|
1
|
Bonder A, Tapper EB and Afdhal NH:
Contemporary assessment of hepatic fibrosis. Clin Liver Dis.
19:123–134. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Trautwein C, Friedman SL, Schuppan D and
Pinzani M: Hepatic fibrosis: Concept to treatment. J Hepatol. 62(1
Suppl): S15–S24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jacobs F, Wisse E and De Geest B: The role
of liver sinusoidal cells in hepatocyte-directed gene transfer. Am
J Pathol. 176:14–21. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tacke F and Weiskirchen R: Update on
hepatic stellate cells: Pathogenic role in liver fibrosis and novel
isolation techniques. Expert Rev Gastroenterol Hepatol. 6:67–80.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yin C, Evason KJ, Asahina K and Stainier
DY: Hepatic stellate cells in liver development, regeneration, and
cancer. J Clin Invest. 123:1902–1910. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu W, Baker RD, Bhatia T, Zhu L and Baker
SS: Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life
Sci. 73:1969–1987. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Robert S, Gicquel T, Bodin A, Lagente V
and Boichot E: Characterization of the MMP/TIMP imbalance and
collagen production induced by IL-1β or TNF-α release from human
hepatic stellate cells. PLoS One. 11:e01531182016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ceccarelli S, Panera N, Mina M, Gnani D,
De Stefanis C, Crudele A, Rychlicki C, Petrini S, Bruscalupi G,
Agostinelli L, et al: LPS-induced TNF-α factor mediates
pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty
liver disease. Oncotarget. 6:41434–41452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shah R, Reyes-Gordillo K,
Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A,
Rojkind M and Lakshman MR: TGF-β1 up-regulates the expression of
PDGF-β receptor mRNA and induces a delayed PI3K-, AKT- and
p70(S6K)-dependent proliferative response in activated hepatic
stellate cells. Alcohol Clin Exp Res. 37:1838–1848. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kocabayoglu P, Lade A, Lee YA, Dragomir
AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and
Friedman SL: β-PDGF receptor expressed by hepatic stellate cells
regulates fibrosis in murine liver injury, but not carcinogenesis.
J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Baig MS, Yaqoob U, Cao S, Saqib U and Shah
VH: Non-canonical role of matrix metalloprotease (MMP) in
activation and migration of hepatic stellate cells (HSCs). Life
Sci. 155:155–160. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tang N, Zhang YP, Ying W and Yao XX:
Interleukin-1β upregulates matrix metalloproteinase-13 gene
expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat
hepatic stellate cells. Mol Med Rep. 8:1861–1865. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jain MK, Adams-Huet B, Terekhova D,
Kushner LE, Bedimo R, Li X and Holodniy M: Acute and chronic immune
biomarker changes during interferon/ribavirin treatment in HIV/HCV
co-infected patients. J Viral Hepat. 22:25–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bai Q, An J, Wu X, You H, Ma H, Liu T, Gao
N and Jia J: HBV promotes the proliferation of hepatic stellate
cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol
Med. 30:1443–1450. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Okada H, Honda M, Campbell JS, Sakai Y,
Yamashita T, Takebuchi Y, Hada K, Shirasaki T, Takabatake R,
Nakamura M, et al: Acyclic retinoid targets platelet-derived growth
factor signaling in the prevention of hepatic fibrosis and
hepatocellular carcinoma development. Cancer Res. 72:4459–4471.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Friedman SL, Wei S and Blaner WS: Retinol
release by activated rat hepatic lipocytes: Regulation by Kupffer
cell-conditioned medium and PDGF. Am J Physiol. 264:G947–G952.
1993.PubMed/NCBI
|
|
17
|
Breitkopf K, Roeyen Cv, Sawitza I, Wickert
L, Floege J and Gressner AM: Expression patterns of PDGF-A, -B, -C
and -D and the PDGF-receptors alpha and beta in activated rat
hepatic stellate cells (HSC). Cytokine. 31:349–357. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fredriksson L, Li H and Eriksson U: The
PDGF family: Four gene products from five dimeric isoforms.
Cytokine Growth Factor Rev. 15:197–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sarzani R, Arnaldi G and Chobanian AV:
Hypertension-induced changes of platelet-derived growth factor
receptor expression in rat aorta and heart. Hypertension.
17:888–985. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bergsten E, Uutela M, Li X, Pietras K,
Ostman A, Heldin CH, Alitalo K and Eriksson U: PDGF-D is a
specific, protease-activated ligand for the PDGF beta-receptor. Nat
Cell Biol. 3:512–516. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Uutela M, Laurén J, Bergsten E, Li X,
Horelli-Kuitunen N, Eriksson U and Alitalo K: Chromosomal location,
exon structure, and vascular expression patterns of the human PDGFC
and PDGFD genes. Circulation. 103:2242–2247. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liegl B, Leithner A, Bauernhofer T,
Windhager R, Guelly C, Regauer S and Beham A: Immunohistochemical
and mutational analysis of PDGF and PDGFR in desmoid tumours: Is
there a role for tyrosine kinase inhibitors in c-kit-negative
desmoid tumours? Histopathology. 49:576–581. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rosenfeld M, Keating A, Bowen-Pope DF,
Singer JW and Ross R: Responsiveness of the in vitro hematopoietic
microenvironment to platelet-derived growth factor. Leuk Res.
9:427–434. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ogawa S, Ochi T, Shimada H, Inagaki K,
Fujita I, Nii A, Moffat MA, Katragadda M, Violand BN, Arch RH and
Masferrer JL: Anti-PDGF-B monoclonal antibody reduces liver
fibrosis development. Hepatol Res. 40:1128–1141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Park HJ, Kim HG, Wang JH, Choi MK, Han JM,
Lee JS and Son CG: Comparison of TGF-β, PDGF, and CTGF in hepatic
fibrosis models using DMN, CCl4, and TAA. Drug Chem
Toxicol. 39:111–118. 2016.PubMed/NCBI
|
|
26
|
Borkham-Kamphorst E, Meurer SK, Van de
Leur E, Haas U, Tihaa L and Weiskirchen R: PDGF-D signaling in
portal myofibroblasts and hepatic stellate cells proves identical
to PDGF-B via both PDGF receptor type α and β. Cell Signal.
27:1305–1314. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kinnman N, Hultcrantz R, Barbu V, Rey C,
Wendum D, Poupon R and Housset C: PDGF-mediated chemoattraction of
hepatic stellate cells by bile duct segments in cholestatic liver
injury. Lab Invest. 80:697–707. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Czochra P, Klopcic B, Meyer E, Herkel J,
Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle
PR, Lohse AW and Kanzler S: Liver fibrosis induced by hepatic
overexpression of PDGF-B in transgenic mice. J Hepatol. 45:419–428.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Twamley-Stein GM, Pepperkok R, Ansorge W
and Courtneidge SA: The Src family tyrosine kinases are required
for platelet-derived growth factor-mediated signal transduction in
NIH 3T3 cells. Proc Natl Acad Sci USA. 90:pp. 7696–7700. 1993;
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zvibel I, Bar-Zohar D, Kloog Y, Oren R and
Reif S: The effect of Ras inhibition on the proliferation,
apoptosis and matrix metalloproteases activity in rat hepatic
stellate cells. Dig Dis Sci. 53:1048–1053. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fischer AN, Fuchs E, Mikula M, Huber H,
Beug H and Mikulits W: PDGF essentially links TGF-beta signaling to
nuclear beta-catenin accumulation in hepatocellular carcinoma
progression. Oncogene. 26:3395–3405. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bromann PA, Korkaya H, Webb CP, Miller J,
Calvin TL and Courtneidge SA: Platelet-derived growth factor
stimulates Src-dependent mRNA stabilization of specific early genes
in fibroblasts. J Biol Chem. 280:10253–10263. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hennig A, Markwart R, Esparza-Franco MA,
Ladds G and Rubio I: Ras activation revisited: Role of GEF and GAP
systems. Biol Chem. 396:831–848. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bera A, Das F, Ghosh-Choudhury N, Li X,
Pal S, Gorin Y, Kasinath BS, Abboud HE and Choudhury G Ghosh: A
positive feedback loop involving Erk5 and Akt turns on mesangial
cell proliferation in response to PDGF. Am J Physiol Cell Physiol.
306:C1089–C1100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xiong C, Liu X and Meng A: The kinase
activity-deficient isoform of the protein araf antagonizes
Ras/mitogen-activated protein kinase (Ras/MAPK) signaling in the
zebrafish embryo. J Biol Chem. 290:25512–25521. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pan TL, Wang PW, Leu YL, Wu TH and Wu TS:
Inhibitory effects of Scutellaria baicalensis extract on hepatic
stellate cells through inducing G2/M cell cycle arrest and
activating ERK-dependent apoptosis via Bax and caspase pathway. J
Ethnopharmacol. 139:829–837. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Park JH, Yoon J, Lee KY and Park B:
Effects of geniposide on hepatocytes undergoing
epithelial-mesenchymal transition in hepatic fibrosis by targeting
TGFβ/Smad and ERK-MAPK signaling pathways. Biochimie. 113:26–34.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Osman I and Segar L: Pioglitazone, a PPARγ
agonist, attenuates PDGF-induced vascular smooth muscle cell
proliferation through AMPK-dependent and AMPK-independent
inhibition of mTOR/p70S6K and ERK signaling. Biochem Pharmacol.
101:54–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Margolis B, Zilberstein A, Franks C,
Felder S, Kremer S, Ullrich A, Rhee SG, Skorecki K and Schlessinger
J: Effect of phospholipase C-gamma overexpression on PDGF-induced
second messengers and mitogenesis. Science. 248:607–610. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mukherjee S, Duan F, Kolb MR and Janssen
LJ: Platelet derived growth factor-evoked Ca2+ wave and
matrix gene expression through phospholipase C in human pulmonary
fibroblast. Int J Biochem Cell Biol. 45:1516–1524. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kojima N, Hori M, Murata T, Morizane Y and
Ozaki H: Different profiles of Ca2+ responses to
endothelin-1 and PDGF in liver myofibroblasts during the process of
cell differentiation. Br J Pharmacol. 151:816–827. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Benedetti A, Di Sario A, Casini A, Ridolfi
F, Bendia E, Pigini P, Tonnini C, D'Ambrosio L, Feliciangeli G,
Macarri G and Svegliati-Baroni G: Inhibition of the NA(+)/H(+)
exchanger reduces rat hepatic stellate cell activity and liver
fibrosis: An in vitro and in vivo study. Gastroenterology.
120:545–556. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Di Sario A, Bendia E, Taffetani S,
Marzioni M, Candelaresi C, Pigini P, Schindler U, Kleemann HW,
Trozzi L, Macarri G and Benedetti A: Selective
Na+/H+ exchange inhibition by cariporide
reduces liver fibrosis in the rat. Hepatology. 37:256–266. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Perkinton MS, Ip JK, Wood GL, Crossthwaite
AJ and Williams RJ: Phosphatidylinositol 3-kinase is a central
mediator of NMDA receptor signalling to MAP kinase (Erk1/2),
Akt/PKB and CREB in striatal neurons. J Neurochem. 80:239–254.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fan H, Ma L, Fan B, Wu J, Yang Z and Wang
L: Role of PDGFR-β/PI3K/AKT signaling pathway in PDGF-BB induced
myocardial fibrosis in rats. Am J Transl Res. 6:714–723.
2014.PubMed/NCBI
|
|
46
|
Niba ET, Nagaya H, Kanno T, Tsuchiya A,
Gotoh A, Tabata C, Kuribayashi K, Nakano T and Nishizaki T:
Crosstalk between PI3 kinase/PDK1/Akt/Rac1 and Ras/Raf/MEK/ERK
pathways downstream PDGF receptor. Cell Physiol Biochem.
31:905–913. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Villarino AV, Kanno Y, Ferdinand JR and
O'Shea JJ: Mechanisms of Jak/STAT signaling in immunity and
disease. J Immunol. 194:21–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Matsui F and Meldrum KK: The role of the
Janus kinase family/signal transducer and activator of
transcription signaling pathway in fibrotic renal disease. J Surg
Res. 178:339–345. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Neeli I, Liu Z, Dronadula N, Ma ZA and Rao
GN: An essential role of the Jak-2/STAT-3/cytosolic phospholipase
A(2) axis in platelet-derived growth factor BB-induced vascular
smooth muscle cell motility. J Biol Chem. 279:46122–46128. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang JX, Mikami K, Venugopal S, Li Y and
Török NJ: Apoptotic body engulfment by hepatic stellate cells
promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent
pathways. J Hepatol. 51:139–186. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Di Sario A, Bendia E, Svegliati-Baroni G,
Marzioni M, Ridolfi F, Trozzi L, Ugili L, Saccomanno S, Jezequel AM
and Benedetti A: Rearrangement of the cytoskeletal network induced
by platelet-derived growth factor in rat hepatic stellate cells:
Role of different intracellular signalling pathways. J Hepatol.
36:179–190. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Csak T, Bala S, Lippai D, Kodys K,
Catalano D, Iracheta-Vellve A and Szabo G: MicroRNA-155 deficiency
attenuates liver steatosis and fibrosis without reducing
inflammation in a mouse model of steatohepatitis. PLoS One.
10:e01292512015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wei J, Feng L, Li Z, Xu G and Fan X:
MicroRNA-21 activates hepatic stellate cells via PTEN/Akt
signaling. Biomed Pharmacother. 67:387–392. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kwiecinski M, Elfimova N, Noetel A, Töx U,
Steffen HM, Hacker U, Nischt R, Dienes HP and Odenthal M:
Expression of platelet-derived growth factor-C and insulin-like
growth factor I in hepatic stellate cells is inhibited by miR-29.
Lab Invest. 92:978–987. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Noetel A, Kwiecinski M, Elfimova N, Huang
J and Odenthal M: microRNA are central players in anti- and
profibrotic gene regulation during liver fibrosis. Front Physiol.
3:492012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Okada H, Honda M, Campbell JS, Takegoshi
K, Sakai Y, Yamashita T, Shirasaki T, Takabatake R, Nakamura M,
Tanaka T and Kaneko S: Inhibition of microRNA-214 ameliorates
hepatic fibrosis and tumor incidence in platelet-derived growth
factor C transgenic mice. Cancer Sci. 106:1143–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fu N, Niu X, Wang Y, Du H, Wang B, Du J,
Li Y, Wang R, Zhang Y, Zhao S, et al: Role of LncRNA-activated by
transforming growth factor beta in the progression of hepatitis C
virus-related liver fibrosis. Discov Med. 22:29–42. 2016.PubMed/NCBI
|
|
58
|
Yang JJ, Liu LP, Tao H, Hu W, Shi P, Deng
ZY and Li J: MeCP2 silencing of LncRNA H19 controls hepatic
stellate cell proliferation by targeting IGF1R. Toxicology 359–360.
1–46. 2016.
|
|
59
|
Yu F, Zheng J, Mao Y, Dong P, Lu Z, Li G,
Guo C, Liu Z and Fan X: Long non-coding RNA growth arrest-specific
transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism
of competing endogenous RNA. J Biol Chem. 290:28286–28298. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Niu X, Fu N, Du J, Wang R, Wang Y, Zhao S,
Du H, Wang B, Zhang Y, Sun D and Nan Y: miR-1273g-3p modulates
activation and apoptosis of hepatic stellate cells by directly
targeting PTEN in HCV-related liver fibrosis. FEBS Lett.
590:2709–2724. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hyun J, Wang S, Kim J, Rao KM, Park SY,
Chung I, Ha CS, Kim SW, Yun YH and Jung Y: MicroRNA-378 limits
activation of hepatic stellate cells and liver fibrosis by
suppressing Gli3 expression. Nat Commun. 7:109932016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang
HP and Li HH: Vaccination with platelet-derived growth factor B
kinoids inhibits CCl4-induced hepatic fibrosis in mice.
J Pharmacol Exp Ther. 342:835–842. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Durez P, Vandepapeliere P, Miranda P,
Toncheva A, Berman A, Kehler T, Mociran E, Fautrel B, Mariette X,
Dhellin O, et al: Therapeutic vaccination with TNF-Kinoid in TNF
antagonist-resistant rheumatoid arthritis: A phase II randomized,
controlled clinical trial. PLoS One. 9:e1134652014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jing Q, Yin T, Wan Y, Shi H, Luo S, Li M,
Zhang H, He H, Liu S, Li H, et al: Interleukin-13 peptide kinoid
vaccination attenuates allergic inflammation in a mouse model of
asthma. Int J Mol Med. 30:553–560. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Delavallée L, Le Buanec H, Bessis N,
Assier E, Denys A, Bizzini B, Zagury D and Boissier MC: Early and
long-lasting protection from arthritis in tumour necrosis factor
alpha (TNFalpha) transgenic mice vaccinated against TNFalpha. Ann
Rheum Dis. 67:1332–1338. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gounder MM, Lefkowitz RA, Keohan ML,
D'Adamo DR, Hameed M, Antonescu CR, Singer S, Stout K, Ahn L and
Maki RG: Activity of Sorafenib against desmoid tumor/deep
fibromatosis. Clin Cancer Res. 17:4082–4090. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zahavi T, Lanton T, Divon MS, Salmon A,
Peretz T, Galun E, Axelrod JH and Sonnenblick A: Sorafenib
treatment during partial hepatectomy reduces tumorgenesis in an
inflammation-associated liver cancer model. Oncotarget.
7:4860–4870. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lin TsT, Gao DY, Liu YC, Sung YC, Wan D,
Liu JY, Chiang T, Wang L and Chen Y: Development and
characterization of sorafenib-loaded PLGA nanoparticles for the
systemic treatment of liver fibrosis. J Control Release. 221:62–70.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hong F, Chou H, Fiel MI and Friedman SL:
Antifibrotic activity of sorafenib in experimental hepatic
fibrosis: Refinement of inhibitory targets, dosing, and window of
efficacy in vivo. Dig Dis Sci. 58:257–264. 2013.PubMed/NCBI
|
|
70
|
Wang Y, Gao J, Zhang D, Zhang J, Ma J and
Jiang H: New insights into the antifibrotic effects of sorafenib on
hepatic stellate cells and liver fibrosis. J Hepatol. 53:132–144.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hao H, Zhang D, Shi J, Wang Y, Chen L, Guo
Y, Ma J, Jiang X and Jiang H: Sorafenib induces autophagic cell
death and apoptosis in hepatic stellate cell through the JNK and
Akt signaling pathways. Anticancer Drugs. 27:192–203. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu C, Yang Z, Wang L, Lu Y, Tang B, Miao
H, Xu Q and Chen X: Combination of sorafenib and gadolinium
chloride (GdCl3) attenuates dimethylnitrosamine(DMN)-induced liver
fibrosis in rats. BMC Gastroenterol. 15:1592015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Deng YR, Ma HD, Tsuneyama K, Yang W, Wang
YH, Lu FT, Liu CH, Liu P, He XS, Diehl AM, et al: STAT3-mediated
attenuation of CCl4-induced mouse liver fibrosis by the protein
kinase inhibitor sorafenib. J Autoimmun. 46:25–34. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Qu K, Huang Z, Lin T, Liu S, Chang H, Yan
Z, Zhang H and Liu C: New insight into the anti-liver fibrosis
effect of multitargeted tyrosine kinase inhibitors: From molecular
target to clinical trials. Front Pharmacol. 6:3002016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Karuppagounder SS, Brahmachari S, Lee Y,
Dawson VL, Dawson TM and Ko HS: The c-Abl inhibitor, nilotinib,
protects dopaminergic neurons in a preclinical animal model of
Parkinson's disease. Sci Rep. 4:48742014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Elsherbiny NM, El-Sherbiny M and Said E:
Amelioration of experimentally induced diabetic nephropathy and
renal damage by nilotinib. J Physiol Biochem. 71:635–648. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shaker ME, Zalata KR, Mehal WZ, Shiha GE
and Ibrahim TM: Comparison of imatinib, nilotinib and silymarin in
the treatment of carbon tetrachloride-induced hepatic oxidative
stress, injury and fibrosis. Toxicol Appl Pharmacol. 252:165–175.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lemos DR, Babaeijandaghi F, Low M, Chang
CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA and Rossi
FM: Nilotinib reduces muscle fibrosis in chronic muscle injury by
promoting TNF-mediated apoptosis of fibro/adipogenic progenitors.
Nat Med. 21:786–794. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Shiha GE, Abu-Elsaad NM, Zalata KR and
Ibrahim TM: Tracking anti-fibrotic pathways of nilotinib and
imatinib in experimentally induced liver fibrosis: An insight. Clin
Exp Pharmacol Physiol. 41:788–797. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shaker ME, Shiha GE and Ibrahim TM:
Comparison of early treatment with low doses of nilotinib, imatinib
and a clinically relevant dose of silymarin in
thioacetamide-induced liver fibrosis. Eur J Pharmacol. 670:593–600.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Wang Z, Kwong SQ, Lui EL, Friedman
SL, Li FR, Lam RW, Zhang GC, Zhang H and Ye T: Inhibition of PDGF,
TGF-β, and Abl signaling and reduction of liver fibrosis by the
small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J
Hepatol. 55:612–625. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Moawad EY: Predicting effectiveness of
imatinib mesylate in tumors expressing platelet-derived
growthfactors (PDGF-AA, PDGF-BB), stem cell factor ligands and
their respective receptors (PDGFR-α, PDGFR-β, and c-kit). J
Gastrointest Cancer. 46:272–283. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kuo WL, Yu MC, Lee JF, Tsai CN, Chen TC
and Chen MF: Imatinib mesylate improves liver regeneration and
attenuates liver fibrogenesis in CCL4-treated mice. J Gastrointest
Surg. 16:361–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kim Y, Fiel MI, Albanis E, Chou HI, Zhang
W, Khitrov G and Friedman SL: Anti-fibrotic activity and enhanced
interleukin-6 production by hepatic stellate cells in response to
imatinib mesylate. Liver Int. 32:1008–1017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Iwamoto H, Nakamuta M, Tada S, Sugimoto R,
Enjoji M and Nawata H: Platelet-derived growth factor receptor
tyrosine kinase inhibitor AG1295 attenuates rat hepatic stellate
cell growth. J Lab Clin Med. 135:406–412. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hutson TE, Davis ID, Machiels JP, De Souza
PL, Rottey S, Hong BF, Epstein RJ, Baker KL, McCann L, Crofts T, et
al: Efficacy and safety of pazopanib in patients with metastatic
renal cell carcinoma. J Clin Oncol. 28:475–480. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Eisen T, Joensuu H, Nathan PD, Harper PG,
Wojtukiewicz MZ, Nicholson S, Bahl A, Tomczak P, Pyrhonen S, Fife
K, et al: Regorafenib for patients with previously untreated
metastatic or unresectable renal-cell carcinoma: A single-group
phase 2 trial. Lancet Oncol. 13:1055–1062. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rice AB, Moomaw CR, Morgan DL and Bonner
JC: Specific inhibitors of platelet-derived growth factor or
epidermal growth factor receptor tyrosine kinase reduce pulmonary
fibrosis in rats. Am J Pathol. 155:213–221. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Venè R, Tosetti F, Minghelli S, Poggi A,
Ferrari N and Benelli R: Celecoxib increases EGF signaling in colon
tumor associated fibroblasts, modulating EGFR expression and
degradation. Oncotarget. 6:12310–12325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Soininen H, West C, Robbins J and
Niculescu L: Long-term efficacy and safety of celecoxib in
Alzheimer's disease. Dement Geriatr Cogn Disord. 23:8–21. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Raval M, Frank PG, Laury-Kleintop L, Yan G
and Lanza-Jacoby S: combined with atorvastatin prevents progression
of atherosclerosis. J Surg Res. 163:e113–e122. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gao JH, Wen SL, Yang WJ, Lu YY, Tong H,
Huang ZY, Liu ZX and Tang CW: Celecoxib ameliorates portal
hypertension of the cirrhotic rats through the dual inhibitory
effects on the intrahepatic fibrosis and angiogenesis. PLoS One.
8:e693092013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Paik YH, Kim JK, Lee JI, Kang SH, Kim DY,
An SH, Lee SJ, Lee DK, Han KH, Chon CY, et al: Celecoxib induces
hepatic stellate cell apoptosis through inhibition of Akt
activation and suppresses hepatic fibrosis in rats. Gut.
58:1517–1527. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ekor M, Odewabi AO, Kale OE, Adesanoye OA
and Bamidele TO: Celecoxib, a selective cyclooxygenase-2 inhibitor,
lowers plasma cholesterol and attenuates hepatic lipid peroxidation
during carbon-tetrachloride-associated hepatotoxicity in rats. Drug
Chem Toxicol. 36:1–8. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Reina M and Martínez A: Is Silybin the
best free radical scavenger compound in Silymarin? J Phys Chem B.
120:4568–4578. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Trappoliere M, Caligiuri A, Schmid M,
Bertolani C, Failli P, Vizzutti F, Novo E, di Manzano C, Marra F,
Loguercio C and Pinzani M: A component of sylimarin, exerts
anti-inflammatory and anti-fibrogenic effects on human hepatic
stellate cells. J Hepatol. 50:1102–1111. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Serviddio G, Bellanti F, Stanca E, Lunetti
P, Blonda M, Tamborra R, Siculella L, Vendemiale G, Capobianco L
and Giudetti AM: Silybin exerts antioxidant effects and induces
mitochondrial biogenesis in liver of rat with secondary biliary
cirrhosis. Free Radic Biol Med. 73:117–126. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Malaguarnera M, Motta M, Vacante M,
Malaguarnera G, Caraci F, Nunnari G, Gagliano C, Greco C, Chisari
G, Drago F and Bertino G: Silybin-vitamin E-phospholipids complex
reduces liver fibrosis in patients with chronic hepatitis C treated
with pegylated interferon α and ribavirin. Am J Transl Res.
7:2510–2518. 2015.PubMed/NCBI
|
|
99
|
Bares JM, Berger J, Nelson JE, Messner DJ,
Schildt S, Standish LJ and Kowdley KV: Silybin treatment is
associated with reduction in serum ferritin in patients with
chronic hepatitis C. J Clin Gastroenterol. 42:937–944. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhou M, Fan C and Tian N: Effects of
curcumin on the gene expression profile of L-02 cells. Biomed Rep.
3:519–526. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lian N, Jiang Y, Zhang F, Jin H, Lu C, Wu
X, Lu Y and Zheng S: Curcumin regulates cell fate and metabolism by
inhibiting hedgehog signaling in hepatic stellate cells. Lab
Invest. 95:790–803. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Taverna S, Giallombardo M, Pucci M, Flugy
A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R:
Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia
cells growth: A possible role for exosomal disposal of miR-21.
Oncotarget. 6:21918–21933. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
El-Bahr SM: Curcumin regulates gene
expression of insulin like growth factor, B-cell CLL/lymphoma 2 and
antioxidant enzymes in streptozotocin induced diabetic rats. BMC
Complement Altern Med. 13:3682013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang X, Chen M, Zou P, Kanchana K, Weng
Q, Chen W, Zhong P, Ji J, Zhou H, He L and Liang G: Curcumin analog
WZ35 induced cell death via ROS-dependent ER stress and G2/M cell
cycle arrest in human prostate cancer cells. BMC Cancer.
15:8662015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lee HI, McGregor RA, Choi MS, Seo KI, Jung
UJ, Yeo J, Kim MJ and Lee MK: Low doses of curcumin protect
alcohol-induced liver damage by modulation of the alcohol metabolic
pathway, CYP2E1 and AMPK. Life Sci. 93:693–699. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhao Y, Ma X, Wang J, He X, Hu Y, Zhang P,
Wang R, Li R, Gong M, Luo S and Xiao X: Curcumin protects against
CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an
ERK-dependent pathway. Molecules. 19:18767–18780. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xue J, Zhang X, Zhang C, Kang N, Liu X, Yu
J, Zhang N, Wang H, Zhang L, Chen R, et al: Protective effect of
Naoxintong against cerebral ischemia reperfusion injury in mice. J
Ethnopharmacol. 182:181–189. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lv H, Wang L, Shen J, Hao S, Ming A, Wang
X, Su F and Zhang Z: Salvianolic acid B attenuates apoptosis and
inflammation via SIRT1 activation in experimental stroke rats.
Brain Res Bull. 115:30–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Deng Y, Yang M, Xu F, Zhang Q, Zhao Q, Yu
H, Li D, Zhang G, Lu A, Cho K, et al: Combined salvianolic acid B
and ginsenoside Rg1 exerts cardioprotection against
ischemia/reperfusion injury in rats. PLoS One. 10:e01354352015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang R, Yu XY, Guo ZY, Wang YJ, Wu Y and
Yuan YF: Inhibitory effects of salvianolic acid B on CCl(4)-induced
hepatic fibrosis through regulating NF-κB/IκBα signaling. J
Ethnopharmacol. 144:592–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lv Z, Song Y, Xue D, Zhang W, Cheng Y and
Xu L: Effect of salvianolic-acid B on inhibiting MAPK signaling
induced by transforming growth factor-β1 in activated rat hepatic
stellate cells. J Ethnopharmacol. 132:384–392. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Gao HY, Li GY, Lou MM, Li XY, Wei XY and
Wang JH: Hepatoprotective effect of matrine salvianolic acid B salt
on carbon tetrachloride-induced hepatic fibrosis. J Inflamm (Lond).
9:162012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Xu H, Zhou Y, Lu C, Ping J and Xu LM:
Salvianolic acid B lowers portal pressure in cirrhotic rats and
attenuates contraction of rat hepaticstellate cells by inhibiting
RhoA signaling pathway. Lab Invest. 92:1738–1748. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Marslin G, Revina AM, Khandelwal VK,
Balakumar K, Prakash J, Franklin G and Sheeba CJ: Delivery as
nanoparticles reduces imatinib mesylate-induced cardiotoxicity and
improves anticancer activity. Int J Nanomedicine. 10:3163–3170.
2015.PubMed/NCBI
|
|
115
|
Younis N, Shaheen MA and Abdallah MH:
Silymarin-loaded Eudragit(®) RS100 nanoparticles
improved the ability of silymarin to resolve hepatic fibrosis in
bile duct ligated rats. Biomed Pharmacother. 81:93–103. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhong H, Wang D, Wang N, Rios Y, Huang H,
Li S, Wu X and Lin S: Combinatory action of VEGFR2 and MAP kinase
pathways maintains endothelial-cell integrity. Cell Res.
21:1080–1087. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Srikanthan A, Ethier JL, Ocana A, Seruga
B, Krzyzanowska MK and Amir E: Cardiovascular toxicity of
multi-tyrosine kinase inhibitors in advanced solid tumors: A
population-based observational study. PLoS One. 10:e01227352015.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ghatalia P, Je Y, Mouallem NE, Nguyen PL,
Trinh QD, Sonpavde G and Choueiri TK: Hepatotoxicity with vascular
endothelial growth factor receptor tyrosine kinase inhibitors: A
meta-analysis of randomized clinical trials. Crit Rev Oncol
Hematol. 93:257–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chrisoulidou A, Mandanas S, Margaritidou
E, Mathiopoulou L, Boudina M, Georgopoulos K and
Pazaitou-Panayiotou K: Treatment compliance and severe adverse
events limit the use of tyrosine kinase inhibitors in refractory
thyroid cancer. Onco Targets Ther. 8:2435–2442. 2015.PubMed/NCBI
|
|
120
|
Reichenbach V, Fernández-Varo G, Casals G,
Oró D, Ros J, Melgar-Lesmes P, Weiskirchen R, Morales-Ruiz M and
Jiménez W: Adenoviral dominant-negative soluble PDGFRβ improves
hepatic collagen, systemic hemodynamics, and portal pressure in
fibrotic rats. J Hepatol. 57:967–973. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Shah R, Reyes-Gordillo K,
Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A,
Rojkind M and Lakshman MR: TGF-β1 up-regulates the expression of
PDGF-β receptor mRNA and induces a delayed PI3K-, AKT- and
p70(S6K)-dependent proliferative response in activated hepatic
stellate cells. Alcohol Clin Exp Res. 37:1838–1848. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Bai Q, An J, Wu X, You H, Ma H, Liu T, Gao
N and Jia J: HBV promotes the proliferation of hepatic stellate
cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol
Med. 30:1443–1450. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Liang CC, Liu CH, Chung CS, Lin CK, Su TH,
Yang HC, Liu CJ, Chen PJ, Chen DS and Kao JH: Advanced hepatic
fibrosis and steatosis are associated with persistent alanine
aminotransferase elevation in chronic hepatitis C patients negative
for hepatitis C virus RNA during pegylated interferon plus
ribavirin therapy. J Infect Dis. 211:1429–1436. 2015. View Article : Google Scholar : PubMed/NCBI
|