|
1
|
Ortiz A, Covic A, Fliser D, Fouque D,
Goldsmith D, Kanbay M, Mallamaci F, Massy ZA, Rossignol P,
Vanholder R, et al: Epidemiology, contributors to, and clinical
trials of mortality risk in chronic kidney failure. Lancet.
383:1831–1843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ke B, Fan C, Yang L and Fang X: Matrix
Metalloproteinases-7 and Kidney Fibrosis. Front Physiol. 8:212017.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Menon MC and Ross MJ:
Epithelial-to-mesenchymal transition of tubular epithelial cells in
renal fibrosis: A new twist on an old tale. Kidney Int. 89:263–266.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Meng XM, Huang XR, Xiao J, Chung AC, Qin
W, Chen HY and Lan HY: Disruption of Smad4 impairs TGF-β/Smad3 and
Smad7 transcriptional regulation during renal inflammation and
fibrosis in vivo and in vitro. Kidney Int. 81:266–279. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Habib SL and Abboud HE: Tuberin regulates
reactive oxygen species in renal proximal cells, kidney from
rodents, and kidney from patients with tuberous sclerosis complex.
Cancer Sci. 107:1092–1100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xiao W, Fan Y, Wang N, Chuang PY, Lee K
and He JC: Knockdown of RTN1A attenuates ER stress and kidney
injury in albumin overload-induced nephropathy. Am J Physiol Renal
Physiol. 310:F409–F415. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chang JW, Kim H, Baek CH, Lee RB, Yang WS
and Lee SK: Up-regulation of SIRT1 reduces endoplasmic reticulum
stress and renal fibrosis. Nephron. 133:116–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu SH, Yang CC, Chan DC, Wu CT, Chen LP,
Huang JW, Hung KY and Chiang CK: Chemical chaperon 4-phenylbutyrate
protects against the endoplasmic reticulum stress-mediated renal
fibrosis in vivo and in vitro. Oncotarget. 7:22116–22127.
2016.PubMed/NCBI
|
|
9
|
Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC,
Zhao DM, Li XN and Sun LK: Valproate attenuates diabetic
nephropathy through inhibition of endoplasmic reticulum
stress-induced apoptosis. Mol Med Rep. 13:661–668. 2016.PubMed/NCBI
|
|
10
|
Liu QF, Ye JM, Deng ZY, Yu LX, Sun Q and
Li SS: Ameliorating effect of Klotho on endoplasmic reticulum
stress and renal fibrosis induced by unilateral ureteral
obstruction. Iran J Kidney Dis. 9:291–297. 2015.PubMed/NCBI
|
|
11
|
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D,
Kwon MH, Kim YM, Kim HS and Chung CH: Oleanolic acid and
N-acetylcysteine ameliorate diabetic nephropathy through reduction
of oxidative stress and endoplasmic reticulum stress in a type 2
diabetic rat model. Nephrol Dial Transplant. 31:391–400. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yoshida H, Matsui T, Yamamoto A, Okada T
and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in
response to ER stress to produce a highly active transcription
factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng
HT, Chang YW, Hung KY, Wu KD and Liu SH: Endoplasmic reticulum
stress implicated in the development of renal fibrosis. Mol Med.
17:1295–1305. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ye J, Rawson RB, Komuro R, Chen X, Davé
UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage
of membrane-bound ATF6 by the same proteases that process SREBPs.
Mol Cell. 6:1355–1364. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zeeshan HM, Lee GH, Kim HR and Chae HJ:
Endoplasmic reticulum stress and associated ROS. Int J Mol Sci.
17:3272016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kaufman RJ: Stress signaling from the
lumen of the endoplasmic reticulum: Coordination of gene
transcriptional and translational controls. Genes Dev.
13:1211–1233. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Inagi R: Endoplasmic reticulum stress in
the kidney as a novel mediator of kidney injury. Nephron Exp
Nephrol. 112:E1–E9. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Boot-Handford RP and Briggs MD: The
unfolded protein response and its relevance to connective tissue
diseases. Cell Tissue Res. 339:197–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ghosh AP, Klocke BJ, Ballestas ME and Roth
KA: CHOP potentially co-operates with FOXO3a in neuronal cells to
regulate PUMA and BIM expression in response to ER stress. PLoS
One. 7:e395862012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yuan Y, Xu X, Zhao C, Zhao M, Wang H,
Zhang B, Wang N, Mao H, Zhang A and Xing C: The roles of oxidative
stress, endoplasmic reticulum stress, and autophagy in
aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab
Invest. 95:1374–1386. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Guo W, Ding J, Zhang A, Dai W, Liu S, Diao
Z, Wang L, Han X and Liu W: The inhibitory effect of quercetin on
asymmetric dimethylarginine-induced apoptosis is mediated by the
endoplasmic reticulum stress pathway in glomerular endothelial
cells. Int J Mol Sci. 15:484–503. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ke B, Zhang A, Wu X and Fang X: The role
of Krüppel-like factor 4 in renal fibrosis. Front Physiol.
6:3272015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kassan M, Galán M, Partyka M, Saifudeen Z,
Henrion D, Trebak M and Matrougui K: Endoplasmic reticulum stress
is involved in cardiac damage and vascular endothelial dysfunction
in hypertensive mice. Arterioscler Thromb Vasc Biol. 32:1652–1661.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Roberson EC, Tully JE, Guala AS, Reiss JN,
Godburn KE, Pociask DA, Alcorn JF, Riches DW, Dienz O,
Janssen-Heininger YM and Anathy V: Influenza induces endoplasmic
reticulum stress, caspase-12-dependent apoptosis, and c-Jun
N-terminal kinase-mediated transforming growth factor-β release in
lung epithelial cells. Am J Respir Cell Mol Biol. 46:573–581. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Marek I, Lichtneger T, Cordasic N, Hilgers
KF, Volkert G, Fahlbusch F, Rascher W, Hartner A and
Menendez-Castro C: Alpha8 integrin (Itga8) signalling attenuates
chronic renal interstitial fibrosis by reducing fibroblast
activation, not by interfering with regulation of cell turnover.
PLoS One. 11:e01504712016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sutariya B, Jhonsa D and Saraf MN: TGF-β:
The connecting link between nephropathy and fibrosis.
Immunopharmacol Immunotoxicol. 38:39–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vervoort SJ, van Boxtel R and Coffer PJ:
The role of SRY-related HMG box transcription factor 4 (SOX4) in
tumorigenesis and metastasis: Friend or foe? Oncogene.
32:3397–3409. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
David CJ, Huang YH, Chen M, Su J, Zou Y,
Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor
suppression through a lethal EMT. Cell. 164:1015–1030. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Baek HA, Kim DS, Park HS, Jang KY, Kang
MJ, Lee DG, Moon WS, Chae HJ and Chung MJ: Involvement of
endoplasmic reticulum stress in myofibroblastic differentiation of
lung fibroblasts. Am J Respir Cell Mol Biol. 46:731–739. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Guo W, Ding J, Zhang A, Dai W, Liu S, Diao
Z, Wang L, Han X and Liu W: The inhibitory effect of quercetin on
asymmetric dimethylarginine-induced apoptosis is mediated by the
endoplasmic reticulum stress pathway in glomerular endothelial
cells. Int J Mol Sci. 15:484–503. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park MJ, Oh KS, Nho JH, Kim GY and Kim DI:
Asymmetric dimethylarginine (ADMA) treatment induces apoptosis in
cultured rat mesangial cells via endoplasmic reticulum stress
activation. Cell Biol Int. 40:662–670. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Y, Zong L and Wang X: TGF-β improves
myocardial function and prevents apoptosis induced by
anoxia-reoxygenation, through the reduction of endoplasmic
reticulum stress. Can J Physiol Pharmacol. 94:9–17. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Son H and Moon A: Epithelial-mesenchymal
transition and cell invasion. Toxicol Res. 26:245–252. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cao W, Hou FF and Nie J: AOPPs and the
progression of kidney disease. Kidney Int Suppl (2011). 4:102–106.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang X, Duan N, Wang Y, Shu S, Xiang X,
Guo T, Yang L, Zhang S, Tang X and Zhang J: Advanced oxidation
protein products induce endothelial-to-mesenchymal transition in
human renal glomerular endothelial cells through induction of
endoplasmic reticulum stress. J Diabetes Complications. 30:573–579.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tang X, Rong G, Bu Y, Zhang S, Zhang M,
Zhang J and Liang X: Advanced oxidation protein products induce
hypertrophy and epithelial-to-mesenchymal transition in human
proximal tubular cells through induction of endoplasmic reticulum
stress. Cell Physiol Biochem. 35:816–828. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li HY, Hou FF, Zhang X, Chen PY, Liu SX,
Feng JX, Liu ZQ, Shan YX, Wang GB, Zhou ZM, et al: Advanced
oxidation protein products accelerate renal fibrosis in a remnant
kidney model. J Am Soc Nephrol. 18:528–538. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luo B, Lin Y, Jiang S, Huang L, Yao H,
Zhuang Q, Zhao R, Liu H, He C and Lin Z: Endoplasmic reticulum
stress eIF2α-ATF4 pathway-mediated cyclooxygenase-2 induction
regulates cadmium-induced autophagy in kidney. Cell Death Dis.
7:e22512016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Moon SY, Kim HS, Nho KW, Jang YJ and Lee
SK: Endoplasmic reticulum stress induces epithelial-mesenchymal
transition through autophagy via activation of c-Src kinase.
Nephron Exp Nephrol. 126:127–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goel P, Manning JA and Kumar S: NEDD4-2
(NEDD4L): The ubiquitin ligase for multiple membrane proteins.
Gene. 557:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Al-Qusairi L, Basquin D, Roy A, Stifanelli
M, Rajaram RD, Debonneville A, Nita I, Maillard M, Loffing J,
Subramanya AR and Staub O: Renal-tubular SGK1 deficiency causes
impaired K+ excretion via the loss of regulation of
NEDD4-2/WNK1 and ENaC. Am J Physiol Renal Physiol. 311:F330–F342.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang H, Sun RQ, Camera D, Zeng XY, Jo E,
Chan SM, Herbert TP, Molero JC and Ye JM: Endoplasmic reticulum
stress up-regulates Nedd4-2 to induce autophagy. FASEB J.
30:2549–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xian LW, Li TP, Wei YE, Wu SP and Ma L:
Relation of advanced oxidation protein products with VEGF and
TGF-β1 in colon cancer cells exposed to intermittent hypoxia. Nan
Fang Yi Ke Da Xue Xue Bao. 31:619–623. 2011.(In Chinese).
PubMed/NCBI
|
|
44
|
Granados-Principal S, Liu Y, Guevara ML,
Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss
HL, et al: Inhibition of iNOS as a novel effective targeted therapy
against triple-negative breast cancer. Breast Cancer Res.
17:252015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shin HS, Ryu ES, Oh ES and Kang DH:
Endoplasmic reticulum stress as a novel target to ameliorate
epithelial-to-mesenchymal transition and apoptosis of human
peritoneal mesothelial cells. Lab Invest. 95:1157–1173. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kramer B, Ferrari DM, Klappa P, Pöhlmann N
and Söling HD: Functional roles and efficiencies of the thioredoxin
boxes of calcium-binding proteins 1 and 2 in protein folding.
Biochem J. 357:83–95. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zeeshan HM, Lee GH, Kim HR and Chae HJ:
Endoplasmic reticulum stress and associated ROS. Int J Mol Sci.
17:3272016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Santos CX, Nabeebaccus AA, Shah AM,
Camargo LL, Filho SV and Lopes LR: Endoplasmic reticulum stress and
Nox-mediated reactive oxygen species signaling in the peripheral
vasculature: Potential role in hypertension. Antioxid Redox Signal.
20:121–134. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kaneto H, Matsuoka T, Nakatani Y, Kawamori
D, Miyatsuka T, Matsuhisa M and Yamasaki Y: Oxidative stress, ER
stress, and the JNK pathway in type 2 diabetes. J Mol Med (Berl).
83:429–439. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yuan Y, Xu X, Zhao C, Zhao M, Wang H,
Zhang B, Wang N, Mao H, Zhang A and Xing C: The roles of oxidative
stress, endoplasmic reticulum stress, and autophagy in
aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab
Invest. 95:1374–1386. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gross ML, Hanke W, Koch A, Ziebart H,
Amann KR and Ritz E: Intraperitoneal protein injection in the
axolotl: The amphibian kidney as a novel model to study
tubulointerstitial activation. Kidney Int. 62:51–59. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He F, Chen S, Wang H, Shao N, Tian X,
Jiang H, Liu J, Zhu Z, Meng X and Zhang C: Regulation of
CD2-associated protein influences podocyte endoplasmic reticulum
stress-mediated apoptosis induced by albumin overload. Gene.
484:18–25. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cybulsky AV, Takano T, Papillon J, Bijian
K, Guillemette J and Kennedy CR: Glomerular epithelial cell injury
associated with mutant alpha-actinin-4. Am J Physiol Renal Physiol.
297:F987–F995. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ostergaard L, Simonsen U,
Eskildsen-Helmond Y, Vorum H, Uldbjerg N, Honoré B and Mulvany MJ:
Proteomics reveals lowering oxygen alters cytoskeletal and
endoplasmatic stress proteins in human endothelial cells.
Proteomics. 9:4457–4467. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ha TS, Park HY, Seong SB and Ahn HY:
Angiotensin II induces endoplasmic reticulum stress in podocyte,
which would be further augmented by PI3-kinase inhibition. Clin
Hypertens. 21:13. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Reiser J, Polu KR, Möller CC, Kenlan P,
Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C,
et al: TRPC6 is a glomerular slit diaphragm-associated channel
required for normal renal function. Nat Genet. 37:739–744. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sun X, Fang Z, Zhu Z, Yang X, He F and
Zhang C: Effect of down-regulation of TRPC6 on the puromycin
aminonucleoside-induced apoptosis of mouse podocytes. J Huazhong
Univ Sci Technolog Med Sci. 29:417–422. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen S, He FF, Wang H, Fang Z, Shao N,
Tian XJ, Liu JS, Zhu ZH, Wang YM, Wang S, et al: Calcium entry via
TRPC6 mediates albumin overload-induced endoplasmic reticulum
stress and apoptosis in podocytes. Cell Calcium. 50:523–529. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Morse E, Schroth J, You YH, Pizzo DP,
Okada S, Ramachandrarao S, Vallon V, Sharma K and Cunard R: TRB3 is
stimulated in diabetic kidneys, regulated by the ER stress marker
CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal
Physiol. 299:F965–F972. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Inoki K, Mori H, Wang J, Suzuki T, Hong S,
Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, et al: mTORC1
activation in podocytes is a critical step in the development of
diabetic nephropathy in mice. J Clin Invest. 121:2181–2196. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
El Karoui K, Viau A, Dellis O, Bagattin A,
Nguyen C, Baron W, Burtin M, Broueilh M, Heidet L, Mollet G, et al:
Endoplasmic reticulum stress drives proteinuria-induced kidney
lesions via Lipocalin 2. Nat Commun. 7:103302016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nitta K, Okada K, Yanai M and Takahashi S:
Aging and chronic kidney disease. Kidney Blood Press Res.
38:109–120. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu SH, Wu CT, Huang KH, Wang CC, Guan SS,
Chen LP and Chiang CK: C/EBP homologous protein (CHOP) deficiency
ameliorates renal fibrosis in unilateral ureteral obstructive
kidney disease. Oncotarget. 7:21900–21912. 2016.PubMed/NCBI
|
|
64
|
Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka
T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y and
Hori M: Beneficial effects of antioxidants in diabetes: Possible
protection of pancreatic beta-cells against glucose toxicity.
Diabetes. 48:2398–2406. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ou Y, Hou W, Li S, Zhu X, Lin Y, Han J,
Duan Z and Gui B: Sodium citrate inhibits endoplasmic reticulum
stress in rats with adenine-induced chronic renal failure. Am J
Nephrol. 42:14–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kim Y, Lee H, Manson SR, Lindahl M, Evans
B, Miner JH, Urano F and Chen YM: Mesencephalic astrocyte-derived
neurotrophic factor as a urine biomarker for endoplasmic reticulum
stress-related kidney diseases. J Am Soc Nephrol. 27:2974–2982.
2016. View Article : Google Scholar : PubMed/NCBI
|