MicroRNA‑132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN

  • Authors:
    • Zhen‑Hua Zeng
    • Wei‑Hua Wu
    • Qi Peng
    • Ya‑Hui Sun
    • Jian‑Xin Liu
  • View Affiliations

  • Published online on: March 18, 2019     https://doi.org/10.3892/mmr.2019.10053
  • Pages: 3823-3830
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Pulmonary arterial hypertension (PAH) is a severe and progressive disease characterized by the remodeling of small pulmonary arteries. The aberrant proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the primary feature of PAH. MicroRNA (miR)‑132 has been demonstrated to inhibit the proliferation of vascular smooth muscle cells and repress neointimal formation. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a direct target of miR‑132 that has been revealed to be involved in the development of PAH. However, the role of miR‑132 in PAH remains unclear. The present study demonstrated that miR‑132 expression was upregulated in monocrotaline‑induced PAH rats and platelet‑derived growth factor‑induced PASMCs. In addition, treatment of PASMCs with miR‑132 mimics inhibited their proliferation, whereas miR‑132 inhibition exhibited the opposite effects. Furthermore, miR‑132 mimics promoted cell migration and maintained the PASMC contractile phenotype. Finally, the expression levels of PTEN were significantly decreased in PAH and PASMCs treated with miR‑132 mimics. Taken collectively, the data suggested that miR‑132 regulated PASMC function via PTEN and that it may be used as a potential target for the treatment of PAH.

References

1 

Lau EMT, Giannoulatou E, Celermajer DS and Humbert M: Epidemiology and treatment of pulmonary arterial hypertension. Nat Rev Cardiol. 14:603–614. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Chen KH, Dasgupta A, Lin J, Potus F, Bonnet S, Iremonger J, Fu J, Mewburn J, Wu D, Dunham-Snary K, et al: Epigenetic dysregulation of the Drp1 binding partners MiD49 and MiD51 increases mitotic mitochondrial fission and promotes pulmonary arterial hypertension: Mechanistic and therapeutic implications. Circulation. 138:287–304. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Maron BA and Leopold JA: Emerging concepts in the molecular basis of pulmonary arterial hypertension: Part II: Neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of pulmonary arterial hypertension. Circulation. 131:2079–2091. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Ten Freyhaus H, Berghausen EM, Janssen W, Leuchs M, Zierden M, Murmann K, Klinke A, Vantler M, Caglayan E, Kramer T, et al: Genetic ablation of PDGF-Dependent signaling pathways abolishes vascular remodeling and experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 35:1236–1245. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Tallquist M and Kazlauskas A: PDGF signaling in cells and mice. Cytokine Growth Factor Rev. 15:205–213. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Sysol JR, Natarajan V and Machado RF: PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol. 310:C983–C992. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Chen J, Cui X, Li L, Qu J, Raj JU and Gou D: MiR-339 inhibits proliferation of pulmonary artery smooth muscle cell by targeting FGF signaling. Physiol Rep. 5:e134412017. View Article : Google Scholar : PubMed/NCBI

8 

Picao-Osorio J, Johnston J, Landgraf M, Berni J and Alonso CR: MicroRNA-encoded behavior in drosophila. Science. 350:815–820. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Xiao T, Xie L, Huang M and Shen J: Differential expression of microRNA in the lungs of rats with pulmonary arterial hypertension. Mol Med Rep. 15:591–596. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Thenappan T, Ormiston ML, Ryan JJ and Archer SL: Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ. 360:j54922018. View Article : Google Scholar : PubMed/NCBI

11 

Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Côté J, et al: Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 208:535–548. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Sahoo S, Meijles DN, Al Ghouleh I, Tandon M, Cifuentes-Pagano E, Sembrat J, Rojas M, Goncharova E and Pagano PJ: MEF2C-MYOCD and Leiomodin1 suppression by miRNA-214 promotes smooth muscle cell phenotype switching in pulmonary arterial hypertension. PLoS One. 11:e01537802016. View Article : Google Scholar : PubMed/NCBI

13 

Zhang WF, Xiong YW, Zhu TT, Xiong AZ, Bao HH and Cheng XS: MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G0/G1 cell cycle arrest by targeting c-myc. Life Sci. 170:9–15. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Deng L, Baker AH and Bradshaw AC: MicroRNA delivery strategies to the lung in a model of pulmonary hypertension. Methods Mol Biol. 1521:325–338. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM and Chan SY: The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem. 290:2069–2085. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Liu HM, Jia Y, Zhang YX, Yan J, Liao N, Li XH and Tang Y: Dysregulation of miR-135a-5p promotes the development of rat pulmonary arterial hypertension in vivo and in vitro. Acta Pharmacol Sin. 2018.

17 

Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, Ahn Y, Kee HJ and Kook H: The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 229:348–355. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Jin W, Reddy MA, Chen Z, Putta S, Lanting L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK and Natarajan R: Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem. 287:15672–15683. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Lai YJ, Hsu HH, Chang GJ, Lin SH, Chen WJ, Huang CC and Pang JS: Prostaglandin E1 attenuates pulmonary artery remodeling by activating phosphorylation of CREB and the PTEN signaling pathway. Sci Rep. 7:99742017. View Article : Google Scholar : PubMed/NCBI

20 

National Research Council, . Guide for the care and use of laboratory animals. 8th. Washington (DC): National Academies Press (US); 2011, PubMed/NCBI

21 

Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM and Li YJ: MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens. 24:1087–1093. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Zeng Z, Huang Q, Shu Z, Liu P, Chen S, Pan X, Zang L and Zhou S: Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis. J Cell Mol Med. 20:1381–1391. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Bienertova-Vasku J, Novak J and Vasku A: MicroRNAs in pulmonary arterial hypertension: Pathogenesis, diagnosis and treatment. J Am Soc Hypertens. 9:221–234. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Leopold JA and Maron BA: Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension. Int J Mol Sci. 17:E7612016. View Article : Google Scholar : PubMed/NCBI

26 

Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, et al: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 3:10782012. View Article : Google Scholar : PubMed/NCBI

27 

Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB, Jensen CH, Hansen ML, Marcussen N, Rasmussen LM, et al: Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 14:11190–11207. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, et al: MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 16:909–914. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J and Wilkins MR: Pulmonary arterial hypertension-progress in understanding the disease and prioritizing strategies for drug development. J Intern Med. 282:129–141. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Lythgoe MP, Rhodes CJ, Ghataorhe P, Attard M, Wharton J and Wilkins MR: Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. Pharmacol Ther. 164:195–203. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Yoshida T and Hayashi M: Role of kruppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb. 21:402–413. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Alexander MR and Owens GK: Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 74:13–40. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH and Owens GK: Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem. 280:9719–9727. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, Rivera BK, Sai-Sudhakar CB and Kuppusamy P: Dysregulation of PTEN in cardiopulmonary vascular remodeling induced by pulmonary hypertension. Cell Biochem Biophys. 67:363–372. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Lee YR, Chen M and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat Rev Mol Cell Biol. 19:547–562. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Liu Y, Cao Y, Sun S, Zhu J, Gao S, Pang J, Zhu D and Sun Z: Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways. Int J Biochem Cell Biol. 77:141–154. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Zhu B, Gong Y, Yan G, Wang D, Qiao Y, Wang Q, Liu B, Hou J, Li R and Tang C: Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun. 495:2125–2132. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2019
Volume 19 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zeng, Z., Wu, W., Peng, Q., Sun, Y., & Liu, J. (2019). MicroRNA‑132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN. Molecular Medicine Reports, 19, 3823-3830. https://doi.org/10.3892/mmr.2019.10053
MLA
Zeng, Z., Wu, W., Peng, Q., Sun, Y., Liu, J."MicroRNA‑132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN". Molecular Medicine Reports 19.5 (2019): 3823-3830.
Chicago
Zeng, Z., Wu, W., Peng, Q., Sun, Y., Liu, J."MicroRNA‑132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN". Molecular Medicine Reports 19, no. 5 (2019): 3823-3830. https://doi.org/10.3892/mmr.2019.10053