Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2018 Volume 17 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2018 Volume 17 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells

Retraction in: /10.3892/mmr.2025.13644
  • Authors:
    • Jiangzhou Peng
    • Zigang Yu
    • Lei Xue
    • Jiabin Wang
    • Jun Li
    • Degang Liu
    • Qiang Yang
    • Yihui Lin
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China, Department of Thoracic Surgery, Shanwei People's Hospital, Shanwei, Guangdong 516600, P.R. China, Department of Neurology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
    Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 5860-5868
    |
    Published online on: February 13, 2018
       https://doi.org/10.3892/mmr.2018.8606
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the novel mechanisms of forkhead box protein P3 (foxp3) in T regulatory (Treg) cells in lung cancer behavior. Treg cells were isolated from the peripheral blood of healthy volunteers and then co‑cultured with 95D cells. A plasmid overexpressing foxp3 was constructed and transfected into Treg cells and an MTS assay was performed to assess cell viability. Flow cytometry was performed to evaluate cell apoptosis and reverse transcription‑quantitative polymerase chain reaction was used to measure mRNA expression. A Transwell assay was used to assess cell invasion. Treg cells were successfully isolated from peripheral blood with purity of 94.26%. Foxp3 expression in Treg cells was significantly increased following co‑culture with 95D cells, while matrix metalloproteinase‑9 expression was upregulated in 95D cells co‑cultured with Treg cells. The apoptosis, invasion and migration abilities of 95D cells were suppressed by co‑culture with Treg cells, whereas the adhesive ability was enhanced. Foxp3 overexpression in Treg cells enhanced the viability and invasiveness of 95D cells, whereas cell adhesion and migration were decreased. The results of the present study demonstrate that the viability and invasiveness of 95D cells are enhanced by foxp3 overexpression in Treg cells, indicating that increased levels of foxp3 in the tumor microenvironment may promote tumor cell growth.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wang J, Jia Y, Zhao S, Zhang X, Wang X, Han X, Wang Y, Ma M, Shi J and Liu L: BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene. 36:6235–6243. 2017. View Article : Google Scholar : PubMed/NCBI

2 

McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, et al: Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell. 171:1259–1271.e11. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Schafer CC, Wang Y, Hough KP, Sawant A, Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S and Deshane JS: Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget. 7:75407–75424. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Chan R, Sethi P, Jyoti A, McGarry R and Upreti M: Investigating the radioresistant properties of lung cancer stem cells in the context of the tumor microenvironment. Radiat Res. 185:169–181. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Taylor JG and Gribben JG: Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Semin Cancer Biol. 34:36–45. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wang H, Pan K and Xia JC: Interaction of indoleamine-2,3-dioxyagnase and CD4+CD25+ regulatory T cells in tumor immune escape. Ai Zheng. 28:184–187. 2009.PubMed/NCBI

7 

Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C and Zhao Y: The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol. 17:153–161. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Long SA and Buckner JH: CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game. J Immunol. 187:2061–2066. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 25:2586–2593. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H and Fujii H: Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer. 98:148–153. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, Tang G and Shen Q: Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res. 5:2190–2201. 2015.PubMed/NCBI

12 

Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Wang WJ, Tao Z, Gu W and Sun LH: Variation of blood T lymphocyte subgroups in patients with non-small cell lung cancer. Asian Pac J Cancer Prev. 14:4671–4673. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H and Umansky V: Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol. 6:432–438. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Xue L, Chen J, Peng JZ, Chen BS, Hua P and Yang YQ: Clinical significance of tumor interstitial T lymphocyte subset activity in non-small-cell lung cancer. Nan Fang Yi Ke Da Xue Xue Bao. 29:2456–2458. 2009.(In Chinese). PubMed/NCBI

16 

Verma C, Eremin JM, Robins A, Bennett AJ, Cowley GP, El-Sheemy MA, Jibril JA and Eremin O: Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: Monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: Failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. J Transl Med. 11:162013. View Article : Google Scholar : PubMed/NCBI

17 

Vacchelli E, Semeraro M, Enot DP, Chaba K, Poirier Colame V, Dartigues P, Perier A, Villa I, Rusakiewicz S, Gronnier C, et al: Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget. 6:20840–20850. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Park JH, Ko JS, Shin Y, Cho JY, Oh HA, Bothwell AL and Lee SK: Intranuclear interactomic inhibition of FoxP3 suppresses functions of Treg cells. Biochem Biophys Res Commun. 451:1–7. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wang L, Liu R, Ribick M, Zheng P and Liu Y: FOXP3 as an X-linked tumor suppressor. Discov Med. 10:322–328. 2010.PubMed/NCBI

20 

Katoh H, Zheng P and Liu Y: Signalling through FOXP3 as an X-linked tumor suppressor. Int J Biochem Cell Biol. 42:1784–1787. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, Lopiccolo J, Foley J, Liewehr DJ, Steinberg SM, et al: A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One. 4:e50612009. View Article : Google Scholar : PubMed/NCBI

22 

Luo Q, Zhang S, Wei H, Pang X and Zhang H: Roles of Foxp3 in the occurrence and development of cervical cancer. Int J Clin Exp Pathol. 8:8717–8730. 2015.PubMed/NCBI

23 

O'Callaghan DS, Rexhepaj E, Gately K, Coate L, Delaney D, O'Donnell DM, Kay E, O'Connell F, Gallagher WM and O'Byrne KJ: Tumour islet Foxp3+ T-cell infiltration predicts poor outcome in nonsmall cell lung cancer. Eur Respir J. 46:1762–1772. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Li Y, Li D, Yang W, Fu H, Liu Y and Li Y: Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1. Tumour Biol. 37:7395–7404. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA and Dirnhofer S: Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica. 93:193–200. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, et al: Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 12:465–472. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Ladoire S, Arnould L, Mignot G, Coudert B, Rébé C, Chalmin F, Vincent J, Bruchard M, Chauffert B, Martin F, et al: Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 125:65–72. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Hanke T, Melling N, Simon R, Sauter G, Bokemeyer C, Lebok P, Terracciano LM, Izbicki JR and Marx AH: High intratumoral FOXP3+ T regulatory cell (Tregs) density is an independent good prognosticator in nodal negative colorectal cancer. Int J Clin Exp Pathol. 8:8227–8235. 2015.PubMed/NCBI

29 

Zhang T, Shao B and Liu GA: Rosuvastatin promotes the differentiation of peripheral blood monocytes into M2 macrophages in patients with atherosclerosis by activating PPAR-γ. Eur Rev Med Pharmacol Sci. 21:4464–4471. 2017.PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F and Lu Z: Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs. 24:587–598. 2013.PubMed/NCBI

32 

Del Monte U and Statuto M: Drop of connexins: A possible link between aging and cancer? Exp Gerontol. 39:273–275. 2004. View Article : Google Scholar : PubMed/NCBI

33 

AlHilli MM, Hopkins MR and Famuyide AO: Endometrial cancer after endometrial ablation: Systematic review of medical literature. J Minim Invasive Gynecol. 18:393–400. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 22:531–562. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M and Demengeot J: Foxp3+ CD25-CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA. 102:pp. 4091–4096. 2005; View Article : Google Scholar : PubMed/NCBI

36 

Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M and Edinger M: Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J Immunol. 188:1275–1282. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Lu L, Barbi J and Pan F: The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 17:703–717. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Marie JC, Letterio JJ, Gavin M and Rudensky AY: TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 201:1061–1067. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Tsang JY, Camara NO, Eren E, Schneider H, Rudd C, Lombardi G and Lechler R: Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells. J Leukoc Biol. 80:145–151. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 9:194–202. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Jana S, Jailwala P, Haribhai D, Waukau J, Glisic S, Grossman W, Mishra M, Wen R, Wang D, Williams CB and Ghosh S: The role of NF-kappaB and Smad3 in TGF-beta-mediated Foxp3 expression. Eur J Immunol. 39:2571–2583. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Kim HP and Leonard WJ: CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: A role for DNA methylation. J Exp Med. 204:1543–1551. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K and Rudensky AY: Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 463:808–812. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Lee KJ, Moon JY, Choi HK, Kim HO, Hur GY, Jung KH, Lee SY, Kim JH, Shin C, Shim JJ, et al: Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance. Clin Exp Immunol. 161:298–305. 2010.PubMed/NCBI

45 

Haxhinasto S, Mathis D and Benoist C: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 205:565–574. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S, Hoyos BE, Moltedo B, Hemmers S, Treuting P, et al: A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. 528:132–136. 2015.PubMed/NCBI

47 

Richter MV and Topham DJ: The alpha1beta1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. J Immunol. 179:5054–5063. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Ghourbani Gazar S, Andalib A, Hashemi M and Rezaei A: CD4+Foxp3+ Treg and its ICOS+ subsets in patients with myocardial infarction. Iran J Immunol. 9:53–60. 2012.PubMed/NCBI

49 

Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Migliorati G and Riccardi C: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA. 94:pp. 6216–6221. 1997; View Article : Google Scholar : PubMed/NCBI

50 

Zhang NN, Chen JN, Xiao L, Tang F, Zhang ZG, Zhang YW, Feng ZY, Jiang Y and Shao CK: Accumulation mechanisms of CD4(+)CD25(+)FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 5:180572015. View Article : Google Scholar : PubMed/NCBI

51 

Tan B, Anaka M, Deb S, Freyer C, Ebert LM, Chueh AC, Al-Obaidi S, Behren A, Jayachandran A, Cebon J, et al: FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. Oncotarget. 5:264–276. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Zhang B, Dou Y, Xu X, Wang X, Xu B, Du J, Wang Q, Li Q and Wang J: Endogenous FOXP3 inhibits cell proliferation, migration and invasion in glioma cells. Int J Clin Exp Med. 8:1792–1802. 2015.PubMed/NCBI

53 

Zhang L, Xu J, Zhang X, Zhang Y, Wang L, Huang X and Xu Z: The role of tumoral FOXP3 on cell proliferation, migration, and invasion in gastric cancer. Cell Physiol Biochem. 42:1739–1754. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Moreno Ayala MA, Gottardo MF, Imsen M, Asad AS, Bal de Kier Joffé E, Casares N, Lasarte JJ, Seilicovich A and Candolfi M: Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat. 166:393–405. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Tang J, Yang Z, Wang Z, Li Z, Li H, Yin J, Deng M, Zhu W and Zeng C: Foxp3 is correlated with VEGF-C expression and lymphangiogenesis in cervical cancer. World J Surg Oncol. 15:1732017. View Article : Google Scholar : PubMed/NCBI

56 

Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an miR-146/NF-kB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Nakahira K, Morita A, Kim NS and Yanagihara I: Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS One. 8:e770992013. View Article : Google Scholar : PubMed/NCBI

58 

Endres M, Kneitz S, Orth MF, Perera RK, Zernecke A and Butt E: Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget. 7:64244–64259. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et al: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 109:625–637. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Ishibashi M, Fujimura T, Hashimoto A, Haga T, Onami K, Tsukada A, Kambayashi Y, Hidaka T, Furudate S, Shimada R and Aiba S: Successful treatment of MMP-9-expressing angiosarcoma with low-dose docetaxel and bisphosphonate. Case Rep Dermatol. 4:5–9. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI

62 

Zhang S, Wu M, Zhao Y, Gu R, Peng C, Liu J, Zhu Q and Li Y: Correlation of MMP-9 and p53 protein expression with prognosis in metastatic spinal tumor of lung cancer. Oncol Lett. 14:5452–5456. 2017.PubMed/NCBI

63 

Dufour A, Sampson NS, Zucker S and Cao J: Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol. 217:643–651. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Dayer C and Stamenkovic I: Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by Lysyl hydroxylase 3 (LH3) triggers transforming growth factor-β (TGF-β) activation and fibroblast differentiation. J Biol Chem. 290:13763–13778. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Mirastschijski U, Schnabel R, Claes J, Schneider W, Agren MS, Haaksma C and Tomasek JJ: Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function. Wound Repair Regen. 18:223–234. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Wang BQ, Zhang CM, Gao W, Wang XF, Zhang HL and Yang PC: Cancer-derived matrix metalloproteinase-9 contributes to tumor tolerance. J Cancer Res Clin Oncol. 137:1525–1533. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM and Silva JS: Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 43:1518–1528. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X and Zhang X: Downregulation of FOXP3 inhibits invasion and immune escape in cholangiocarcinoma. Biochem Biophys Res Commun. 458:234–239. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Hayata K, Iwahashi M, Ojima T, Katsuda M, Iida T, Nakamori M, Ueda K, Nakamura M, Miyazawa M, Tsuji T and Yamaue H: Inhibition of IL-17A in tumor microenvironment augments cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing mice. PLoS One. 8:e531312013. View Article : Google Scholar : PubMed/NCBI

71 

Morawski PA, Mehra P, Chen C, Bhatti T and Wells AD: Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 288:24494–24502. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Batson J, Astin JW and Nobes CD: Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc. 251:232–241. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng J, Yu Z, Xue L, Wang J, Li J, Liu D, Yang Q and Lin Y: The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644. Mol Med Rep 17: 5860-5868, 2018.
APA
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D. ... Lin, Y. (2018). The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644. Molecular Medicine Reports, 17, 5860-5868. https://doi.org/10.3892/mmr.2018.8606
MLA
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D., Yang, Q., Lin, Y."The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644". Molecular Medicine Reports 17.4 (2018): 5860-5868.
Chicago
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D., Yang, Q., Lin, Y."The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644". Molecular Medicine Reports 17, no. 4 (2018): 5860-5868. https://doi.org/10.3892/mmr.2018.8606
Copy and paste a formatted citation
x
Spandidos Publications style
Peng J, Yu Z, Xue L, Wang J, Li J, Liu D, Yang Q and Lin Y: The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644. Mol Med Rep 17: 5860-5868, 2018.
APA
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D. ... Lin, Y. (2018). The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644. Molecular Medicine Reports, 17, 5860-5868. https://doi.org/10.3892/mmr.2018.8606
MLA
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D., Yang, Q., Lin, Y."The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644". Molecular Medicine Reports 17.4 (2018): 5860-5868.
Chicago
Peng, J., Yu, Z., Xue, L., Wang, J., Li, J., Liu, D., Yang, Q., Lin, Y."The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells Retraction in /10.3892/mmr.2025.13644". Molecular Medicine Reports 17, no. 4 (2018): 5860-5868. https://doi.org/10.3892/mmr.2018.8606
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team