roles
of lipid rafts in integrin-dependent adhesion and gp130 signalling
pathway in mouse embryonic neural precursor cells. Genes Cells.
9:801–809. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Doetsch F, Caillé I, Lim DA,
Garcia-Verdugo JM and Alvarez-Buylla A: Subventricular zone
astrocytes are neural stem cells in the adult mammalian brain.
Cell. 97:703–716. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Goldman JE, Hirano M, Yu RK and Seyfried
TN: GD3 ganglioside is a glycolipid characteristic of immature
neuroectodermal cells. J Neuroimmunol. 7:179–192. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cammer W and Zhang H: Ganglioside GD3 in
radial glia and astrocytes in situ in brains of young and adult
mice. J Neurosci Res. 46:18–23. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ngamukote S, Yanagisawa M, Ariga T, Ando S
and Yu RK: Developmental changes of glycosphingolipids and
expression of glycogenes in mouse brains. J Neurochem.
103:2327–2341. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y, Li R and Ladisch S: Exogenous
ganglioside GD1a enhances epidermal growth factor receptor binding
and dimerization. J Biol Chem. 279:36481–36489. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yanagisawa M, Nakamura K and Taga T:
Glycosphingolipid synthesis inhibitor represses cytokine-induced
activation of the Ras-MAPK pathway in embryonic neural precursor
cells. J Biochem. 138:285–291. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bouvier JD and Seyfried TN: Ganglioside
composition of normal and mutant mouse embryos. J Neurochem.
52:460–466. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yu RK: Development regulation of
ganglioside metabolism. Prog Brain Res. 101:31–44. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yu RK, Macala LJ, Taki T, Weinfield HM and
Yu FS: Developmental changes in ganglioside composition and
synthesis in embryonic rat brain. J Neurochem. 50:1825–1829. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yanagisawa M and Yu RK: The expression and
functions of glycoconjugates in neural stem cells. Glycobiology.
17:57R–74R. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yanagisawa M, Taga T, Nakamura K, Ariga T
and Yu RK: Characterization of glycoconjugate antigens in mouse
embryonic neural precursor cells. J Neurochem. 95:1311–1320. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Moussavou G, Kwak DH, Lim MU, Kim JS, Kim
SU, Chang KT and Choo YK: Role of gangliosides in the
differentiation of human mesenchymal-derived stem cells into
osteoblasts and neuronal cells. BMB Rep. 46:527–532. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lee SH, Kwak DH, Ryu JS, Lim MU, Kim JS,
Chang KT and Choo YK: Differential expression pattern of
gangliosides during the differentiation of human dental
pulp-derived mesenchymal stem cells into dopaminergic neural-like
cells. Anim Cells Syst. 18:210–216. 2014. View Article : Google Scholar
|
|
72
|
Ryu JS, Ko K, Lee JW, Park SB, Byun SJ,
Jeong EJ, Ko K and Choo YK: Gangliosides are involved in neural
differentiation of human dental pulp-derived stem cells. Biochem
Biophys Res Commun. 387:266–271. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kwak DH, Jin JW, Ryu JS, Ko K, Lee SD, Lee
JW, Kim JS, Jung KY, Ko K, Ma JY, et al: Regulatory roles of
ganglioside GQ1b in neuronal cell differentiation of mouse
embryonic stem cells. BMB Rep. 44:799–804. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Vinson M, Strijbos PJ, Rowles A, Facci L,
Moore SE, Simmons DL and Walsh FS: Myelin-associated glycoprotein
interacts with ganglioside GT1b. A mechanism for neurite outgrowth
inhibition. J Biol Chem. 276:20280–20285. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Osanai T, Kotani M, Yuen CT, Kato H, Sanai
Y and Takeda S: Immunohistochemical and biochemical analyses of
GD3, GT1b, and GQ1b gangliosides during neural differentiation of
P19 EC cells. FEBS Lett. 537:73–78. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tsuji S, Arita M and Nagai Y: GQ1b, a
bioactive ganglioside that exhibits novel nerve growth factor
(NGF)-like activities in the two neuroblastoma cell lines. J
Biochem. 94:303–306. 1983. View Article : Google Scholar : PubMed/NCBI
|