Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2018 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)

  • Authors:
    • Haoyuan Jia
    • Yongmin Yan
    • Zhaofeng Liang
    • Nitin Tandra
    • Bin Zhang
    • Juanjuan Wang
    • Wenrong Xu
    • Hui Qian
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
  • Pages: 3439-3447
    |
    Published online on: December 19, 2017
       https://doi.org/10.3892/mmr.2017.8311
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute kidney injury (AKI) is a common and serious medical condition associated with poor health outcomes. Autophagy is a conserved multistep pathway that serves a major role in many biological processes and diseases. Recent studies have demonstrated that autophagy is induced in proximal tubular cells during AKI. Autophagy serves a pro‑survival or pro‑death role under certain conditions. Furthermore, mesenchymal stem cells (MSCs) have therapeutic potential in the repair of renal injury. This review summarizes the recent progress on the role of autophagy in AKI and MSCs‑based therapy for AKI. Further research is expected to prevent and treat acute kidney injury.
View Figures

Figure 1

Figure 2

View References

1 

Qian M, Fang X and Wang X: Autophagy and inflammation. Clin Transl Med. 6:242017. View Article : Google Scholar : PubMed/NCBI

2 

Tomiyama R, Takakura K, Takatou S, Le TM, Nishiuchi T, Nakamura Y, Konishi T, Matsugo S and Hori O: 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells. J Cell Physiol. 233:1671–1684. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Antikainen H, Driscoll M, Haspel G and Dobrowolski R: TOR-mediated regulation of metabolism in aging. Aging Cell. 16:1219–1233. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Germic N, Stojkov D, Oberson K, Yousefi S and Simon HU: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology. 152:517–525. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Long M, Li X, Li L, Dodson M, Zhang DD and Zheng H: Multifunctional p62 effects underlie diverse metabolic diseases. Trends Endocrinol Metab. 28:818–830. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Hu ZY, Chen B, Zhang JP and Ma YY: Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson's disease. J Biol Chem. 292:18062–18074. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Choi HS, Jeong EH, Lee TG, Kim SY, Kim HR and Kim CH: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells. Tuberc Respir Dis (Seoul). 75:9–17. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Wang Z and Choi ME: Autophagy in kidney health and disease. Antioxid Redox Signal. 20:519–537. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, et al: Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 8:1009–1031. 2012. View Article : Google Scholar : PubMed/NCBI

10 

He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA and Dong Z: AKI on CKD: Heightened injury, suppressed repair and the underlying mechanisms. Kidney Int. 92:1071–1083. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Trongtrakul K, Sawawiboon C, Wang AY, Chitsomkasem A, Limphunudom P, Kurathong S, Prommoon S, Trakarnvanich T and Srisawat N: Acute kidney injury in critically Ill surgical patients: Epidemiology, risk factors and outcomes. Nephrology (Carlton). 2017. View Article : Google Scholar : PubMed/NCBI

12 

Deng X, Xie Y and Zhang A: Advance of autophagy in chronic kidney diseases. Ren Fail. 39:306–313. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Levine B and Klionsky DJ: Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Sekito T, Kawamata T, Ichikawa R, Suzuki K and Ohsumi Y: Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells. 14:525–538. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Livingston MJ and Dong Z: Autophagy in acute kidney injury. Semin Nephrol. 34:17–26. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, et al: CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol. 17:1112–1123. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Sureshbabu A, Ryter SW and Choi ME: Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biol. 4:208–214. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Ravanan P, Srikumar IF and Talwar P: Autophagy: The spotlight for cellular stress responses. Life Sci. 188:53–67. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Tang JC, Feng YL, Liang X and Cai XJ: Autophagy in 5-fluorouracil therapy in gastrointestinal cancer: Trends and challenges. Chin Med J (Engl). 129:456–463. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Pla A, Pascual M and Guerri C: Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS One. 11:e01530972016. View Article : Google Scholar : PubMed/NCBI

24 

Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Wang XY, Yang H, Wang MG, Yang DB, Wang ZY and Wang L: Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux. Cell Death Dis. 8:e30992017. View Article : Google Scholar : PubMed/NCBI

26 

de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, Origassa CS and Câmara NO: In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev. 34:131–144. 2013.PubMed/NCBI

27 

Zhang YL, Zhang J, Cui LY and Yang S: Autophagy activation attenuates renal ischemia-reperfusion injury in rats. Exp Biol Med (Maywood). 240:1590–1598. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Guan X, Qian Y, Shen Y, Zhang L, Du Y, Dai H, Qian J and Yan Y: Autophagy protects renal tubular cells against ischemia/reperfusion injury in a time-dependent manner. Cell Physiol Biochem. 36:285–298. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Ling H, Chen H, Wei M, Meng X, Yu Y and Xie K: The effect of autophagy on inflammation cytokines in renal ischemia/reperfusion injury. Inflammation. 39:347–356. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Jiang M, Liu K, Luo J and Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol. 176:1181–1192. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Jiang M, Wei Q, Dong G, Komatsu M, Su Y and Dong Z: Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82:1271–1283. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Chandrika BB, Yang C, Ou Y, Feng X, Muhoza D, Holmes AF, Theus S, Deshmukh S, Haun RS and Kaushal GP: Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PLoS One. 10:e01400252015. View Article : Google Scholar : PubMed/NCBI

33 

Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 22:902–913. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G and Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 8:826–837. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi T, et al: Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS One. 10:e01262292015. View Article : Google Scholar : PubMed/NCBI

36 

Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK and Hwa Liu S: Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One. 8:e798142013. View Article : Google Scholar : PubMed/NCBI

37 

Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J and Jochmans I: Autophagy and the kidney: Implications for ischemia-reperfusion injury and therapy. Am J Kidney Dis. 66:699–709. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Isaka Y, Suzuki C, Abe T, Okumi M, Ichimaru N, Imamura R, Kakuta Y, Matsui I, Takabatake Y, Rakugi H, et al: Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms. Transplant Proc. 41:pp. 52–54. 2009; View Article : Google Scholar : PubMed/NCBI

39 

Chien CT, Shyue SK and Lai MK: Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation. 84:1183–1190. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M, Shibata M, Uchiyama Y, Takahara S and Imai E: Participation of autophagy in renal ischemia/reperfusion injury. Biochem Biophys Res Commun. 368:100–106. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Turkmen K, Martin J, Akcay A, Nguyen Q, Ravichandran K, Faubel S, Pacic A, Ljubanović D, Edelstein CL and Jani A: Apoptosis and autophagy in cold preservation ischemia. Transplantation. 91:1192–1197. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Yu SY, Dong B, Zhou SH and Tang L: LncRNA MALAT1: A potential regulator of autophagy in myocardial ischemia-reperfusion injury. Int J Cardiol. 247:252017. View Article : Google Scholar : PubMed/NCBI

43 

Liu XJ, Hong Q, Wang Z, Yu YY, Zou X and Xu LH: MicroRNA-34a suppresses autophagy in tubular epithelial cells in acute kidney injury. Am J Nephrol. 42:168–175. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Liu X, Hong Q, Wang Z, Yu Y, Zou X and Xu L: MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion. Exp Cell Res. 338:64–69. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Arany I and Safirstein RL: Cisplatin nephrotoxicity. Semin Nephrol. 23:460–464. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Pabla N and Dong Z: Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 73:994–1007. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Liu H, Gu LB, Tu Y, Hu H, Huang YR and Sun W: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol Sin. 37:235–245. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM and Dong Z: Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74:631–640. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Fang B and Xiao H: Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun. 448:443–447. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, Li L, Zeeh D, Schlatter E, Janke LJ, et al: Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res. 20:4026–4035. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Cummings BS and Schnellmann RG: Cisplatin-induced renal cell apoptosis: Caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther. 302:8–17. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L and Dong Z: Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 25:4056–4066. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Jiang M, Yi X, Hsu S, Wang CY and Dong Z: Role of p53 in cisplatin-induced tubular cell apoptosis: Dependence on p53 transcriptional activity. Am J Physiol Renal Physiol. 287:F1140–F1147. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Seth R, Yang C, Kaushal V, Shah SV and Kaushal GP: p53-Dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem. 280:31230–31239. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Wei Q, Dong G, Franklin J and Dong Z: The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 72:53–62. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Wei Q, Dong G, Yang T, Megyesi J, Price PM and Dong Z: Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 293:F1282–F1291. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Feng Z, Zhang H, Levine AJ and Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 102:pp. 8204–8209. 2005; View Article : Google Scholar : PubMed/NCBI

60 

Wei L, Chen W, Zou Y, Huang H, Pan B, Jin S, Huang R, Nie S and Kong G: AMP-activated protein kinase regulates autophagic protection against cisplatin-induced tissue injury in the kidney. Genet Mol Res. 14:12006–12015. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH and Jung JY: NQO1 deficiency leads enhanced autophagy in cisplatin-induced acute kidney injury through the AMPK/TSC2/mTOR signaling pathway. Antioxid Redox Signal. 24:867–883. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Herzog C, Yang C, Holmes A and Kaushal GP: zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol. 303:F1239–F1250. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Scaringi L, Cornacchione P, Ayroldi E, Corazzi L, Capodicasa E, Rossi R and Marconi P: Omeprazole induces apoptosis in jurkat cells. Int J Immunopathol Pharmacol. 17:331–342. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Bizat N, Galas MC, Jacquard C, Boyer F, Hermel JM, Schiffmann SN, Hantraye P, Blum D and Brouillet E: Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology. 49:695–702. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Madden DT, Egger L and Bredesen DE: A calpain-like protease inhibits autophagic cell death. Autophagy. 3:519–522. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R and Aleo MF: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res. 318:238–250. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Xu QX, Qiu XY, Jiao Z, Zhang M and Zhong MK: FOXP3 rs3761549 polymorphism predicts long-term renal allograft function in patients receiving cyclosporine-based immunosuppressive regimen. Gene. 2017.(Epub ahead of print).

68 

Lim SW, Hyoung BJ, Piao SG, Doh KC, Chung BH and Yang CW: Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation. 94:218–225. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Yadav RK, Lee GH, Lee HY, Li B, Jung HE, Rashid HO, Choi MK, Yadav BK, Kim WH, Kim KW, et al: TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy and reduces renal dysfunction in a Cyclosporine A-induced nephrotoxicity model. Autophagy. 11:1760–1774. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Yegenaga I, Tuglular S, Ari E, Etiler N, Baykara N, Torlak S, Acar S, Akbas T, Toker K and Solak ZM: Evaluation of sepsis/systemic inflammatory response syndrome, acute kidney injury and RIFLE criteria in two tertiary hospital intensive care units in Turkey. Nephron Clin Pract. 115:c276–c282. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Schrier RW and Wang W: Acute renal failure and sepsis. N Engl J Med. 351:159–169. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Leventhal JS, Ni J, Osmond M, Lee K, Gusella GL, Salem F and Ross MJ: Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression. PLoS One. 11:e01500012016. View Article : Google Scholar : PubMed/NCBI

73 

Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM and Hsu C: The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 37:289–296. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Mei S, Livingston M, Hao J, Li L, Mei C and Dong Z: Autophagy is activated to protect against endotoxic acute kidney injury. Sci Rep. 6:221712016. View Article : Google Scholar : PubMed/NCBI

75 

Howell GM, Gomez H, Collage RD, Loughran P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS and Rosengart MR: Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One. 8:e695202013. View Article : Google Scholar : PubMed/NCBI

76 

Kern S, Eichler H, Stoeve J, Klüter H and Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24:1294–1301. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Caplan AI: Mesenchymal stem cells. J Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI

78 

Golpanian S, Wolf A, Hatzistergos KE and Hare JM: Rebuilding the damaged heart: Mesenchymal stem cells, cell-based therapy and engineered heart tissue. Physiol Rev. 96:1127–1168. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M and Volarevic V: Mesenchymal stem cell-dependent modulation of liver diseases. Int J Biol Sci. 13:1109–1117. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Chen C and Hou J: Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 7:162016. View Article : Google Scholar : PubMed/NCBI

81 

Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W and Xu W: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22:845–854. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H and Xu W: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 33:2158–2168. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W and Xu W: Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015:7616432015. View Article : Google Scholar : PubMed/NCBI

84 

Meirelles Lda S, Fontes AM, Covas DT and Caplan AI: Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20:419–427. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Tögel F, Zhang P, Hu Z and Westenfelder C: VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med. 13:2109–2114. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C and Camussi G: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 7:e331152012. View Article : Google Scholar : PubMed/NCBI

87 

da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E and Vieyra A: Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: A comprehensive view using label-free MS(E). Proteomics. 14:1480–1493. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Xing L, Cui R, Peng L, Ma J, Chen X, Xie RJ and Li B: Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther. 5:1012014. View Article : Google Scholar : PubMed/NCBI

89 

Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, Chen M and Zhu Y: Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 41:119–128. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Moghadasali R, Azarnia M, Hajinasrollah M, Arghani H, Nassiri SM, Molazem M, Vosough A, Mohitmafi S, Najarasl M, Ajdari Z, et al: Intra-renal arterial injection of autologous bone marrow mesenchymal stromal cells ameliorates cisplatin-induced acute kidney injury in a rhesus Macaque mulatta monkey model. Cytotherapy. 16:734–749. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, et al: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 4:342013. View Article : Google Scholar : PubMed/NCBI

92 

Yao W, Hu Q, Ma Y, Xiong W, Wu T, Cao J and Wu D: Human adipose-derived mesenchymal stem cells repair cisplatin-induced acute kidney injury through antiapoptotic pathways. Exp Ther Med. 10:468–476. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Zhang W, Liu L, Huo Y, Yang Y and Wang Y: Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int. 2014:4624722014.PubMed/NCBI

94 

Qiao PF, Yao L, Zhang XC, Li GD and Wu DQ: Heat shock pretreatment improves stem cell repair following ischemia-reperfusion injury via autophagy. World J Gastroenterol. 21:12822–12834. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, Zang L, Mu Y and Han W: Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis. 6:e18852015. View Article : Google Scholar : PubMed/NCBI

96 

Li J, Zhou J, Zhang D, Song Y, She J and Bai C: Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signaling to reduce the severity of ischaemia/reperfusion-induced lung injury. J Cell Mol Med. 19:2341–2351. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ and Lee PH: Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy. 10:32–44. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Park HJ, Shin JY, Kim HN, Oh SH and Lee PH: Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging. 35:1920–1928. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Park M, Kim YH, Woo SY, Lee HJ, Yu Y, Kim HS, Park YS, Jo I, Park JW, Jung SC, et al: Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci Rep. 5:86162015. View Article : Google Scholar : PubMed/NCBI

100 

Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X, Yan Y, Yin L, Yu J, Qian H and Xu W: Pre-incubated with hucMSC-Exosomes prevent cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther. 8:752017. View Article : Google Scholar : PubMed/NCBI

101 

Fougeray S and Pallet N: Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol. 11:34–45. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Zhang D, Xu X and Dong Z: PRKCD/PKCσ contributes to nephrotoxicity during cisplatin chemotherapy by suppressing autophagy. Autophagy. 13:631–632. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jia H, Yan Y, Liang Z, Tandra N, Zhang B, Wang J, Xu W and Qian H: Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep 17: 3439-3447, 2018.
APA
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J. ... Qian, H. (2018). Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Molecular Medicine Reports, 17, 3439-3447. https://doi.org/10.3892/mmr.2017.8311
MLA
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J., Xu, W., Qian, H."Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)". Molecular Medicine Reports 17.3 (2018): 3439-3447.
Chicago
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J., Xu, W., Qian, H."Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)". Molecular Medicine Reports 17, no. 3 (2018): 3439-3447. https://doi.org/10.3892/mmr.2017.8311
Copy and paste a formatted citation
x
Spandidos Publications style
Jia H, Yan Y, Liang Z, Tandra N, Zhang B, Wang J, Xu W and Qian H: Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep 17: 3439-3447, 2018.
APA
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J. ... Qian, H. (2018). Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Molecular Medicine Reports, 17, 3439-3447. https://doi.org/10.3892/mmr.2017.8311
MLA
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J., Xu, W., Qian, H."Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)". Molecular Medicine Reports 17.3 (2018): 3439-3447.
Chicago
Jia, H., Yan, Y., Liang, Z., Tandra, N., Zhang, B., Wang, J., Xu, W., Qian, H."Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)". Molecular Medicine Reports 17, no. 3 (2018): 3439-3447. https://doi.org/10.3892/mmr.2017.8311
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team