Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2019 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2019 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice

  • Authors:
    • Xi Yang
    • Hanying Xing
    • Jingzhen Liu
    • Linquan Yang
    • Huan Ma
    • Huijuan Ma
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China, Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1230-1240
    |
    Published online on: June 5, 2019
       https://doi.org/10.3892/mmr.2019.10347
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The expression of microRNA‑802 (miR‑802) is known to be associated with insulin resistance (IR); however, the mechanism remains unclear. The present study investigated how miR‑802 contributes to the development of IR using C57BL/6J mice fed a high‑fat diet (HFD) to establish a model of IR. Adeno‑associated virus overexpressing miR‑802 was administered to the mice via tail vein injection. The effects of miR‑802 on reactive oxygen species (ROS), lipid peroxidation (LPO) and the activities of multiple ROS‑related enzymes were investigated. Western blot analysis was used to estimate the protein levels of extracellular signal regulated kinase (ERK), p38mitogen‑activated protein kinases (p38MAPK), c‑Jun N‑terminal kinase (JNK), insulin receptor substrate 1 (IRS‑1) and protein kinase B (AKT1). The results demonstrated that the levels of ROS and LPO production were increased in the livers of the miR‑802‑treated group compared with the control group. The activities of the ROS‑related enzymes were reduced. Furthermore, the expression of phosphorylated (phosphor)‑p38MAPK and phosphor‑JNK were upregulated in the miR‑802 overexpression group, whereas there was no difference in the expression levels of phosphor‑ERK. The expression levels of phosphor‑AKT1 were reduced in the miR‑802‑treated group and these effects were reversed by miR‑802 knockdown. In conclusion, the results demonstrate that miR‑802 may cause IR by activating the JNK and p38MAPK pathways to increase hepatic oxidative stress.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Lee BC and Lee J: Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 1842:446–462. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Dehwah MA, Xu A and Huang Q: MicroRNAs and type 2 diabetes/obesity. J Genet Genomics. 39:11–18. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX, Hu YN, Wu DM, Liu Y, Yan TT, et al: Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia. 55:2032–2043. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X, Pattou F, Han W, Wang X, Lou F, et al: MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest. 125:2497–2509. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A, Yamaguchi S, Takahashi N, Murakami K, Ogawa D, et al: Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism. 64:489–497. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Kornfeld JW, Baitzel C, Konner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U, et al: Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 494:111–115. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K and Kaneko S: Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 57:1071–1077. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Evans JL, Maddux BA and Goldfine ID: The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 7:1040–1052. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, et al: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 12:342–347. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Grimm D and Kay MA: Therapeutic short hairpin RNA expression in the liver: Viral targets and vectors. Gene Ther. 13:563–575. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S and Banerjee SK: Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res. 66:260–268. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G and Quon MJ: Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 85:2402–2410. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Benov L, Sztejnberg L and Fridovich I: Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med. 25:826–831. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Das M, Das S, Lekli I and Das DK: Caveolin induces cardioprotection through epigenetic regulation. J Cell Mol Med. 16:888–895. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Pessin JE and Saltiel AR: Signaling pathways in insulin action: Molecular targets of insulin resistance. J Clin Invest. 106:165–169. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Sone H, Takahashi A, Iida K and Yamada N: Disease model: Hyperinsulinemia and insulin resistance. Part B-polygenic and other animal models. Trends Mol Med. 7:373–376. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Perry CG and Wright DC: Challenging dogma: Is hepatic lipid accumulation in type 2 diabetes due to mitochondrial dysfunction? J Physiol. 594:4093–4094. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun X, Zhou X and Ji L: Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. Bmc Med Genet. 11:812010. View Article : Google Scholar : PubMed/NCBI

21 

Erdemir F, Atilgan D, Markoc F, Boztepe O, Suha-Parlaktas B and Sahin S: The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urol Esp (Spanish). 36:153–159. 2012. View Article : Google Scholar

22 

Gujjala S, Putakala M, Gangarapu V, Nukala S, Bellamkonda R, Ramaswamy R and Desireddy S: Protective effect of Caralluma fimbriata against high-fat diet induced testicular oxidative stress in rats. Biomed Pharmacother. 83:167–176. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Feng X, Yu W, Li X, Zhou F, Zhang W, Shen Q, Li J, Zhang C and Shen P: Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 136:136–149. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Pan ZG and An XS: SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem Biophys Res Commun. 498:416–423. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Styskal J, Van Remmen H, Richardson A and Salmon AB: Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med. 52:46–58. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Zhang ZF, Lu J, Zheng YL, Wu DM, Hu B, Shan Q, Cheng W, Li MQ and Sun YY: Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. J Nutr Biochem. 24:1008–1018. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Sankar P, Zachariah B, Vickneshwaran V, Jacob SE and Sridhar MG: Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: The molecular mechanisms. Exp Gerontol. 63:67–75. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Carlson CJ, Koterski S, Sciotti RJ, Poccard GB and Rondinone CM: Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: Potential role of p38 in the downregulation of GLUT4 expression. Diabetes. 52:634–341. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Bloch-Damti A and Bashan N: Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal. 7:1553–1567. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang X, Xing H, Liu J, Yang L, Ma H and Ma H: MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice. Mol Med Rep 20: 1230-1240, 2019.
APA
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., & Ma, H. (2019). MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice. Molecular Medicine Reports, 20, 1230-1240. https://doi.org/10.3892/mmr.2019.10347
MLA
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., Ma, H."MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice". Molecular Medicine Reports 20.2 (2019): 1230-1240.
Chicago
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., Ma, H."MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice". Molecular Medicine Reports 20, no. 2 (2019): 1230-1240. https://doi.org/10.3892/mmr.2019.10347
Copy and paste a formatted citation
x
Spandidos Publications style
Yang X, Xing H, Liu J, Yang L, Ma H and Ma H: MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice. Mol Med Rep 20: 1230-1240, 2019.
APA
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., & Ma, H. (2019). MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice. Molecular Medicine Reports, 20, 1230-1240. https://doi.org/10.3892/mmr.2019.10347
MLA
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., Ma, H."MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice". Molecular Medicine Reports 20.2 (2019): 1230-1240.
Chicago
Yang, X., Xing, H., Liu, J., Yang, L., Ma, H., Ma, H."MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat fed mice". Molecular Medicine Reports 20, no. 2 (2019): 1230-1240. https://doi.org/10.3892/mmr.2019.10347
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team