Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2017 Volume 16 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2017 Volume 16 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro

  • Authors:
    • Ying‑Xing Wu
    • Xing‑Zhi Jing
    • Yue Sun
    • Ya‑Ping Ye
    • Jia‑Chao Guo
    • Jun‑Ming Huang
    • Wei Xiang
    • Jia‑Ming Zhang
    • Feng‑Jing Guo
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 8019-8028
    |
    Published online on: September 26, 2017
       https://doi.org/10.3892/mmr.2017.7616
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skeletal stem cells (SSCs) are a population of progenitor cells which give rise to postnatal skeletal tissues including bone, cartilage and bone marrow stroma, however not to adipose, haematopoietic or muscle tissue. Growth plate chondrocytes exhibit the ability of continuous proliferation and differentiation, which contributes to the continuous physiological growth. The growth plate has been hypothesized to contain SSCs which exhibit a desirable differentiation capacity to generate bone and cartilage. Due to the heterogeneity of the growth plate chondrocytes, SSCs in the growth plate are not well studied. The present study used cluster of differentiation (CD)146 and CD105 as markers to isolate purified SSCs. CD105+ SSCs and CD146+ SSCs were isolated using a magnetic activated cell sorting method. To quantitatively investigate the proliferation and differentiation ability, the colony-forming efficiency (CFE) and multi‑lineage differentiation capacity of CD105+ SSCs and CD146+ SSCs were compared with unsorted cells and adipose-derived stem cells (ASCs). It was revealed that CD105+ and CD146+ subpopulations represented subsets of SSCs which generated chondrocytes and osteocytes, however not adipocytes. Compared with CD105+ subpopulations and ASCs, the CD146+ subpopulation exhibited a greater CFE and continuous high chondrogenic differentiation capacity in vitro. Therefore, the present study suggested that the CD146+ subpopulation represented a chondrolineage‑restricted subpopulation of SSCs and may therefore act as a valuable cell source for cartilage regeneration.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G and Freed LE: Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 8:73–84. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Ishimura D, Yamamoto N, Tajima K, Ohno A, Yamamoto Y, Washimi O and Yamada H: Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker. Tohoku J Exp Med. 216:149–156. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, et al: Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem cells. 32:1254–1266. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Jiang T, Liu W, Lv X, Sun H, Zhang L, Liu Y, Zhang WJ, Cao Y and Zhou G: Potent in vitro chondrogenesis of CD105 enriched human adipose-derived stem cells. Biomaterials. 31:3564–3571. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Kobayashi S, Takebe T, Inui M, Iwai S, Kan H, Zheng YW, Maegawa J and Taniguchi H: Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc Natl Acad Sci USA. 108:pp. 14479–14484. 2011; View Article : Google Scholar : PubMed/NCBI

6 

Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 3:301–313. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Bhumiratana S, Eton RE, Oungoulian SR, Wan LQ, Ateshian GA and Vunjak-Novakovic G: Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci USA. 111:pp. 6940–6945. 2014; View Article : Google Scholar : PubMed/NCBI

8 

Oldershaw RA: Cell sources for the regeneration of articular cartilage: The past, the horizon and the future. Int J Exp Pathol. 93:389–400. 2012.PubMed/NCBI

9 

Belluoccio D, Bernardo BC, Rowley L and Bateman JF: A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage. Biochim Biophys Acta. 1779:330–340. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Pichler K, Schmidt B, Fischerauer EE, Rinner B, Dohr G, Leithner A and Weinberg AM: Behaviour of human physeal chondro-progenitorcells in early growth plate injury response in vitro. Int Orthop. 36:1961–1966. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Gothard D, Cheung K, Kanczler JM, Wilson DI and Oreffo RO: Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo. Stem Cell Res Ther. 6:2512015. View Article : Google Scholar : PubMed/NCBI

12 

Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, et al: Identification and specification of the mouse skeletal stem cell. Cell. 160:285–298. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, et al: Gremlin 1 identifies a skeletal stem cell with bone, cartilage and reticular stromal potential. Cell. 160:269–284. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Chan CK, Lindau P, Jiang W, Chen JY, Zhang LF, Chen CC, Seita J, Sahoo D, Kim JB, Lee A, et al: Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci USA. 110:pp. 12643–12648. 2013; View Article : Google Scholar : PubMed/NCBI

15 

Chiba H, Ishii G, Ito TK, Aoyagi K, Sasaki H, Nagai K and Ochiai A: CD105-positive cells in pulmonary arterial blood of adult human lung cancer patients include mesenchymal progenitors. Stem cells. 26:2523–2530. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Salamon A, Jonitz-Heincke A, Adam S, Rychly J, Müller-Hilke B, Bader R, Lochner K and Peters K: Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro. Exp Cell Res. 319:2856–2865. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Amiri F, Halabian R, Harati M Dehgan, Bahadori M, Mehdipour A, Roushandeh A Mohammadi and Roudkenar M Habibi: Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology. 20:208–216. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Odabas S, Sayar F, Güven G, Yanikkaya-Demirel G and Pişkin E: Separation of mesenchymal stem cells with magnetic nanosorbents carrying CD105 and CD73 antibodies in flow-through and batch systems. J Chromatogr B Analyt Technol Biomed Life Sci. 861:74–80. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Qi J, Chen A, You H, Li K, Zhang D and Guo F: Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed Mater. 6:0150062011. View Article : Google Scholar : PubMed/NCBI

20 

Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K, Helms JA, Kuo CJ, Kraft DL and Weissman IL: Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 457:490–494. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Gothard D, Greenhough J, Ralph E and Oreffo RO: Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J Tissue Eng. 5:20417314145517632014. View Article : Google Scholar : PubMed/NCBI

22 

Bakopoulou A, Leyhausen G, Volk J, Koidis P and Geurtsen W: Comparative characterization of STRO-1(neg)/CD146(pos) and STRO-1(pos)/CD146(pos) apical papilla stem cells enriched with flow cytometry. Arch Oral Biol. 58:1556–1568. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Middleton J, Americh L, Gayon R, Julien D, Mansat M, Mansat P, Anract P, Cantagrel A, Cattan P, Reimund JM, et al: A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol. 206:260–268. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B and Deasy BM: High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol. 2009:7895262009. View Article : Google Scholar : PubMed/NCBI

25 

Tsang WP, Shu Y, Kwok PL, Zhang F, Lee KK, Tang MK, Li G, Chan KM, Chan WY and Wan C: CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS One. 8:e761532013. View Article : Google Scholar : PubMed/NCBI

26 

Wu CC, Liu FL, Sytwu HK, Tsai CY and Chang DM: CD146+ mesenchymal stem cells display greater therapeutic potential than CD146-cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther. 7:232016. View Article : Google Scholar : PubMed/NCBI

27 

Jiang Y, Cai Y, Zhang W, Yin Z, Hu C, Tong T, Lu P, Zhang S, Neculai D, Tuan RS and Ouyang HW: Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med. 5:733–744. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Wong HL, Siu WS, Fung CH, Zhang C, Shum WT, Zhou XL, Lau CB, Zhang JF, Leung PC, Fu WM and Ko CH: Characteristics of stem cells derived from rat fascia: In vitro proliferative and multilineage potential assessment. Mol Med Rep. 11:1982–1990. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Qi Y, Du Y, Li W, Dai X, Zhao T and Yan W: Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 22:1424–1433. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Villemure I and Stokes IA: Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech. 42:1793–1803. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Lui JC, Nilsson O and Baron J: Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol. 53:T1–T9. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Chagin AS and Kronenberg HM: Role of G-proteins in the differentiation of epiphyseal chondrocytes. J Mol Endocrinol. 53:R39–R45. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Belluoccio D, Etich J, Rosenbaum S, Frie C, Grskovic I, Stermann J, Ehlen H, Vogel S, Zaucke F, von der Mark K, et al: Sorting of growth plate chondrocytes allows the isolation and characterization of cells of a defined differentiation status. J Bone Miner Res. 25:1267–1281. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Xu J, Wang W, Kapila Y, Lotz J and Kapila S: Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev. 18:487–496. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Su X, Zuo W, Wu Z, Chen J, Wu N, Ma P, Xia Z, Jiang C, Ye Z, Liu S, et al: CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis. J Orthop Res. 33:84–91. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Wang Z and Yan X: CD146, a multi-functional molecule beyond adhesion. Cancer Lett. 330:150–162. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Guezguez B, Vigneron P, Lamerant N, Kieda C, Jaffredo T and Dunon D: Dual role of melanoma cell adhesion molecule (MCAM)/CD146 in lymphocyte endothelium interaction: MCAM/CD146 promotes rolling via microvilli induction in lymphocyte and is an endothelial adhesion receptor. J Immunol. 179:6673–6685. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Jin HJ, Kwon JH, Kim M, Bae YK, Choi SJ, Oh W, Yang YS and Jeon HB: Downregulation of melanoma cell adhesion molecule (MCAM/CD146) accelerates cellular senescence in human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Transl Med. 5:427–439. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Qian YN, Luo YT, Duan HX, Feng LQ, Bi Q, Wang YJ and Yan XY: Adhesion molecule CD146 and its soluble form correlate well with carotid atherosclerosis and plaque instability. CNS Neurosci Ther. 20:438–445. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Bu P, Zhuang J, Feng J, Yang D, Shen X and Yan X: Visualization of CD146 dimerization and its regulation in living cells. Biochim Biophys Acta. 1773:513–520. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C and Valtieri M: Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol. 36:1035–1046. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Balakumaran A, Mishra PJ, Pawelczyk E, Yoshizawa S, Sworder BJ, Cherman N, Kuznetsov SA, Bianco P, Giri N, Savage SA, et al: Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood. 125:793–802. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Dawson JI, Kanczler J, Tare R, Kassem M and Oreffo RO: Concise review: Bridging the gap: Bone regeneration using skeletal stem cell-based strategies-where are we now? Stem cells. 32:35–44. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Agarwal S, Loder SJ, Sorkin M, Li S, Shrestha S, Zhao B, Mishina Y, James AW and Levi B: Analysis of bone-cartilage-stromal progenitor populations in trauma induced and genetic models of heterotopic ossification. Stem cells. 34:1692–1701. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D and Gazit Z: Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem cells. 24:1728–1737. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Aicher WK, Bühring HJ, Hart M, Rolauffs B, Badke A and Klein G: Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells-potential and pitfalls. Adv Drug Deliv Rev. 63:342–351. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Wang L, Shao YY and Ballock RT: Peroxisome proliferator-activated receptor-gamma promotes adipogenic changes in growth plate chondrocytes in vitro. PPAR Res. 2006:672972006. View Article : Google Scholar : PubMed/NCBI

48 

Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G and Badimon L: Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: Effects on differentiation potential and function. Diabetologia. 57:246–256. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Ma T, Liu H, Chen W, Xia X, Bai X, Liang L, Zhang Y and Liang T: Implanted adipose-derived stem cells attenuate small-for-size liver graft injury by secretion of VEGF in rats. Am J Transplant. 12:620–629. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Erdman CP, Dosier CR, Olivares-Navarrete R, Baile C, Guldberg RE, Schwartz Z and Boyan BD: Effects of resveratrol on enrichment of adipose-derived stem cells and their differentiation to osteoblasts in two-and three-dimensional cultures. J Tissue Eng Regen Med. 6 Suppl 3:S34–S46. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Ye Y, Du Y, Guo F, Gong C, Yang K and Qin L: Comparative study of the osteogenic differentiation capacity of human bone marrow- and human adipose-derived stem cells under cyclic tensile stretch using quantitative analysis. Int J Mol Med. 30:1327–1334. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Quarto N, Senarath-Yapa K, Renda A and Longaker MT: TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem cells. 33:833–847. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Hamid AA, Idrus RB, Saim AB, Sathappan S and Chua KH: Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics (Sao Paulo). 67:99–106. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM and Guo FJ: CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 16: 8019-8028, 2017.
APA
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J. ... Guo, F. (2017). CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Molecular Medicine Reports, 16, 8019-8028. https://doi.org/10.3892/mmr.2017.7616
MLA
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J., Xiang, W., Zhang, J., Guo, F."CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro". Molecular Medicine Reports 16.6 (2017): 8019-8028.
Chicago
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J., Xiang, W., Zhang, J., Guo, F."CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro". Molecular Medicine Reports 16, no. 6 (2017): 8019-8028. https://doi.org/10.3892/mmr.2017.7616
Copy and paste a formatted citation
x
Spandidos Publications style
Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM and Guo FJ: CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 16: 8019-8028, 2017.
APA
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J. ... Guo, F. (2017). CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Molecular Medicine Reports, 16, 8019-8028. https://doi.org/10.3892/mmr.2017.7616
MLA
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J., Xiang, W., Zhang, J., Guo, F."CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro". Molecular Medicine Reports 16.6 (2017): 8019-8028.
Chicago
Wu, Y., Jing, X., Sun, Y., Ye, Y., Guo, J., Huang, J., Xiang, W., Zhang, J., Guo, F."CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro". Molecular Medicine Reports 16, no. 6 (2017): 8019-8028. https://doi.org/10.3892/mmr.2017.7616
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team