Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2019 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)

  • Authors:
    • Mayya Petrovna Razgonova
    • Valery Vyacheslavovich Veselov
    • Alexander Mikhailovich Zakharenko
    • Kirill Sergeyevich Golokhvast
    • Alexander Evgenyevich Nosyrev
    • Giancarlo Cravotto
    • Aristidis Tsatsakis
    • Demetrios A. Spandidos
  • View Affiliations / Copyright

    Affiliations: SEC Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russia, Center of Bioanalytical Investigation and Molecular Design, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia, Department of Drug Science and Technology, University of Turin, Turin 10125, Italy, Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
    Copyright: © Razgonova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2975-2998
    |
    Published online on: February 19, 2019
       https://doi.org/10.3892/mmr.2019.9972
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ginseng is one of the main representatives of traditional Chinese medicine and presents a wide range of pharmacological actions. Ginsenosides are the main class of active compounds found in ginseng. They demonstrate unique biological activity and medicinal value, namely anti-tumour, anti‑inflammatory and antioxidant properties, as well as anti-apoptotic properties. Increasing levels of stress in life are responsible for the increased incidence of nervous system diseases. Neurological diseases create a huge burden on the lives and health of individuals. In recent years, studies have indicated that ginsenosides play a pronounced positive role in the prevention and treatment of neurological diseases. Nevertheless, research is still at an early stage of development, and the complex mechanisms of action involved remain largely unknown. This review aimed to shed light into what is currently known about the mechanisms of action of ginsenosides in relation to Alzheimer's disease. Scientific material and theoretical bases for the treatment of nervous system diseases with purified Panax ginseng extracts are also discussed.
View Figures
View References

1 

Alzheimer A, Stelzmann RA, Schnitzlein HN and Murtagh FR: An English translation of Alzheimer's 1907 paper, ‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat. 8:429–431. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Hardy J and Allsop D: Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 12:383–388. 1991. View Article : Google Scholar : PubMed/NCBI

3 

Donev R, Kolev M, Millet B and Thome J: Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med. 13:4329–4348. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, Ji X, Chen W, Xue M and Wei J: The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer's disease. Oxid Med Cell Longev. 2015:3527232015. View Article : Google Scholar : PubMed/NCBI

5 

Hernández F and Avila J: Tauopathies. Cell Mol Life Sci. 64:2219–2233. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Brekhman II, Dardymov IV and Dobriakov II: On the pharmacology of individual glycosides from the roots of Panax ginseng C.A. Mey. Farmakol Toksikol. 29:167–171. 1966.(In Russian). PubMed/NCBI

7 

Elyakov G, Strigina L, Khorlin A and Kochetkov H: Glycosides of ginseng (Panax ginseng C. A. Mey). Bulletin of the Academy of Sciences of The USSR, Division of Chemical Science. 11(6): pp1055–10551p. 1962.https://searchworks.stanford.edu/articles/edb__72505988 View Article : Google Scholar

8 

Brekhman II: Ginseng. Government publisher of medicine literature. Medgiz, Saint Petersburg, pp 3–163, 1957 (Translated from Russian). http://moodle.pharmi.uz/library/books/Рус/Қўшимча%20адабиётлар/Жень-шень.pdf

9 

Fischer FEL and Meyer CA: Enumeratio plantarum novarum a cl. Schrenk lectarum [Flora change from Cl. Schrenk Lectarum]. Petropoli Publishers. 1841–1842

10 

Arsenyev VK: Myths, legends, traditions, and fables of peoples of Far East. Monograph Series, International Institute of Ethnolinguistic and Oriental Studies (IIEOS). ISSN 1230-3283; 10, ISBN 83-902273-4-7. 1995.

11 

Przhevalsky N: Mongolia, The Tangut Country and the Solitudes of Northern Tibet. Morgan E.D..Yule H: (London). Sampson Low Marston, Searle & Rivington. 2(24)1876.

12 

Maak R: Journey through the Ussuri river valley. The Siberian Department of the Imperial Russian Geographical Society, 1–2. V. Bezobrazov and Co Printers. (Saint Petersburg). 1861.

13 

Maximowicz CJ: Diagnoses des nouvelles plantes du Japon et de la Mandjourie [Diagnoses of the new plants of Japan and Mandjourie]. Bulletin de l'Academie Imperiale des Sciences de St. Petersbourg. Tome dix-huitieme. (Saint Petersbourg). XII decade. 41.1873

14 

Komarov VL: Coniferae of Manchuria. Trudy Imp. Saint Petersburg. Obsc. 32. 230–241. 1902.

15 

Shishkin IK: Studies about the flora of Iman River. Materials of the Vladivostok, Branch of the Russian Geographical Society. 5:128–130. 1930.

16 

Gutnikova ZI: Ginseng in Suputinsky reserve. Materials of the Academy of Sciences of the USSR. 4:257–267. 1941.

17 

Gutnikova ZI: Preliminary data on the culture of ginseng in the conditions of Suputinsky reserve. Materials of the Academy of Sciences of the USSR. 1955.

18 

Vysotsky KK: To the question of the biology of wild ginseng. Main Directorate of USSR Reserves. 7:254–262. 1940.

19 

Bayanova VB: Conditions of ginseng growth in the ‘Kedrovaya Pad’ reserve. Materials of the mountain taiga station of the Academy of Sciences of the USSR. 4:217–231. 1941.

20 

Kurentsova GE: Medicinal plants of the Soviet Far East. Materials of the mountain taiga station of the Academy of Sciences of the USSR. 4:15–97. 1941.

21 

Zakutinsky DI: Pharmacology of ginseng root. Pharmacol Toxicol. 7:13–16. 1944.

22 

Burkat ME and Saksonov P: Materials for the pharmacological characterization of ginseng root. Pharmacol Toxicol. 10:7–16. 1947.

23 

Kiselev VS: Pharmacological study of the ginseng root. Pharmacol Toxicol. 11:50–57. 1948.

24 

Shapiro ML: Ginseng is an active therapeutic drug. J Sov Med. 6:17–19. 1947.

25 

Kuzminskaya RA: Treatment of vegetative dystonia with ginseng root. Neuropathol Psych. 2:62–63. 1949.

26 

Buturlin VV: The use of ginseng root in clinical practice. Sov Med. 5:34–36. 1950.PubMed/NCBI

27 

Brekhman II and Dardymov IV: Pharmacological investigation of glycosides from ginseng and eleutherococcus. Lloydia. 32:46–51. 1969.PubMed/NCBI

28 

Elyakov GB, Strigina LI, Uvarova NI, Vaskovsky VE, Dzizenko AK and Kochetkov NK: Glycosides from ginseng roots. Tetrahedron Lett. 5:3591–3597. 1964. View Article : Google Scholar

29 

Elyakov GB, Strigina LI and Kochetkov NK: Glycosides from ginseng roots. VI. Structure of the carbohydrate chain of panaxoside A. Chemistry of Natural Compounds. 1(3): 114–116. 1965. View Article : Google Scholar

30 

Chen Y, Sun J, Fang L, Liu M, Peng S, Liao H, Lehmann J and Zhang Y: Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J Med Chem. 55:4309–4321. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Geula C and Mesulam MM: Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord. 9 (Suppl 2):23–28. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Wilkinson DG, Francis PT, Schwam E and Payne-Parrish J: Cholinesterase inhibitors used in the treatment of Alzheimer's disease: The relationship between pharmacological effects and clinical efficacy. Drugs Aging. 21:453–478. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Raschetti R, Albanese E, Vanacore N and Maggini M: Cholinesterase inhibitors in mild cognitive impairment: A systematic review of randomised trials. PLoS Med. 4:e3382007. View Article : Google Scholar : PubMed/NCBI

34 

Collins LE, Paul NE, Abbas SF, Leser CE, Podurgiel SJ, Galtieri DJ, Chrobak JJ, Baqi Y, Müller CE and Salamone JD: Oral tremor induced by galantamine in rats: A model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacol Biochem Behav. 99:414–422. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Ikonomovic MD, Mufson EJ, Wuu J, Bennett DA and DeKosky ST: Reduction of choline acetyltransferase activity in primary visual cortex in mild to moderate Alzheimer's disease. Arch Neurol. 62:425–430. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Choi RJ, Roy A, Jung HJ, Ali MY, Min BS, Park CH, Yokozawa T, Fan TP, Choi JS and Jung HA: BACE1 molecular docking and anti-Alzheimer's disease activities of ginsenosides. J Ethnopharmacol. 190:219–230. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Li S, Liu C, Liu C and Zhang Y: Extraction and in vitro screening of potential acetylcholinesterase inhibitors from the leaves of Panax japonicus. J Chromatogr B Analyt Technol Biomed Life Sci. 1061-1062:139–145. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Shin K, Guo H, Cha Y, Ban YH, Seo W, Choi Y, Kim TS, Lee SP, Kim JC, Choi EK, et al: Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection. Regul Toxicol Pharmacol. 78:53–58. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Lee MR, Yun BS, Liu L, Zhang DL, Wang Z, Wang CL, Gu LJ, Wang CY, Mo EK and Sung CK: Effect of black ginseng on memory improvement in the amnesic mice induced by scopolamine. J Ginseng Res. 34:51–58. 2010. View Article : Google Scholar

40 

Wang Q, Sun LH, Jia W, Liu XM, Dang HX, Mai WL, Wang N, Steinmetz A, Wang YQ and Xu CJ: Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother Res. 24:1748–1754. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M and Yao D: Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol. 19:317–326. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Choi JG, Kim N, Huh E, Lee H, Oh MH, Park JD, Pyo MK and Oh MS: White ginseng protects mouse hippocampal cells against amyloid-beta oligomer toxicity. Phytother Res. 31:497–506. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Y, Pi Z, Song F and Liu Z: Ginsenosides attenuate d-galactose- and AlCl3-induced spatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer's disease. J Ethnopharmacol. 194:188–195. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Karp G: Cell and Molecular Biology: Concepts and Experiments. (6th). John Wiley & Sons. (New York, NY). 2009.

45 

Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, et al: Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 286:735–741. 1999. View Article : Google Scholar : PubMed/NCBI

46 

Ohnishi S and Takano K: Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci. 61:511–524. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Fahrenholz F: Alpha-secretase as a therapeutic target. Curr Alzheimer Res. 4:412–417. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Gubandru M, Margina D, Tsitsimpikou C, Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis AM and Kouretas D: Alzheimer's disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol. 61:209–214. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Cao G, Su P, Zhang S, Guo L, Zhang H, Liang Y, Qin C and Zhang W: Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur J Pharmacol. 793:101–108. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Quan Q, Wang J, Li X and Wang Y: Ginsenoside Rg1 decreases Aβ1-42 level by upregulating PPARγ and IDE expression in the hippocampus of a rat model of Alzheimer's disease. PLoS One. 8:e591552013. View Article : Google Scholar : PubMed/NCBI

51 

Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G and Liu J: Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci. 168:16–23. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Shi C, Zheng DD, Fang L, Wu F, Kwong WH and Xu J: Ginsenoside Rg1 promotes nonamyloidogenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta. 1820:453–460. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Shi C, Na N, Zhu X and Xu J: Estrogenic effect of ginsenoside Rg1 on APP processing in post-menopausal platelets. Platelets. 24:51–62. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Zhang X, Wang J, Xing Y, Gong L, Li H, Wu Z, Li Y, Wang J, Wang Y, Dong L and Li S: Effects of ginsenoside Rg1 or 17β-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease. Neuroscience. 220:191–200. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Huang J, Wu D, Wang J, Li F, Lu L, Gao Y and Zhong Z: Effects of Panax notoginseng saponin on α, β, and γ secretase involved in Aβ deposition in SAMP8 mice. Neuroreport. 25:89–93. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Zetterberg H, Alexander DM, Spandidos DA and Blennow K: Additional evidence for antagonistic pleiotropic effects of APOE. Alzheimers Dement. 5:752009. View Article : Google Scholar : PubMed/NCBI

57 

Endres K and Fahrenholz F: Upregulation of the α-secretase ADAM10-risk or reason for hope? FEBS J. 277:1585–1596. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Qiu J, Li W, Feng SH, Wang M and He ZY: Ginsenoside Rh2 promotes nonamyloidgenic cleavage of amyloid precursor protein via a cholesterol-dependent pathway. Genet Mol Res. 13:3586–3598. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Reiss AB and Voloshyna I: Regulation of cerebral cholesterol metabolism in Alzheimer disease. J Investig Med. 60:576–582. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ and Sanders CR: The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science. 336:1168–1171. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Korade Z and Kenworthy AK: Lipid rafts, cholesterol, and the brain. Neuropharmacology. 55:1265–1273. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Di Paolo G and De Camilli P: Phosphoinositides in cell regulation and membrane dynamics. Nature. 443:651–657. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Balla A and Balla T: Phosphatidylinositol 4-kinases: Old enzymes with emerging functions. Trends Cell Biol. 16:351–361. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Kang MS, Baek SH, Chun YS, Moore AZ, Landman N, Berman D, Hyun Ok Yang, Morishima-Kawashima M, Osawa S, Funamoto S, et al: Modulation of lipid kinase PI4KIIα activity and lipid raft association of presenilin 1 underlies γ-secretase inhibition by ginsenoside (20S) Rg3. J Biol Chem. 288:20868–20882. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP and Edidin M: Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA. 100:13964–13969. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Fraering PC, Ye W, Strub JM, Dolios G, LaVoie MJ, Ostaszewski BL, van Dorsselaer A, Wang R, Selkoe DJ and Wolfe MS: Purification and characterization of the human γ-secretase complex. Biochemistry. 43:9774–9789. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Barber J: Merck & Co. terminates Phase III study of verubecestat in prodromal Alzheimer's disease. First Word Farma. Feb 13–2018.https://www.firstwordpharma.com/node/1542930

68 

Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, et al Alzheimer's Disease Cooperative Study Steering Committee; Semagacestat Study Group, : A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med. 369:341–350. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Yang L, Hao J, Zhang J, Xia W, Dong X, Hu X, Kong F and Cui X: Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin. J Pharm Pharmacol. 61:375–380. 2009. View Article : Google Scholar : PubMed/NCBI

70 

He Y, Zhao H and Su G: Ginsenoside Rg1 decreases neurofibrillary tangles accumulation in retina by regulating activities of neprilysin and PKA in retinal cells of AD mice model. J Mol Neurosci. 52:101–106. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Tohda C, Matsumoto N, Zou K, Meselhy MR and Komatsu K: Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology. 29:860–868. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Androutsopoulos VP, Kanavouras K and Tsatsakis AM: Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases. Toxicol Appl Pharmacol. 256:418–424. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Li N, Liu Y, Li W, Zhou L, Li Q, Wang X and He P: A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res. 40:9–17. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Li N, Zhou L, Li W, Liu Y, Wang J and He P: Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's disease mouse model: A metabolomics study. J Chromatogr B Analyt Technol Biomed Life Sci. 985:54–61. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Li F, Wu X, Li J and Niu Q: Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model. Mol Med Rep. 13:4904–4910. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Li X, Liu Y, Zhang X, Yuan H and Quan Q: [Effect of ginsenoside Rg1 on expressions of phosphory protein tau and N-methyl-D-aspartate receptor subunits NR1 and NR2B in rat brain slice model of Alzheimer's disease]. Zhongguo Zhong Yao Za Zhi. 35:3339–3343. 2010.(In Chinese). PubMed/NCBI

77 

Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, et al: Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci. 31:700–711. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Broestl L, Worden K, Moreno AJ, Davis EJ, Wang D, Garay B, Singh T, Verret L, Palop JJ and Dubal DB: Ovarian Cycle Stages Modulate Alzheimer-Related Cognitive and Brain Network Alterations in Female Mice. eNeuro. 5(pii): ENEURO.0132–17.2018. 2018.

79 

Yang JT, Wang ZJ, Cai HY, Yuan L, Hu MM, Wu MN and Qi JS: Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease. Neurosci Bull. 34:736–746. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Wang Y, Kan H, Yin Y, Wu W, Hu W, Wang M and Li W and Li W: Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol Biochem Behav. 120:73–81. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Mu JS, Lin H, Ye JX, Lin M and Cui XP: Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease. Mol Med Rep. 12:3862–3868. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Wang ZJ, Sun L, Peng W, Ma S, Zhu C, Fu F and Heinbockel T: Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: A possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience. 195:1–8. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Wang C-M, Liu M-Y, Wang F, Wei MJ, Wang S, Wu CF and Yang JY: Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer's disease. Pharmacol Biochem Behav. 106:57–67. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Yan S, Li Z, Li H, Arancio O and Zhang W: Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. Sci Rep. 4:63522014. View Article : Google Scholar : PubMed/NCBI

85 

Wang Y, Liu J, Zhang Z, Bi P, Qi Z and Zhang C: Anti neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci Let. 487:70–72. 2011. View Article : Google Scholar

86 

Lv C, Li Q, Zhang Y, Sui Z, He B, Xu H, Yin Y, Chen X and Bi K: A UFLC-MS/MS method with a switching ionization mode for simultaneous quantitation of polygalaxanthone III, four ginsenosides and tumulosic acid in rat plasma: Application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Mass Spectrom. 48:904–913. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Liu J, Yan X, Li L, Zhu Y, Qin K, Zhou L, Sun D, Zhang X, Ye R and Zhao G: Ginsennoside rd attenuates cognitive dysfunction in a rat model of Alzheimer's disease. Neurochem Res. 37:2738–2747. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Liu J, Yan X, Li L, Li Y, Zhou L, Zhang X, Hu X and Zhao G: Gingenoside Rd Improves Learning and Memory Ability in APP Transgenic Mice. J Mol Neurosci. 57:522–528. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, et al: Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer's disease-related neuropathies: Involvement of non-amyloidogenic processing. J Alzheimers Dis. 31:207–223. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Choi DW and Rothman SM: The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 13:171–182. 1990. View Article : Google Scholar : PubMed/NCBI

91 

Braughler JM and Hall ED: Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med. 6:289–301. 1989. View Article : Google Scholar : PubMed/NCBI

92 

Sousa SC, Maciel EN, Vercesi AE and Castilho RF: Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett. 543:179–183. 2003. View Article : Google Scholar : PubMed/NCBI

93 

Dante S, Hauss T and Dencher NA: β-amyloid 25 to 35 is intercalated in anionic and zwitterionic lipid membranes to different extents. Biophys J. 83:2610–2616. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Ekinci FJ, Malik KU and Shea TB: Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to β-amyloid. MAP kinase mediates β-amyloid-induced neurodegeneration. J Biol Chem. 274:30322–30327. 1999. View Article : Google Scholar : PubMed/NCBI

95 

Cui J, Wang J, Zheng M, Gou D, Liu C and Zhou Y: Ginsenoside Rg2 protects PC12 cells against β-amyloid25-35-induced apoptosis via the phosphoinositide 3-kinase/Akt pathway. Chem Biol Interact. 275:152–161. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Li N, Liu B, Dluzen DE and Jin Y: Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol. 111:458–463. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Chen X, Huang T, Zhang J, Song J, Chen L and Zhu Y: Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rb1's attenuation of β-amyloid peptide25-35-induced tau hyperphosphorylation in cortical neurons. Brain Res. 1200:99–106. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Quan QK, Li X, Yuan HF, Wang Y and Liu WL: Ginsenoside Rg1 inhibits high-voltage-activated calcium channel currents in hippocampal neurons of beta-amyloid peptide-exposed rat brain slices. Chin J Integr Med. Jan 15–2016.(Epub ahead of print). View Article : Google Scholar

99 

Kim S and Rhim H: Ginsenosides inhibit NMDA receptor-mediated epileptic discharges in cultured hippocampal neurons. Arch Pharm Res. 27:524–530. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Shin E-J, Koh YH, Kim A-Y, Nah SY, Jeong JH, Chae JS, Kim SC, Yen TP, Yoon HJ and Kim WK: Ginsenosides attenuate kainic acid-induced synaptosomal oxidative stress via stimulation of adenosine A(2A) receptors in rat hippocampus. Behav Brain Res. 197:239–245. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C and Hagberg H: Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia-a mechanism of pathological apoptosis. J Biol Chem. 276:10191–10198. 2001. View Article : Google Scholar : PubMed/NCBI

102 

Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, et al: Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic A β peptide formation. Cell. 97:395–406. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Li H, Song J, Zhang J, Wang T, Yan Y, Tao Z, Li S, Zhang H, Kang T and Yang J: Ginseng protein reverses amyloid beta peptide and H2O2 cytotoxicity in neurons, and ameliorates cognitive impairment in AD rats induced by a combination of D-galactose and AlCl3. Phytother Res. 31:284–295. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Choi RCY, Zhu JT, Leung KW, Chu GK, Xie HQ, Chen VP, Zheng KY, Lau DT, Dong TT, Chow PC, et al: A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-β-induced neurotoxicity in cultured neurons: Signaling transduction and drug development for Alzheimer's disease. J Alzheimers Dis. 19:795–811. 2010. View Article : Google Scholar : PubMed/NCBI

105 

May MJ and Ghosh S: IkappaB kinases: Kinsmen with different crafts. Science. 284:271–273. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Boissière F, Hunot S, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y and Hirsch EC: Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer's disease. Neuroreport. 8:2849–2852. 1997. View Article : Google Scholar : PubMed/NCBI

107 

Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY and Kim DH: Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull. 28:652–656. 2005. View Article : Google Scholar : PubMed/NCBI

108 

Kim SF, Huri DA and Snyder SH: Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 310:1966–1970. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Prast H and Philippu A: Nitric oxide as modulator of neuronal function. Prog Neurobiol. 64:51–68. 2001. View Article : Google Scholar : PubMed/NCBI

110 

Li Y, Zhao Y, Li G, Wang J, Li T, Li W and Lu J: Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J Neurochem. 101:1194–1204. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Kashour T, Burton T, Dibrov A and Amara FM: Late Simian virus 40 transcription factor is a target of the phosphoinositide 3-kinase/Akt pathway in anti-apoptotic Alzheimer's amyloid precursor protein signalling. Biochem J. 370:1063–1075. 2003. View Article : Google Scholar : PubMed/NCBI

112 

van der Heide LP, Ramakers GMJ and Smidt MP: Insulin signaling in the central nervous system: Learning to survive. Prog Neurobiol. 79:205–221. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, et al: Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 60:759–767. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y, Zhang J and Yang J: Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer's disease. J Ethnopharmacol. 179:162–169. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Kanemaru K: Immunotherapy targeting misfolded proteins in neurodegenerative disease. Brain Nerv. 65:469–474. 2013.(In Japanese).

116 

Song XY, Hu JF, Chu SF, Zhang Z, Xu S, Yuan YH, Han N, Liu Y, Niu F, He X and Chen NH: Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats. Eur J Pharmacol. 710:29–38. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Plattner F, Angelo M and Giese KP: The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem. 281:25457–25465. 2006. View Article : Google Scholar : PubMed/NCBI

118 

Li L, Liu Z, Liu J, Tai X, Hu X, Liu X, Wu Z, Zhang G, Shi M and Zhao G: Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A. Neurobiol Dis. 54:320–328. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Zhang X, Shi M, Ye R, Wang W, Liu X, Zhang G, Han J, Zhang Y, Wang B, Zhao J, et al: Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia. Neurochem Res. 39:1363–1373. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K and Gong CX: Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain. 132:1820–1832. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Li L, Liu J, Yan X, Qin K, Shi M, Lin T, Zhu Y, Kang T and Zhao G: Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. J Ethnopharmacol. 138:135–141. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Xu B, Gottschalk W, Chow A, Wilson RI, Schnell E, Zang K, Wang D, Nicoll RA, Lu B and Reichardt LF: The role of brain-derived neurotrophic factor receptors in the mature hippocampus: Modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci. 20:6888–6897. 2000. View Article : Google Scholar : PubMed/NCBI

123 

Sakata K, Mastin JR, Duke SM, Vail MG, Overacre AE, Dong BE and Jha S: Effects of antidepressant treatment on mice lacking brain-derived neurotrophic factor expression through promoter IV. Eur J Neurosci. 37:1863–1874. 2013. View Article : Google Scholar : PubMed/NCBI

124 

West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X and Greenberg ME: Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 98:11024–11031. 2001. View Article : Google Scholar : PubMed/NCBI

125 

Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG and Chen XC: Ginsenoside Rg1 attenuates amyloid-β content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis. 19:977–989. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Bao C, Wang Y, Min H, Zhang M, Du X, Han R and Liu X: Combination of ginsenoside Rg1 and bone marrow mesenchymal stem cell transplantation in the treatment of cerebral ischemia reperfusion injury in rats. Cell Physiol Biochem. 37:901–910. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Zhou Y, Li HQ, Lu L, Fu DL, Liu AJ, Li JH and Zheng GQ: Ginsenoside Rg1 provides neuroprotection against blood brain barrier disruption and neurological injury in a rat model of cerebral ischemia/reperfusion through downregulation of aquaporin 4 expression. Phytomedicine. 21:998–1003. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Li Y, Guan Y, Wang Y, Yu CL, Zhai FG and Guan LX: Neuroprotective effect of the ginsenoside Rg1 on cerebral ischemic injury in vivo and in vitro is mediated by PPARγ-regulated antioxidative and anti-inflammatory pathways. Evid Based Complement Alternat Med. 2017:78420822017.doi: 10.1155/2017/7842082. PubMed/NCBI

129 

Yang Y, Li X, Zhang L, Liu L, Jing G and Cai H: Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol. 8:2484–2494. 2015.PubMed/NCBI

130 

Lin M, Sun W, Gong W, Ding Y, Zhuang Y and Hou Q: Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerebral injury rats. Acta Pharmaceutica Sinica B. 5:277–284. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Xie CL, Li JH, Wang WW, Zheng GQ and Wang LX: Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci. 121:145–151. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Sun C, Lai X, Huang X and Zeng Y: Protective effects of ginsenoside Rg1 on astrocytes and cerebral ischemic-reperfusion mice. Biol Pharm Bull. 37:1891–1898. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Li J, Liu Y, Li W, Wang Z, Guo P, Li L and Li N: Metabolic profiling of the effects of ginsenoside Re in an Alzheimer's disease mouse model. Behav Brain Res. 337:160–172. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Hwang JY, Shim JS, Song MY, Yim SV, Lee SE and Park KS: Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in β-amyloid-treated neuronal cells. J Ginseng Res. 40:278–284. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, et al: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6:734–746. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY and Kim M: Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease. Nutr Neurosci. 15:278–282. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Yang Q, Lin J, Zhang H, Liu Y, Kan M, Xiu Z, Chen X, Lan X, Shi X, Li N and Qu X: Ginsenoside compound K regulates amyloid β via the Nrf2/Keap1 signalling pathway in mice with scopolamine hydrobromide-induced memory impairments. J Mol Neurosci. 67:62–71. 2019.PubMed/NCBI

138 

Lee ST, Chu K, Sim JY, Heo JH and Kim M: Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord. 22:222–226. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY and Kim M: An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer's disease. Eur J Neurol. 15:865–868. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Heo JH, Park MH and Lee JH: Effect of Korean red ginseng on cognitive function and quantitative EEG in patients with Alzheimer's disease: A preliminary study. J Altern Complement Med. 22:280–285. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY, Chu K and Kim M: Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with korean red ginseng. J Ginseng Res. 35:457–461. 2011. View Article : Google Scholar : PubMed/NCBI

142 

Burns A, Gauthier S and Perdomo C: Efficacy and safety of donepezil over 3 years: An open-label, multicentre study in patients with Alzheimer's disease. Int J Geriatr Psychiatry. 22:806–812. 2007. View Article : Google Scholar : PubMed/NCBI

143 

Minthon L, Wallin AK, Eriksson S, Wattmo C and Andreasen N: Long-term rivastigmine treatment in a routine clinical setting. Acta Neurol Scand. 119:180–185. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, Roller M and Stough C: Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl). 212:345–356. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Liu L, Hoang-Gia T, Wu H, Lee MR, Gu L, Wang C, Yun BS, Wang Q, Ye S and Sung CK: Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Res. 1382:147–154. 2011. View Article : Google Scholar : PubMed/NCBI

146 

Huang T, Fang F, Chen L, Zhu Y, Zhang J, Chen X and Yan SS: Ginsenoside Rg1 attenuates oligomeric Aβ1-42-induced mitochondrial dysfunction. Curr Alzheimer Res. 9:388–395. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Zhang JT, Liu Y, Qu ZW, Zhang XL and Xiao HL: [Influence of ginsenoside Rb1 and Rg1 on some central neurotransmitter receptors and protein biosynthesis in the mouse brain]. Yao Xue Xue Bao. 23:12–16. 1988.(In Chinese). PubMed/NCBI

148 

Ying Y, Zhang JT, Shi CZ, Qu ZW and Liu Y: [Study on the nootropic mechanism of ginsenoside Rb1 and Rg1--influence on mouse brain development]. Acta pharmaceutica Sinica. 29:241–245. 1994.(In Chinese). PubMed/NCBI

149 

Zeng XS, Zhou XS, Luo FC, Jia JJ, Qi L, Yang ZX, Zhang W and Bai J: Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. Can J Physiol Pharmacol. 92:102–108. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Huang XP, Ding H, Lu JD, Tang YH, Deng BX and Deng CQ: Effects of the combination of the main active components of Astragalus and Panax notoginseng on inflammation and apoptosis of nerve cell after cerebral ischemia-reperfusion. Am J Chin Med. 43:1419–1438. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Wang X, Zeng C, Lin J, Chen T, Zhao T, Jia Z, Xie X, Qiu Y, Su M, Jiang T, et al: Metabonomics approach to assessing the modulatory effects of St John's wort, ginsenosides, and clomipramine in experimental depression. J Proteome Res. 11:6223–6230. 2012. View Article : Google Scholar : PubMed/NCBI

152 

Yamada N, Araki H and Yoshimura H: Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: Participation of 5-HT2A receptors. Psychopharmacology (Berl). 216:589–599. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Kang A, Hao H, Zheng X, Liang Y, Xie Y, Xie T, Dai C, Zhao Q, Wu X, Xie L and Wang G: Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J Neuroinflammation. 8:1002011. View Article : Google Scholar : PubMed/NCBI

154 

Zhang H, Li Z, Zhou Z, Yang H, Zhong Z and Lou C: Antidepressant-like effects of ginsenosides: A comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. Pharmacol Biochem Behav. 140:17–26. 2016. View Article : Google Scholar : PubMed/NCBI

155 

You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z, Chen C and Li L: Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med. 71:367–379. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Liu X-Y, Zhou X-Y, Hou J-C, Zhu H, Wang Z, Liu JX and Zheng YQ: Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol Sin. 36:421–428. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Xie Z, Shi M, Zhang C, Zhao H, Hui H and Zhao G: Ginsenoside Rd protects against cerebral ischemia-reperfusion injury via decreasing the expression of the NMDA receptor 2B subunit and its phosphorylated product. Neurochem Res. 41:2149–2159. 2016. View Article : Google Scholar : PubMed/NCBI

158 

Chen LM, Zhou XM, Cao YL and Hu WX: Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res. 10:439–445. 2008. View Article : Google Scholar : PubMed/NCBI

159 

He B, Chen P, Yang J, Yun Y, Zhang X, Yang R and Shen Z: Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci Lett. 526:106–111. 2012. View Article : Google Scholar : PubMed/NCBI

160 

Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F and Chen JG: Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol. 166:1872–1887. 2012. View Article : Google Scholar : PubMed/NCBI

161 

Liu Z, Qi Y, Cheng Z, Zhu X, Fan C and Yu SY: The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience. 322:358–369. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Cui J, Jiang L and Xiang H: Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol. 26:697–713. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, Tsatsakis A and Spandidos DA: Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 19: 2975-2998, 2019.
APA
Razgonova, M.P., Veselov, V.V., Zakharenko, A.M., Golokhvast, K.S., Nosyrev, A.E., Cravotto, G. ... Spandidos, D.A. (2019). Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Molecular Medicine Reports, 19, 2975-2998. https://doi.org/10.3892/mmr.2019.9972
MLA
Razgonova, M. P., Veselov, V. V., Zakharenko, A. M., Golokhvast, K. S., Nosyrev, A. E., Cravotto, G., Tsatsakis, A., Spandidos, D. A."Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)". Molecular Medicine Reports 19.4 (2019): 2975-2998.
Chicago
Razgonova, M. P., Veselov, V. V., Zakharenko, A. M., Golokhvast, K. S., Nosyrev, A. E., Cravotto, G., Tsatsakis, A., Spandidos, D. A."Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)". Molecular Medicine Reports 19, no. 4 (2019): 2975-2998. https://doi.org/10.3892/mmr.2019.9972
Copy and paste a formatted citation
x
Spandidos Publications style
Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, Tsatsakis A and Spandidos DA: Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 19: 2975-2998, 2019.
APA
Razgonova, M.P., Veselov, V.V., Zakharenko, A.M., Golokhvast, K.S., Nosyrev, A.E., Cravotto, G. ... Spandidos, D.A. (2019). Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Molecular Medicine Reports, 19, 2975-2998. https://doi.org/10.3892/mmr.2019.9972
MLA
Razgonova, M. P., Veselov, V. V., Zakharenko, A. M., Golokhvast, K. S., Nosyrev, A. E., Cravotto, G., Tsatsakis, A., Spandidos, D. A."Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)". Molecular Medicine Reports 19.4 (2019): 2975-2998.
Chicago
Razgonova, M. P., Veselov, V. V., Zakharenko, A. M., Golokhvast, K. S., Nosyrev, A. E., Cravotto, G., Tsatsakis, A., Spandidos, D. A."Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)". Molecular Medicine Reports 19, no. 4 (2019): 2975-2998. https://doi.org/10.3892/mmr.2019.9972
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team