Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2017 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2017 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination

  • Authors:
    • Aleksandra M. Gorniewska
    • Katarzyna Kluzek
    • Lidia Gackowska
    • Izabela Kubiszewska
    • Malgorzata Z. Zdzienicka
    • Aneta Bialkowska
  • View Affiliations / Copyright

    Affiliations: Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland, Department of Human Molecular Genetics, Adam Mickiewicz University, Poznan 61‑614, Poland, Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland, Innovative Medical Forum, Franciszek Lukaszczyk Oncology Center, Bydgoszcz 85‑796, Poland
    Copyright: © Gorniewska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1885-1899
    |
    Published online on: June 15, 2017
       https://doi.org/10.3892/mmr.2017.6781
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Repair of DNA interstrand crosslinks (ICLs) predominantly involves the Fanconi anemia (FA) pathway and homologous recombination (HR). The HR repair system eliminates DNA double strand breaks (DSBs) that emerge during ICLs removal. The current study presents a novel cell line, CL‑V8B, representing a new complementation group of Chinese hamster cell mutants hypersensitive to DNA crosslinking factors. CL‑V8B exhibits increased sensitivity to various DNA‑damaging agents, including compounds leading to DSBs formation (bleomycin and 6‑thioguanine), and is extremely sensitive to poly (ADP-ribose) polymerase inhibitor (>400‑fold), which is typical for HR‑defective cells. In addition, this cell line exhibits a reduced number of spontaneous and induced sister chromatid exchanges, which suggests likely impairment of HR in CL‑V8B cells. However, in contrast to other known HR mutants, CL‑V8B cells do not show defects in Rad51 foci induction, but only slight alterations in the focus formation kinetics. CL‑V8B is additionally characterized by a considerable chromosomal instability, as indicated by a high number of spontaneous and MMC‑induced chromosomal aberrations, and a twice as large proportion of cells with abnormal centrosomes than that in the wild type cell line. The molecular defect present in CL‑V8B does not affect the efficiency and stabilization of replication forks. However, stalling of the forks in response to replication stress is observed relatively rarely, which suggests an impairment of a signaling mechanism. Exposure of CL‑V8B to crosslinking agents results in S‑phase arrest (as in the wild type cells), but also in larger proportion of G2/M‑phase cells and apoptotic cells. CL‑V8B exhibits similarities to HR‑ and/or FA‑defective Chinese hamster mutants sensitive to DNA crosslinking agents. However, the unique phenotype of this new mutant implies that it carries a defect of a yet unidentified gene involved in the repair of ICLs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Issaeva N, Thomas HD, Djureinovic T, Jaspers JE, Stoimenov I, Kyle S, Pedley N, Gottipati P, Zur R, Sleeth K, et al: 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 70:6268–6276. 2010. View Article : Google Scholar : PubMed/NCBI

3 

McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, et al: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly (ADP-ribose) polymerase inhibition. Cancer Res. 66:8109–8115. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Thompson LH, Brookman KW, Weber CA, Salazar EP, Reardon JT, Sancar A, Deng Z and Siciliano MJ: Molecular cloning of the human nucleotide-excision-repair gene ERCC4. Proc Natl Acad Sci USA. 91:6855–6859. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Weeda G, Hoeijmakers JH and Bootsma D: Genes controlling nucleotide excision repair in eukaryotic cells. Bioessays. 15:249–258. 1993. View Article : Google Scholar : PubMed/NCBI

6 

Thacker J and Zdzienicka MZ: The mammalian XRCC genes: Their roles in DNA repair and genetic stability. DNA Repair (Amst). 2:655–672. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Rolig RL, Lowery MP, Adair GM and Nairn RS: Characterization and analysis of Chinese hamster ovary cell ERCC1 mutant alleles. Mutagenesis. 13:357–365. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Godthelp BC, Wiegant WW, van Duijn-Goedhart A, Schärer OD, van Buul PP, Kanaar R and Zdzienicka MZ: Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res. 30:2172–2182. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, et al: Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 42:406–409. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Bracalente C, Ibañez IL, Molinari B, Palmieri M, Kreiner A, Valda A, Davidson J and Durán H: Induction and persistence of large γH2AX foci by high linear energy transfer radiation in DNA-dependent protein kinase-deficient cells. Int J Radiat Oncol Biol Phys. 87:785–794. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Maeda J, Bell JJ, Genet SC, Fujii Y, Genet MD, Brents CA, Genik PC and Kato TA: Potentially lethal damage repair in drug arrested G2-phase cells after radiation exposure. Radiat Res. 182:448–457. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Deans AJ and West SC: DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 11:467–480. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Jaspers NG, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR, Giglia-Mari G, Hoogstraten D, Kleijer WJ, Hoeijmakers JH and Vermeulen W: First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 80:457–466. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M, Schouten P, Godthelp BC, Bhuiyan ZA, Redeker EJ, Mannens MM, Mullenders LH, Pastink A and Darroudi F: Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: Evidence for impaired recombinational repair. Hum Mol Genet. 16:1478–1487. 2007. View Article : Google Scholar : PubMed/NCBI

15 

van der LP, Oostra AB, Rooimans MA, Joenje H and de Winter JP: Diagnostic overlap between fanconi anemia and the cohesinopathies: Roberts syndrome and warsaw breakage syndrome. Anemia. 2010:5652682010.PubMed/NCBI

16 

Kim H and D'Andrea AD: Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26:1393–1408. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Wong MW, Nordfors C, Mossman D, Pecenpetelovska G, Avery-Kiejda KA, Talseth-Palmer B, Bowden NA and Scott RJ: BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat. 127:853–859. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Liu J and Krantz ID: Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet. 76:303–314. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Zdzienicka MZ, Arwert F, Neuteboom I, Rooimans M and Simons JW: The Chinese hamster V79 cell mutant V-H4 is phenotypically like Fanconi anemia cells. Somat Cell Mol Genet. 16:575–581. 1990. View Article : Google Scholar : PubMed/NCBI

20 

Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR and Shinohara A: Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem. 273:21482–21488. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, et al: Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol. 22:669–679. 2002. View Article : Google Scholar : PubMed/NCBI

22 

O'Regan P, Wilson C, Townsend S and Thacker J: XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding. J Biol Chem. 276:22148–22153. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Zdzienicka MZ, Jaspers NG, van der Schans GP, Natarajan AT and Simons JW: Ataxia-telangiectasia-like Chinese hamster V79 cell mutants with radioresistant DNA synthesis, chromosomal instability, and normal DNA strand break repair. Cancer Res. 49:1481–1485. 1989.PubMed/NCBI

24 

Jackson DA and Pombo A: Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol. 140:1285–1295. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Zdzienicka MZ and Simons JW: Mutagen-sensitive cell lines are obtained with a high frequency in V79 Chinese hamster cells. Mutat Res. 178:235–244. 1987. View Article : Google Scholar : PubMed/NCBI

26 

Bargonetti J, Champeil E and Tomasz M: Differential toxicity of DNA adducts of mitomycin C. J Nucleic Acids. 2010:pii: 6989602010. View Article : Google Scholar

27 

Rabik CA and Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 33:9–23. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Godthelp BC, Artwert F, Joenje H and Zdzienicka MZ: Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D1. Oncogene. 21:5002–5005. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, Urbin SS, Bedford JS and Thompson LH: Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res. 34:1358–1368. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Smiraldo PG, Gruver AM, Osborn JC and Pittman DL: Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res. 65:2089–2096. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M and Takeda S: Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol. 19:5166–5169. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Lindh A Renglin, Schultz N, Saleh-Gohari N and Helleday T: RAD51C (RAD51L2) is involved in maintaining centrosome number in mitosis. Cytogenet Genome Res. 116:38–45. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Nigg EA: Centrosome aberrations: Cause or consequence of cancer progression? Nat Rev Cancer. 2:815–825. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Henry-Mowatt J, Jackson D, Masson JY, Johnson PA, Clements PM, Benson FE, Thompson LH, Takeda S, West SC and Caldecott KW: XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol Cell. 11:1109–1117. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Schwab RA, Blackford AN and Niedzwiedz W: ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 29:806–818. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Schwab RA, Nieminuszczy J, Shin-ya K and Niedzwiedz W: FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J Cell Biol. 201:33–48. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Koç A, Wheeler LJ, Mathews CK and Merrill GF: Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem. 279:223–230. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Mladenov E, Tsaneva I and Anachkova B: Activation of the S phase DNA damage checkpoint by mitomycin C. J Cell Physiol. 211:468–476. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Kang SG, Chung H, Yoo YD, Lee JG, Choi YI and Yu YS: Mechanism of growth inhibitory effect of Mitomycin-C on cultured human retinal pigment epithelial cells: Apoptosis and cell cycle arrest. Curr Eye Res. 22:174–181. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Somyajit K, Subramanya S and Nagaraju G: Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: Implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem. 287:3366–3380. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Rocca CJ, Soares DG, Bouzid H, Henriques JA, Larsen AK and Escargueil AE: BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder. Cell Cycle. 14:2080–2090. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Kaina B: DNA damage-triggered apoptosis: Critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol. 66:1547–1554. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Wilson JB, Johnson MA, Stuckert AP, Trueman KL, May S, Bryant PE, Meyn RE, D'Andrea AD and Jones NJ: The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. Carcinogenesis. 22:1939–1946. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Jones NJ, Ellard S, Waters R and Parry EM: Cellular and chromosomal hypersensitivity to DNA crosslinking agents and topoisomerase inhibitors in the radiosensitive Chinese hamster irs mutants: Phenotypic similarities to ataxia telangiectasia and Fanconi's anaemia cells. Carcinogenesis. 14:2487–2494. 1993. View Article : Google Scholar : PubMed/NCBI

46 

Wiltshire TD, Lovejoy CA, Wang T, Xia F, O'Connor MJ and Cortez D: Sensitivity to poly (ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J Biol Chem. 285:14565–14571. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Somyajit K, Mishra A, Jameei A and Nagaraju G: Enhanced non-homologous end joining contributes toward synthetic lethality of pathological RAD51C mutants with poly (ADP-ribose) polymerase. Carcinogenesis. 36:13–24. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Yuan SS, Chang HL and Lee EY: Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(−/−) and c-Abl(−/−) cells. Mutat Res. 525:85–92. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Gudmundsdottir K, Lord CJ, Witt E, Tutt AN and Ashworth A: DSS1 is required for RAD51 focus formation and genomic stability in mammalian cells. EMBO Rep. 5:989–993. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, et al: Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet. 39:159–161. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Dong Z, Zhong Q and Chen PL: The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem. 274:19513–19516. 1999. View Article : Google Scholar : PubMed/NCBI

52 

van Veelen LR, Essers J, van de Rakt MW, Odijk H, Pastink A, Zdzienicka MZ, Paulusma CC and Kanaar R: Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res. 574:34–49. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Shimada M, Sagae R, Kobayashi J, Habu T and Komatsu K: Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res. 69:1768–1775. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M and Kanaar R: Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol. 20:3147–3156. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Dong Z and Fasullo M: Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: Role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res. 31:2576–2585. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Brugmans L, Verkaik NS, Kunen M, van Drunen E, Williams BR, Petrini JH, Kanaar R, Essers J and van Gent DC: NBS1 cooperates with homologous recombination to counteract chromosome breakage during replication. DNA Repair (Amst). 8:1363–1370. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T and Deng CX: Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 3:389–395. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Bertrand P, Lambert S, Joubert C and Lopez BS: Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene. 22:7587–7592. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Date O, Katsura M, Ishida M, Yoshihara T, Kinomura A, Sueda T and Miyagawa K: Haploinsufficiency of RAD51B causes centrosome fragmentation and aneuploidy in human cells. Cancer Res. 66:6018–6024. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Godthelp BC, van Buul PP, Jaspers NG, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, Arwert F, Joenje H and Zdzienicka MZ: Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res. 601:191–201. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Beamish H, Williams R, Chen P and Lavin MF: Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem. 271:20486–20493. 1996. View Article : Google Scholar : PubMed/NCBI

62 

Eggleston A: Convergence of DNA repair and cell-cycle checkpoint control. Nat Cell Biol. 2:E952000. View Article : Google Scholar : PubMed/NCBI

63 

Bakr A, Oing C, Köcher S, Borgmann K, Dornreiter I, Petersen C, Dikomey E and Mansour WY: Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation. Nucleic Acids Res. 43:3154–3166. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, et al: Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature. 405:473–477. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Sala-Trepat M, Rouillard D, Escarceller M, Laquerbe A, Moustacchi E and Papadopoulo D: Arrest of S-phase progression is impaired in Fanconi anemia cells. Exp Cell Res. 260:208–215. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Heinrich MC, Hoatlin ME, Zigler AJ, Silvey KV, Bakke AC, Keeble WW, Zhi Y, Reifsteck CA, Grompe M, Brown MG, et al: DNA cross-linker-induced G2/M arrest in group C Fanconi anemia lymphoblasts reflects normal checkpoint function. Blood. 91:275–287. 1998.PubMed/NCBI

67 

Rodrigue A, Coulombe Y, Jacquet K, Gagné JP, Roques C, Gobeil S, Poirier G and Masson JY: The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy. J Cell Sci. 126:348–359. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Yun J, Zhong Q, Kwak JY and Lee WH: Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene. 24:4009–4016. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Pirnia F, Schneider E, Betticher DC and Borner MM: Mitomycin C induces apoptosis and caspase-8 and −9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9:905–914. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Hinz JM, Helleday T and Meuth M: Reduced apoptotic response to camptothecin in CHO cells deficient in XRCC3. Carcinogenesis. 24:249–253. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Bryant PE: The signal model: A possible explanation for the conversion of DNA double-strand breaks into chromatid breaks. Int J Radiat Biol. 73:243–251. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Parshad R, Sanford KK and Jones GM: Chromatid damage induced by fluorescent light during G2 phase in normal and Gardner syndrome fibroblasts. Interpretation in terms of deficient DNA repair. Mutat Res. 151:57–63. 1985. View Article : Google Scholar : PubMed/NCBI

73 

Rey JP, Scott R and Müller H: Apoptosis is not involved in the hypersensitivity of Fanconi anemia cells to mitomycin C. Cancer Genet Cytogenet. 75:67–71. 1994. View Article : Google Scholar : PubMed/NCBI

74 

Kruyt FA, Dijkmans LM, van den Berg TK and Joenje H: Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines. Blood. 87:938–948. 1996.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gorniewska AM, Kluzek K, Gackowska L, Kubiszewska I, Zdzienicka MZ and Bialkowska A: Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Mol Med Rep 16: 1885-1899, 2017.
APA
Gorniewska, A.M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M.Z., & Bialkowska, A. (2017). Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Molecular Medicine Reports, 16, 1885-1899. https://doi.org/10.3892/mmr.2017.6781
MLA
Gorniewska, A. M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M. Z., Bialkowska, A."Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination". Molecular Medicine Reports 16.2 (2017): 1885-1899.
Chicago
Gorniewska, A. M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M. Z., Bialkowska, A."Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination". Molecular Medicine Reports 16, no. 2 (2017): 1885-1899. https://doi.org/10.3892/mmr.2017.6781
Copy and paste a formatted citation
x
Spandidos Publications style
Gorniewska AM, Kluzek K, Gackowska L, Kubiszewska I, Zdzienicka MZ and Bialkowska A: Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Mol Med Rep 16: 1885-1899, 2017.
APA
Gorniewska, A.M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M.Z., & Bialkowska, A. (2017). Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Molecular Medicine Reports, 16, 1885-1899. https://doi.org/10.3892/mmr.2017.6781
MLA
Gorniewska, A. M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M. Z., Bialkowska, A."Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination". Molecular Medicine Reports 16.2 (2017): 1885-1899.
Chicago
Gorniewska, A. M., Kluzek, K., Gackowska, L., Kubiszewska, I., Zdzienicka, M. Z., Bialkowska, A."Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination". Molecular Medicine Reports 16, no. 2 (2017): 1885-1899. https://doi.org/10.3892/mmr.2017.6781
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team