|
1
|
Wang J, Jia Y, Zhao S, Zhang X, Wang X,
Han X, Wang Y, Ma M, Shi J and Liu L: BIN1 reverses PD-L1-mediated
immune escape by inactivating the c-MYC and EGFR/MAPK signaling
pathways in non-small cell lung cancer. Oncogene. 36:6235–6243.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
McGranahan N, Rosenthal R, Hiley CT, Rowan
AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P,
Herrero J, et al: Allele-Specific HLA loss and immune escape in
lung cancer evolution. Cell. 171:1259–1271.e11. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Schafer CC, Wang Y, Hough KP, Sawant A,
Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S and Deshane JS:
Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung
cancer by metabolic reprogramming of immune cells in the tumor
microenvironment. Oncotarget. 7:75407–75424. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chan R, Sethi P, Jyoti A, McGarry R and
Upreti M: Investigating the radioresistant properties of lung
cancer stem cells in the context of the tumor microenvironment.
Radiat Res. 185:169–181. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Taylor JG and Gribben JG: Microenvironment
abnormalities and lymphomagenesis: Immunological aspects. Semin
Cancer Biol. 34:36–45. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang H, Pan K and Xia JC: Interaction of
indoleamine-2,3-dioxyagnase and CD4+CD25+ regulatory T cells in
tumor immune escape. Ai Zheng. 28:184–187. 2009.PubMed/NCBI
|
|
7
|
Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E,
Zeng C and Zhao Y: The effect of immunosuppressive drug rapamycin
on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol.
17:153–161. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Long SA and Buckner JH: CD4+FOXP3+ T
regulatory cells in human autoimmunity: More than a numbers game. J
Immunol. 187:2061–2066. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY,
Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of
regulatory and cytotoxic T cells is associated with prognosis of
hepatocellular carcinoma after resection. J Clin Oncol.
25:2586–2593. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mizukami Y, Kono K, Kawaguchi Y, Akaike H,
Kamimura K, Sugai H and Fujii H: Localisation pattern of Foxp3+
regulatory T cells is associated with clinical behaviour in gastric
cancer. Br J Cancer. 98:148–153. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L,
Tang G and Shen Q: Increased expression of immunosuppressive
molecules on intratumoral and circulating regulatory T cells in
non-small-cell lung cancer patients. Am J Cancer Res. 5:2190–2201.
2015.PubMed/NCBI
|
|
12
|
Twyman-Saint Victor C, Rech AJ, Maity A,
Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi
PM, et al: Radiation and dual checkpoint blockade activate
non-redundant immune mechanisms in cancer. Nature. 520:373–377.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang WJ, Tao Z, Gu W and Sun LH: Variation
of blood T lymphocyte subgroups in patients with non-small cell
lung cancer. Asian Pac J Cancer Prev. 14:4671–4673. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Schneider T, Kimpfler S, Warth A, Schnabel
PA, Dienemann H, Schadendorf D, Hoffmann H and Umansky V: Foxp3(+)
regulatory T cells and natural killer cells distinctly infiltrate
primary tumors and draining lymph nodes in pulmonary
adenocarcinoma. J Thorac Oncol. 6:432–438. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xue L, Chen J, Peng JZ, Chen BS, Hua P and
Yang YQ: Clinical significance of tumor interstitial T lymphocyte
subset activity in non-small-cell lung cancer. Nan Fang Yi Ke Da
Xue Xue Bao. 29:2456–2458. 2009.(In Chinese). PubMed/NCBI
|
|
16
|
Verma C, Eremin JM, Robins A, Bennett AJ,
Cowley GP, El-Sheemy MA, Jibril JA and Eremin O: Abnormal T
regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived
suppressor cells (MDSCs: Monocytic, granulocytic) and polarised T
helper cell profiles (Th1, Th2, Th17) in women with large and
locally advanced breast cancers undergoing neoadjuvant chemotherapy
(NAC) and surgery: Failure of abolition of abnormal treg profile
with treatment and correlation of treg levels with pathological
response to NAC. J Transl Med. 11:162013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vacchelli E, Semeraro M, Enot DP, Chaba K,
Poirier Colame V, Dartigues P, Perier A, Villa I, Rusakiewicz S,
Gronnier C, et al: Negative prognostic impact of regulatory T cell
infiltration in surgically resected esophageal cancer
post-radiochemotherapy. Oncotarget. 6:20840–20850. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Park JH, Ko JS, Shin Y, Cho JY, Oh HA,
Bothwell AL and Lee SK: Intranuclear interactomic inhibition of
FoxP3 suppresses functions of Treg cells. Biochem Biophys Res
Commun. 451:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang L, Liu R, Ribick M, Zheng P and Liu
Y: FOXP3 as an X-linked tumor suppressor. Discov Med. 10:322–328.
2010.PubMed/NCBI
|
|
20
|
Katoh H, Zheng P and Liu Y: Signalling
through FOXP3 as an X-linked tumor suppressor. Int J Biochem Cell
Biol. 42:1784–1787. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Granville CA, Memmott RM, Balogh A,
Mariotti J, Kawabata S, Han W, Lopiccolo J, Foley J, Liewehr DJ,
Steinberg SM, et al: A central role for Foxp3+ regulatory T cells
in K-Ras-driven lung tumorigenesis. PLoS One. 4:e50612009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Luo Q, Zhang S, Wei H, Pang X and Zhang H:
Roles of Foxp3 in the occurrence and development of cervical
cancer. Int J Clin Exp Pathol. 8:8717–8730. 2015.PubMed/NCBI
|
|
23
|
O'Callaghan DS, Rexhepaj E, Gately K,
Coate L, Delaney D, O'Donnell DM, Kay E, O'Connell F, Gallagher WM
and O'Byrne KJ: Tumour islet Foxp3+ T-cell infiltration predicts
poor outcome in nonsmall cell lung cancer. Eur Respir J.
46:1762–1772. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li Y, Li D, Yang W, Fu H, Liu Y and Li Y:
Overexpression of the transcription factor FOXP3 in lung
adenocarcinoma sustains malignant character by promoting G1/S
transition gene CCND1. Tumour Biol. 37:7395–7404. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tzankov A, Meier C, Hirschmann P, Went P,
Pileri SA and Dirnhofer S: Correlation of high numbers of
intratumoral FOXP3+ regulatory T cells with improved survival in
germinal center-like diffuse large B-cell lymphoma, follicular
lymphoma and classical Hodgkin's lymphoma. Haematologica.
93:193–200. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Badoual C, Hans S, Rodriguez J, Peyrard S,
Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P,
Fridman WH, et al: Prognostic value of tumor-infiltrating CD4+
T-cell subpopulations in head and neck cancers. Clin Cancer Res.
12:465–472. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ladoire S, Arnould L, Mignot G, Coudert B,
Rébé C, Chalmin F, Vincent J, Bruchard M, Chauffert B, Martin F, et
al: Presence of Foxp3 expression in tumor cells predicts better
survival in HER2-overexpressing breast cancer patients treated with
neoadjuvant chemotherapy. Breast Cancer Res Treat. 125:65–72. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hanke T, Melling N, Simon R, Sauter G,
Bokemeyer C, Lebok P, Terracciano LM, Izbicki JR and Marx AH: High
intratumoral FOXP3+ T regulatory cell (Tregs) density is
an independent good prognosticator in nodal negative colorectal
cancer. Int J Clin Exp Pathol. 8:8227–8235. 2015.PubMed/NCBI
|
|
29
|
Zhang T, Shao B and Liu GA: Rosuvastatin
promotes the differentiation of peripheral blood monocytes into M2
macrophages in patients with atherosclerosis by activating PPAR-γ.
Eur Rev Med Pharmacol Sci. 21:4464–4471. 2017.PubMed/NCBI
|
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F
and Lu Z: Fengycin inhibits the growth of the human lung cancer
cell line 95D through reactive oxygen species production and
mitochondria-dependent apoptosis. Anticancer Drugs. 24:587–598.
2013.PubMed/NCBI
|
|
32
|
Del Monte U and Statuto M: Drop of
connexins: A possible link between aging and cancer? Exp Gerontol.
39:273–275. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
AlHilli MM, Hopkins MR and Famuyide AO:
Endometrial cancer after endometrial ablation: Systematic review of
medical literature. J Minim Invasive Gynecol. 18:393–400. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sakaguchi S: Naturally arising CD4+
regulatory t cells for immunologic self-tolerance and negative
control of immune responses. Annu Rev Immunol. 22:531–562. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zelenay S, Lopes-Carvalho T, Caramalho I,
Moraes-Fontes MF, Rebelo M and Demengeot J: Foxp3+ CD25-CD4 T cells
constitute a reservoir of committed regulatory cells that regain
CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA.
102:pp. 4091–4096. 2005; View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hansmann L, Schmidl C, Kett J, Steger L,
Andreesen R, Hoffmann P, Rehli M and Edinger M: Dominant Th2
differentiation of human regulatory T cells upon loss of FOXP3
expression. J Immunol. 188:1275–1282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lu L, Barbi J and Pan F: The regulation of
immune tolerance by FOXP3. Nat Rev Immunol. 17:703–717. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Marie JC, Letterio JJ, Gavin M and
Rudensky AY: TGF-beta1 maintains suppressor function and Foxp3
expression in CD4+CD25+ regulatory T cells. J Exp Med.
201:1061–1067. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tsang JY, Camara NO, Eren E, Schneider H,
Rudd C, Lombardi G and Lechler R: Altered proximal T cell receptor
(TCR) signaling in human CD4+CD25+ regulatory T cells. J Leukoc
Biol. 80:145–151. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tone Y, Furuuchi K, Kojima Y, Tykocinski
ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3
expression through its enhancer. Nat Immunol. 9:194–202. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jana S, Jailwala P, Haribhai D, Waukau J,
Glisic S, Grossman W, Mishra M, Wen R, Wang D, Williams CB and
Ghosh S: The role of NF-kappaB and Smad3 in TGF-beta-mediated Foxp3
expression. Eur J Immunol. 39:2571–2583. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kim HP and Leonard WJ: CREB/ATF-dependent
T cell receptor-induced FoxP3 gene expression: A role for DNA
methylation. J Exp Med. 204:1543–1551. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zheng Y, Josefowicz S, Chaudhry A, Peng
XP, Forbush K and Rudensky AY: Role of conserved non-coding DNA
elements in the Foxp3 gene in regulatory T-cell fate. Nature.
463:808–812. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee KJ, Moon JY, Choi HK, Kim HO, Hur GY,
Jung KH, Lee SY, Kim JH, Shin C, Shim JJ, et al: Immune regulatory
effects of simvastatin on regulatory T cell-mediated tumour immune
tolerance. Clin Exp Immunol. 161:298–305. 2010.PubMed/NCBI
|
|
45
|
Haxhinasto S, Mathis D and Benoist C: The
AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+
cells. J Exp Med. 205:565–574. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Feng Y, van der Veeken J, Shugay M,
Putintseva EV, Osmanbeyoglu HU, Dikiy S, Hoyos BE, Moltedo B,
Hemmers S, Treuting P, et al: A mechanism for expansion of
regulatory T-cell repertoire and its role in self-tolerance.
Nature. 528:132–136. 2015.PubMed/NCBI
|
|
47
|
Richter MV and Topham DJ: The alpha1beta1
integrin and TNF receptor II protect airway CD8+ effector T cells
from apoptosis during influenza infection. J Immunol.
179:5054–5063. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ghourbani Gazar S, Andalib A, Hashemi M
and Rezaei A: CD4+Foxp3+ Treg and its
ICOS+ subsets in patients with myocardial infarction.
Iran J Immunol. 9:53–60. 2012.PubMed/NCBI
|
|
49
|
Nocentini G, Giunchi L, Ronchetti S,
Krausz LT, Bartoli A, Moraca R, Migliorati G and Riccardi C: A new
member of the tumor necrosis factor/nerve growth factor receptor
family inhibits T cell receptor-induced apoptosis. Proc Natl Acad
Sci USA. 94:pp. 6216–6221. 1997; View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang NN, Chen JN, Xiao L, Tang F, Zhang
ZG, Zhang YW, Feng ZY, Jiang Y and Shao CK: Accumulation mechanisms
of CD4(+)CD25(+)FOXP3(+) regulatory T cells in EBV-associated
gastric carcinoma. Sci Rep. 5:180572015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tan B, Anaka M, Deb S, Freyer C, Ebert LM,
Chueh AC, Al-Obaidi S, Behren A, Jayachandran A, Cebon J, et al:
FOXP3 over-expression inhibits melanoma tumorigenesis via effects
on proliferation and apoptosis. Oncotarget. 5:264–276. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang B, Dou Y, Xu X, Wang X, Xu B, Du J,
Wang Q, Li Q and Wang J: Endogenous FOXP3 inhibits cell
proliferation, migration and invasion in glioma cells. Int J Clin
Exp Med. 8:1792–1802. 2015.PubMed/NCBI
|
|
53
|
Zhang L, Xu J, Zhang X, Zhang Y, Wang L,
Huang X and Xu Z: The role of tumoral FOXP3 on cell proliferation,
migration, and invasion in gastric cancer. Cell Physiol Biochem.
42:1739–1754. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moreno Ayala MA, Gottardo MF, Imsen M,
Asad AS, Bal de Kier Joffé E, Casares N, Lasarte JJ, Seilicovich A
and Candolfi M: Therapeutic blockade of Foxp3 in experimental
breast cancer models. Breast Cancer Res Treat. 166:393–405. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tang J, Yang Z, Wang Z, Li Z, Li H, Yin J,
Deng M, Zhu W and Zeng C: Foxp3 is correlated with VEGF-C
expression and lymphangiogenesis in cervical cancer. World J Surg
Oncol. 15:1732017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu R, Liu C, Chen D, Yang WH, Liu X, Liu
CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an
miR-146/NF-kB negative feedback loop that inhibits apoptosis in
breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nakahira K, Morita A, Kim NS and
Yanagihara I: Phosphorylation of FOXP3 by LCK downregulates MMP9
expression and represses cell invasion. PLoS One. 8:e770992013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Endres M, Kneitz S, Orth MF, Perera RK,
Zernecke A and Butt E: Regulation of matrix metalloproteinases
(MMPs) expression and secretion in MDA-MB-231 breast cancer cells
by LIM and SH3 protein 1 (LASP1). Oncotarget. 7:64244–64259. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Heissig B, Hattori K, Dias S, Friedrich M,
Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et
al: Recruitment of stem and progenitor cells from the bone marrow
niche requires MMP-9 mediated release of kit-ligand. Cell.
109:625–637. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ishibashi M, Fujimura T, Hashimoto A, Haga
T, Onami K, Tsukada A, Kambayashi Y, Hidaka T, Furudate S, Shimada
R and Aiba S: Successful treatment of MMP-9-expressing angiosarcoma
with low-dose docetaxel and bisphosphonate. Case Rep Dermatol.
4:5–9. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li H, Qiu Z, Li F and Wang C: The
relationship between MMP-2 and MMP-9 expression levels with breast
cancer incidence and prognosis. Oncol Lett. 14:5865–5870.
2017.PubMed/NCBI
|
|
62
|
Zhang S, Wu M, Zhao Y, Gu R, Peng C, Liu
J, Zhu Q and Li Y: Correlation of MMP-9 and p53 protein expression
with prognosis in metastatic spinal tumor of lung cancer. Oncol
Lett. 14:5452–5456. 2017.PubMed/NCBI
|
|
63
|
Dufour A, Sampson NS, Zucker S and Cao J:
Role of the hemopexin domain of matrix metalloproteinases in cell
migration. J Cell Physiol. 217:643–651. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Dayer C and Stamenkovic I: Recruitment of
matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface
by Lysyl hydroxylase 3 (LH3) triggers transforming growth factor-β
(TGF-β) activation and fibroblast differentiation. J Biol Chem.
290:13763–13778. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mirastschijski U, Schnabel R, Claes J,
Schneider W, Agren MS, Haaksma C and Tomasek JJ: Matrix
metalloproteinase inhibition delays wound healing and blocks the
latent transforming growth factor-beta1-promoted myofibroblast
formation and function. Wound Repair Regen. 18:223–234. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang BQ, Zhang CM, Gao W, Wang XF, Zhang
HL and Yang PC: Cancer-derived matrix metalloproteinase-9
contributes to tumor tolerance. J Cancer Res Clin Oncol.
137:1525–1533. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Benevides L, Cardoso CR, Tiezzi DG, Marana
HR, Andrade JM and Silva JS: Enrichment of regulatory T cells in
invasive breast tumor correlates with the upregulation of IL-17A
expression and invasiveness of the tumor. Eur J Immunol.
43:1518–1528. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X
and Zhang X: Downregulation of FOXP3 inhibits invasion and immune
escape in cholangiocarcinoma. Biochem Biophys Res Commun.
458:234–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Miossec P, Korn T and Kuchroo VK:
Interleukin-17 and type 17 helper T cells. N Engl J Med.
361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hayata K, Iwahashi M, Ojima T, Katsuda M,
Iida T, Nakamori M, Ueda K, Nakamura M, Miyazawa M, Tsuji T and
Yamaue H: Inhibition of IL-17A in tumor microenvironment augments
cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing
mice. PLoS One. 8:e531312013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Morawski PA, Mehra P, Chen C, Bhatti T and
Wells AD: Foxp3 protein stability is regulated by cyclin-dependent
kinase 2. J Biol Chem. 288:24494–24502. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Batson J, Astin JW and Nobes CD:
Regulation of contact inhibition of locomotion by Eph-ephrin
signalling. J Microsc. 251:232–241. 2013. View Article : Google Scholar : PubMed/NCBI
|