Intraperitoneal injection of thalidomide alleviates early osteoarthritis development by suppressing vascular endothelial growth factor expression in mice

  • Authors:
    • Jia Lin Song
    • De Long Li
    • Hang Fang
    • Dao Zhang Cai
  • View Affiliations

  • Published online on: May 7, 2018     https://doi.org/10.3892/mmr.2018.8980
  • Pages: 571-579
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Vascular endothelial growth factor (VEGF) is expressed in articular cartilage and increases in expression levels have been associated with the progression of osteoarthritis (OA). Thalidomide is a drug that has been reported to inhibit angiogenesis and reduce VEGF production by downregulating VEGF expression. The objective of the present study was to determine whether intraperitoneal administration of thalidomide may attenuate early OA development in mice. Male C57BL/6 mice (10‑weeks‑old) were randomly assigned into the destabilization of the medial meniscus (Dmm) with thalidomide treatment (Dmm+Th), Dmm and Sham groups equally. An OA model was induced surgically in Dmm+Th and Dmm groups, and mice of the Dmm+Th group were subsequently treated with an intraperitoneal injection of thalidomide (200 mg/kg/day). At 2 and 4 weeks following surgery, the pathological alterations in cartilage samples were assessed qualitatively by hematoxylin and eosin staining and Safranin O/Fast green staining, and quantitatively by the Osteoarthritis Research Society International scoring system. The mRNA expression levels of matrix metalloproteinase‑13 (MMP‑13) and VEGF were measured by reverse transcription‑quantitative polymerase chain reaction. The protein expression levels of MMP‑13 and VEGF were detected by immunofluorescence and immunohistochemistry, respectively. The production of VEGF in serum was evaluated via an ELISA assay. Pathological scores were significantly higher in the Dmm and the Dmm+Th groups than those in the Sham group; however, the Dmm+Th group exhibited markedly less severe pathological changes compared with the Dmm group. Compared with the Sham group, the mRNA and protein expression levels of VEGF and MMP‑13 in the Dmm and the Dmm+Th groups were significantly increased. The Dmm+Th group exhibited significantly decreased expression levels of VEGF and MMP‑13, as well as significantly decreased serum VEGF concentration compared with the Dmm group. Thus, the results of the present study demonstrated that intraperitoneal administration of thalidomide may alleviate the development of early OA by suppressing VEGF expression in mice and may have potential as a novel therapy for the treatment of OA.

References

1 

Bitton R: The economic burden of osteoarthritis. Am J Manag Care. 15 Suppl 8:S230–S235. 2009.PubMed/NCBI

2 

Ackerman IN, Pratt C, Gorelik A and Liew D: Projected burden of osteoarthritis and rheumatoid arthritis in Australia: A population-level analysis. Arthritis Care Res (Hoboken). 2017.

3 

Cicuttini FM and Wluka AE: Osteoarthritis: Is OA a mechanical or systemic disease? Nat Rev Rheumatol. 10:515–516. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Musumeci G, Szychlinska MA and Mobasheri A: Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: Molecular markers of senescent chondrocytes. Histol Histopathol. 30:1–12. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D and Jones G: A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage. 13:769–781. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Felson DT: An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am. 42:1–9. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Wei Y and Bai L: Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res. 57:245–261. 2016. View Article : Google Scholar : PubMed/NCBI

8 

van der Kraan PM and van den Berg WB: Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage. 20:223–232. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Fosang AJ, Last K, Knauper V, Murphy G and Neame PJ: Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 380:17–20. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Pufe T, Petersen W, Tillmann B and Mentlein R: The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 44:1082–1088. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Enomoto H, Inoki I, Komiya K, Shiomi T, Ikeda E, Obata K, Matsumoto H, Toyama Y and Okada Y: Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol. 162:171–181. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Pfander D, Körtje D, Zimmermann R, Weseloh G, Kirsch T, Gesslein M, Cramer T and Swoboda B: Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis. 60:1070–1073. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Pufe T, Harde V, Petersen W, Goldring MB, Tillmann B and Mentlein R: Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol. 202:367–374. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Shen P, Jiao Z, Zheng JS, Xu WF, Zhang SY, Qin A and Yang C: Injecting vascular endothelial growth factor into the temporomandibular joint induces osteoarthritis in mice. Sci Rep. 5:162442015. View Article : Google Scholar : PubMed/NCBI

15 

Tibesku CO, Daniilidis K, Skwara A, Paletta J, Szuwart T and Fuchs-Winkelmann S: Expression of vascular endothelial growth factor on chondrocytes increases with osteoarthritis-an animal experimental investigation. Open Orthop J. 5:177–180. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Yuan Q, Sun L, Li JJ and An CH: Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord. 15:4372014. View Article : Google Scholar : PubMed/NCBI

17 

Nagai T, Sato M, Kutsuna T, Kokubo M, Ebihara G, Ohta N and Mochida J: Intravenous administration of anti-vascular endothelial growth factor humanized monoclonal antibody bevacizumab improves articular cartilage repair. Arthritis Res Ther. 12:R1782010. View Article : Google Scholar : PubMed/NCBI

18 

Therapontos C, Erskine L, Gardner ER, Figg WD and Vargesson N: Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA. 106:8573–8578. 2009. View Article : Google Scholar : PubMed/NCBI

19 

D'Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 341:1565–1571. 1999. View Article : Google Scholar : PubMed/NCBI

21 

Tan H, Chen H, Xu C, Ge Z, Gao Y, Fang J, Liu W and Xiao S: Role of vascular endothelial growth factor in angiodysplasia: An interventional study with thalidomide. J Gastroenterol Hepatol. 27:1094–1101. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Mercurio A, Adriani G, Catalano A, Carocci A, Rao L, Lentini G, Cavalluzzi MM, Franchini C, Vacca A and Corbo F: A mini-review on thalidomide: Chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem. 24:2736–2744. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Andersen NF, Vogel U, Klausen TW, Gimsing P, Gregersen H, Abildgaard N and Vangsted AJ: Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. Int J Cancer. 131:E636–E642. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Behl T, Kaur I, Goel H and Kotwani A: Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol. 92:6–15. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Israyelyan A, Shannon EJ, Baghian A, Kearney MT and Kousoulas KG: Thalidomide suppressed the growth of 4T1 cells into solid tumors in Balb/c mice in a combination therapy with the oncolytic fusogenic HSV-1 OncdSyn. Cancer Chemother Pharmacol. 64:1201–1210. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Lainer-Carr D and Brahn E: Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis. Nat Clin Pract Rheumatol. 3:434–442. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Gordon JN and Goggin PM: Thalidomide and its derivatives: Emerging from the wilderness. Postgrad Med J. 79:127–132. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Vasheghani F, Zhang Y, Li YH, Blati M, Fahmi H, Lussier B, Roughley P, Lagares D, Endisha H, Saffar B, et al: PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis. 74:569–578. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Kotoh T, Dhar DK, Masunaga R, Tabara H, Tachibana M, Kubota H, Kohno H and Nagasue N: Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery. 125:536–544. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Liu CY, Jiang XX, Zhu YH and Wei DN: Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: Role of brain-derived neurotrophic factor. Neuroscience. 223:219–224. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Glasson SS, Chambers MG, Van Den Berg WB and Little CB: The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage. 18 Suppl 3:S17–S23. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Huang MJ, Wang L, Jin DD, Zhang ZM, Chen TY, Jia CH, Wang Y, Zhen XC, Huang B, Yan B, et al: Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Ann Rheum Dis. 73:1719–1727. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Jonason JH, Hoak D and O'Keefe RJ: Primary murine growth plate and articular chondrocyte isolation and cell culture. Methods Mol Biol. 1226:11–18. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Vargesson N: Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res C Embryo Today. 105:140–156. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Alberto SF, Felix J and de Deus J: Thalidomide for the treatment of severe intestinal bleeding. Endoscopy. 40:788–789. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Gu X, Zheng Y, Ren B, Zhang R, Mei F, Zhang J and Ma Z: Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-alpha expression in a mouse model. Mol Pain. 6:642010. View Article : Google Scholar : PubMed/NCBI

39 

Daruwalla J, Nikfarjam M, Malcontenti-Wilson C, Muralidharan V and Christophi C: Effect of thalidomide on colorectal cancer liver metastases in CBA mice. J Surg Oncol. 91:134–140. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Kenyon BM, Browne F and D'Amato RJ: Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res. 64:971–978. 1997. View Article : Google Scholar : PubMed/NCBI

41 

Xia B, Di Chen, Zhang J, Hu S, Jin H and Tong P: Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif Tissue Int. 95:495–505. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Brinckerhoff CE and Matrisian LM: Matrix metalloproteinases: A tail of a frog that became a prince. Nat Rev Mol Cell Biol. 3:207–214. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Klein T and Bischoff R: Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 41:271–290. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Tetlow LC, Adlam DJ and Woolley DE: Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: Associations with degenerative changes. Arthritis Rheum. 44:585–594. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Baragi VM, Becher G, Bendele AM, Biesinger R, Bluhm H, Boer J, Deng H, Dodd R, Essers M, Feuerstein T, et al: A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum. 60:2008–2018. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Hu Y, Xiang JS, DiGrandi MJ, Du X, Ipek M, Laakso LM, Li J, Li W, Rush TS, Schmid J, et al: Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg Med Chem. 13:6629–6644. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L and Heitmeyer SA: Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage. 10:785–791. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, Brown KK, Hsieh LC, Almstead NG, De B, et al: Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage. 9:751–760. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Ferrara N and Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 161:851–858. 1989. View Article : Google Scholar : PubMed/NCBI

50 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI

51 

Thysen S, Luyten FP and Lories RJ: Targets, models and challenges in osteoarthritis research. Dis Model Mech. 8:17–30. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2018
Volume 18 Issue 1

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Song, J.L., Li, D.L., Fang, H., & Cai, D.Z. (2018). Intraperitoneal injection of thalidomide alleviates early osteoarthritis development by suppressing vascular endothelial growth factor expression in mice. Molecular Medicine Reports, 18, 571-579. https://doi.org/10.3892/mmr.2018.8980
MLA
Song, J. L., Li, D. L., Fang, H., Cai, D. Z."Intraperitoneal injection of thalidomide alleviates early osteoarthritis development by suppressing vascular endothelial growth factor expression in mice". Molecular Medicine Reports 18.1 (2018): 571-579.
Chicago
Song, J. L., Li, D. L., Fang, H., Cai, D. Z."Intraperitoneal injection of thalidomide alleviates early osteoarthritis development by suppressing vascular endothelial growth factor expression in mice". Molecular Medicine Reports 18, no. 1 (2018): 571-579. https://doi.org/10.3892/mmr.2018.8980