|
1
|
DeSantis C, Siegel R, Bandi P and Jemal A:
Breast cancer statistics. CA Cancer J Clin. 61:409–418. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Santen RJ, Boyd NF, Chlebowski RT,
Cummings S, Cuzick J, Dowsett M, Easton D, Forbes JF, Key T,
Hankinson SE, et al: Critical assessment of new risk factors for
breast cancer: Considerations for development of an improved risk
prediction model. Endocr Relat Cancer. 14:169–187. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hofseth LJ, Raafat AM, Osuch JR, Pathak
DR, Slomski CA and Haslam SZ: Hormone replacement therapy with
estrogen or estrogen plus medroxyprogesterone acetate is associated
with increased epithelial proliferation in the normal
postmenopausal breast. J Clin Endocrinol Metab. 84:4559–4565. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cavalieri E and Rogan E: The molecular
etiology and prevention of estrogen-initiated cancers: Ockham's
Razor: Pluralitas non est ponenda sine necessitate. Plurality
should not be posited without necessity. Mol Aspects Med. 36:1–55.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Devanesan P, Santen RJ, Bocchinfuso WP,
Korach KS, Rogan EG and Cavalieri E: Catechol estrogen metabolites
and conjugates in mammary tumors and hyperplastic tissue from
estrogen receptor-alpha knock-out (ERKO)/Wnt-1 mice: Implications
for initiation of mammary tumors. Carcinogenesis. 22:1573–1576.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cavalieri EL, Stack DE, Devanesan PD,
Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD,
Gross ML, Gooden JK, et al: Molecular origin of cancer: Catechol
estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl
Acad Sci USA. 94:10937–10942. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li KM, Todorovic R, Devanesan P,
Higginbotham S, Köfeler H, Ramanathan R, Gross ML, Rogan EG and
Cavalieri EL: Metabolism and DNA binding studies of
4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female
ACI rat mammary gland in vivo. Carcinogenesis. 25:289–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cavalieri EL and Rogan EG: Depurinating
estrogen-DNA adducts in the etiology and prevention of breast and
other human cancers. Future Oncol. 6:75–91. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fussell KC, Udasin RG, Smith PJ, Gallo MA
and Laskin JD: Catechol metabolites of endogenous estrogens induce
redox cycling and generate reactive oxygen species in breast
epithelial cells. Carcinogenesis. 32:1285–1293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lee AJ, Cai MX, Thomas PE, Conney AH and
Zhu BT: Characterization of the oxidative metabolites of
17beta-estradiol and estrone formed by 15 selectively expressed
human cytochrome p450 isoforms. Endocrinology. 144:3382–3398. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jefcoate CR, Liehr JG, Santen RJ, Sutter
TR, Yager JD, Yue W, Santner SJ, Tekmal R, Demers L, Pauley R, et
al: Tissue-specific synthesis and oxidative metabolism of
estrogens. J Natl Cancer Inst Monogr. 95–112. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rahman M, Lax SF, Sutter CH, Tran QT,
Stevens GL, Emmert GL, Russo J, Santen RJ and Sutter TR: CYP1B1 is
not a major determinant of the disposition of aromatase inhibitors
in epithelial cells of invasive ductal carcinoma. Drug Metab
Dispos. 36:963–970. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pruthi S, Yang L, Sandhu NP, Ingle JN,
Beseler CL, Suman VJ, Cavalieri EL and Rogan EG: Evaluation of
serum estrogen-DNA adducts as potential biomarkers for breast
cancer risk. J Steroid Biochem Mol Biol. 132:73–79. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Salama SA, Kamel M, Awad M, Nasser AH,
Al-Hendy A, Botting S and Arrastia C: Catecholestrogens induce
oxidative stress and malignant transformation in human endometrial
glandular cells: Protective effect of catechol-O-methyltransferase.
Int J Cancer. 123:1246–1254. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yager JD: Catechol-O-methyltransferase:
Characteristics, polymorphisms and role in breast cancer. Drug
Discov Today Dis Mech. 9:e41–e46. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lavigne JA, Goodman JE, Fonong T, Odwin S,
He P, Roberts DW and Yager JD: The effects of
catechol-O-methyltransferase inhibition on estrogen metabolite and
oxidative DNA damage levels in estradiol-treated MCF-7 cells.
Cancer Res. 61:7488–7494. 2001.PubMed/NCBI
|
|
18
|
Zahid M, Saeed M, Lu F, Gaikwad N, Rogan E
and Cavalieri E: Inhibition of catechol-O-methyltransferase
increases estrogen-DNA adduct formation. Free Radic Biol Med.
43:1534–1540. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhu BT and Conney AH: Is
2-methoxyestradiol an endogenous estrogen metabolite that inhibits
mammary carcinogenesis? Cancer Res. 58:2269–2277. 1998.PubMed/NCBI
|
|
20
|
Gaikwad NW, Rogan EG and Cavalieri EL:
Evidence from ESI-MS for NQO1-catalyzed reduction of estrogen
ortho-quinones. Free Radic Biol Med. 43:1289–1298. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cavalieri E, Rogan E and Chakravarti D:
The role of endogenous catechol quinones in the initiation of
cancer and neurodegenerative diseases. Methods Enzymol.
382:293–319. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cavalieri EL and Rogan EG: A unifying
mechanism in the initiation of cancer and other diseases by
catechol quinones. Ann N Y Acad Sci. 1028:247–257. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Stack DE, Li G, Hill A and Hoffman N:
Mechanistic insights into the Michael addition of deoxyguanosine to
catechol estrogen-3,4-quinones. Chem Res Toxicol. 21:1415–1425.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bolton JL and Shen L: p-Quinone methides
are the major decomposition products of catechol estrogen
o-quinones. Carcinogenesis. 17:925–929. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zahid M, Kohli E, Saeed M, Rogan E and
Cavalieri E: The greater reactivity of estradiol-3,4-quinone vs
estradiol-2,3-quinone with DNA in the formation of depurinating
adducts: Implications for tumor-initiating activity. Chem Res
Toxicol. 19:164–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lu F, Zahid M, Saeed M, Cavalieri EL and
Rogan EG: Estrogen metabolism and formation of estrogen-DNA adducts
in estradiol-treated MCF-10F cells. The effects of
2,3,7,8-tetrachlorodibenzo-p-dioxin induction and
catechol-O-methyltransferase inhibition. J Steroid Biochem Mol
Biol. 105:150–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lu F, Zahid M, Wang C, Saeed M, Cavalieri
EL and Rogan EG: Resveratrol prevents estrogen-DNA adduct formation
and neoplastic transformation in MCF-10F cells. Cancer Prev Res.
1:135–145. 2008. View Article : Google Scholar
|
|
28
|
Saeed M, Rogan E, Fernandez SV, Sheriff F,
Russo J and Cavalieri E: Formation of depurinating N3Adenine and
N7Guanine adducts by MCF-10F cells cultured in the presence of
4-hydroxyestradiol. Int J Cancer. 120:1821–1824. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Russo J and Russo IH: Genotoxicity of
steroidal estrogens. Trends Endocrinol Metab. 15:211–214. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Russo J, Lareef M Hasan, Balogh G, Guo S
and Russo IH: Estrogen and its metabolites are carcinogenic agents
in human breast epithelial cells. J Steroid Biochem Mol Biol.
87:1–25. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lareef MH, Garber J, Russo PA, Russo IH,
Heulings R and Russo J: The estrogen antagonist ICI-182-780 does
not inhibit the transformation phenotypes induced by
17-beta-estradiol and 4-OH estradiol in human breast epithelial
cells. Int J Oncol. 26:423–429. 2005.PubMed/NCBI
|
|
32
|
Yue W, Santen RJ, Wang JP, Li Y, Verderame
MF, Bocchinfuso WP, Korach KS, Devanesan P, Todorovic R, Rogan EG
and Cavalieri EL: Genotoxic metabolites of estradiol in breast:
Potential mechanism of estradiol induced carcinogenesis. J Steroid
Biochem Mol Biol. 86:477–486. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Santen R, Cavalieri E, Rogan E, Russo J,
Guttenplan J, Ingle J and Yue W: Estrogen mediation of breast tumor
formation involves estrogen receptor-dependent, as well as
independent, genotoxic effects. Ann NY Acad Sci. 1155:132–140.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chakravarti D, Mailander PC, Li KM,
Higginbotham S, Zhang HL, Gross ML, Meza JL, Cavalieri EL and Rogan
EG: Evidence that a burst of DNA depurination in SENCAR mouse skin
induces error-prone repair and forms mutations in the H-ras gene.
Oncogene. 20:7945–7953. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mailander PC, Meza JL, Higginbotham S and
Chakravarti D: Induction of A.T to G.C mutations by erroneous
repair of depurinated DNA following estrogen treatment of the
mammary gland of ACI rats. J Steroid Biochem Mol Biol. 101:204–215.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao Z, Kosinska W, Khmelnitsky M,
Cavalieri EL, Rogan EG, Chakravarti D, Sacks PG and Guttenplan JB:
Mutagenic activity of 4-hydroxyestradiol, but not
2-hydroxyestradiol, in BB rat2 embryonic cells and the mutational
spectrum of 4-hydroxyestradiol. Chem Res Toxicol. 19:475–479. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gaikwad NW, Yang L, Muti P, Meza JL,
Pruthi S, Ingle JN, Rogan EG and Cavalieri EL: The molecular
etiology of breast cancer: Evidence from biomarkers of risk. Int J
Cancer. 122:1949–1957. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gaikwad NW, Yang L, Pruthi S, Ingle JN,
Sandhu N, Rogan EG and Cavalieri EL: Urine biomarkers of risk in
the molecular etiology of breast cancer. Breast Cancer. 3:1–8.
2009.PubMed/NCBI
|
|
39
|
Cavalieri E, Chakravarti D, Guttenplan J,
Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R
and Sutter T: Catechol estrogen quinones as initiators of breast
and other human cancers: Implications for biomarkers of
susceptibility and cancer prevention. Biochim Biophys Acta.
1766:63–78. 2006.PubMed/NCBI
|
|
40
|
Tian H, Gao Z, Wang G, Li H and Zheng J:
Estrogen potentiates reactive oxygen species (ROS) tolerance to
initiate carcinogenesis and promote cancer malignant
transformation. Tumour Biol. 37:141–150. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Okoh VO, Felty Q, Parkash J, Poppiti R and
Roy D: Reactive oxygen species via redox signaling to PI3K/AKT
pathway contribute to the malignant growth of 4-hydroxy
estradiol-transformed mammary epithelial cells. PLoS One.
8:e542062013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Felty Q, Xiong WC, Sun D, Sarkar S, Singh
KP, Parkash J and Roy D: Estrogen-induced mitochondrial reactive
oxygen species as signal-transducing messengers. Biochemistry.
44:6900–6909. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ishikawa K, Takenaga K, Akimoto M,
Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y and Hayashi
J: ROS-generating mitochondrial DNA mutations can regulate tumor
cell metastasis. Science. 320:661–664. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Doan VD, Gagnon S and Joseph V: Prenatal
blockade of estradiol synthesis impairs respiratory and metabolic
responses to hypoxia in newborn and adult rats. Am J Physiol Regul
Integr Comp Physiol. 287:R612–R618. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tan DJ, Bai RK and Wong LJ: Comprehensive
scanning of somatic mitochondrial DNA mutations in breast cancer.
Cancer Res. 62:972–976. 2002.PubMed/NCBI
|
|
46
|
Kim DW, Sovak MA, Zanieski G, Nonet G,
Romieu-Mourez R, Lau AW, Hafer LJ, Yaswen P, Stampfer M, Rogers AE,
et al: Activation of NF-kappaB/Rel occurs early during neoplastic
transformation of mammary cells. Carcinogenesis. 21:871–879. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Park SA, Na HK, Kim EH, Cha YN and Surh
YJ: 4-hydroxyestradiol induces anchorage-independent growth of
human mammary epithelial cells via activation of IkappaB kinase:
Potential role of reactive oxygen species. Cancer Res.
69:2416–2424. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Benhar M, Engelberg D and Levitzki A: ROS,
stress-activated kinases and stress signaling in cancer. EMBO Rep.
3:420–425. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hanna IH, Dawling S, Roodi N, Guengerich
FP and Parl FF: Cytochrome P450 1B1 (CYP1B1) pharmacogenetics:
Association of polymorphisms with functional differences in
estrogen hydroxylation activity. Cancer Res. 60:3440–3444.
2000.PubMed/NCBI
|
|
50
|
Delort L, Satih S, Kwiatkowski F, Bignon
YJ and Bernard-Gallon DJ: Evaluation of breast cancer risk in a
multigenic model including low penetrance genes involved in
xenobiotic and estrogen metabolisms. Nutr Cancer. 62:243–251. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bandiera S, Weidlich S, Harth V, Broede P,
Ko Y and Friedberg T: Proteasomal degradation of human CYP1B1:
Effect of the Asn453Ser polymorphism on the post-translational
regulation of CYP1B1 expression. Mol Pharmacol. 67:435–443. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Matyjasik J, Cybulski C, Masojć B,
Jakubowska A, Serrano-Fernandez P, Górski B, Debniak T, Huzarski T,
Byrski T, Gronwald J, et al: CYP1B1 and predisposition to breast
cancer in Poland. Breast Cancer Res Treat. 106:383–388. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gaudet MM, Chanock S, Lissowska J, Berndt
SI, Yang XR, Peplonska B, Brinton LA, Welch R, Yeager M,
Bardin-Mikolajczak A, et al: Genetic variation of Cytochrome P450
1B1 (CYP1B1) and risk of breast cancer among Polish women.
Pharmacogenet Genomics. 16:547–553. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiao H, Liu C, Guo W, Peng L, Chen Y and
Martin FL: Association of CYP1B1 Polymorphisms with Breast Cancer:
A Case-Control Study in the Han Population in Ningxia Hui
Autonomous Region, P. R. China. Biomark Insights. 5:21–27.
2010.PubMed/NCBI
|
|
55
|
Masson LF, Sharp L, Cotton SC and Little
J: Cytochrome P-450 1A1 gene polymorphisms and risk of breast
cancer: A HuGE review. Am J Epidemiol. 161:901–915. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen C, Huang Y, Li Y, Mao Y and Xie Y:
Cytochrome P450 1A1 (CYP1A1) T3801C and A2455G polymorphisms in
breast cancer risk: A meta-analysis. J Hum Genet. 52:423–435. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sergentanis TN and Economopoulos KP: Four
polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast
cancer risk: A meta-analysis. Breast Cancer Res Treat. 122:459–469.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shield AJ, Thomae BA, Eckloff BW, Wieben
ED and Weinshilboum RM: Human catechol O-methyltransferase genetic
variation: Gene resequencing and functional characterization of
variant allozymes. Mol Psychiatry. 9:151–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Doyle AE and Yager JD:
Catechol-O-methyltransferase: Effects of the val108met polymorphism
on protein turnover in human cells. Biochim Biophys Acta.
1780:27–33. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tian C, Liu L, Yang X, Wu H and Ouyang Q:
The Val158Met polymorphism in the COMT gene is associated with
increased cancer risks in Chinese population. Tumour Biol.
35:3003–3008. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wan GX, Cao YW, Li WQ, Li YC and Li F: The
catechol-O-methyltransferase Val158Met polymorphism contributes to
the risk of breast cancer in the chinese population: an updated
meta-analysis. J Breast Cancer. 17:149–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li K, Li W and Zou H:
Catechol-O-methyltransferase Val158Met polymorphism and breast
cancer risk in Asian population. Tumour Biol. 35:2343–2350. 2014.
View Article : Google Scholar : PubMed/NCBI
|