|
1
|
Alzheimer A, Stelzmann RA, Schnitzlein HN
and Murtagh FR: An English translation of Alzheimer's 1907 paper,
‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat.
8:429–431. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hardy J and Allsop D: Amyloid deposition
as the central event in the aetiology of Alzheimer's disease.
Trends Pharmacol Sci. 12:383–388. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Donev R, Kolev M, Millet B and Thome J:
Neuronal death in Alzheimer's disease and therapeutic
opportunities. J Cell Mol Med. 13:4329–4348. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H,
Ji X, Chen W, Xue M and Wei J: The ambiguous relationship of
oxidative stress, tau hyperphosphorylation, and autophagy
dysfunction in Alzheimer's disease. Oxid Med Cell Longev.
2015:3527232015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hernández F and Avila J: Tauopathies. Cell
Mol Life Sci. 64:2219–2233. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Brekhman II, Dardymov IV and Dobriakov II:
On the pharmacology of individual glycosides from the roots of
Panax ginseng C.A. Mey. Farmakol Toksikol. 29:167–171. 1966.(In
Russian). PubMed/NCBI
|
|
7
|
Elyakov G, Strigina L, Khorlin A and
Kochetkov H: Glycosides of ginseng (Panax ginseng C. A.
Mey). Bulletin of the Academy of Sciences of The USSR, Division of
Chemical Science. 11(6): pp1055–10551p. 1962.https://searchworks.stanford.edu/articles/edb__72505988
View Article : Google Scholar
|
|
8
|
Brekhman II: Ginseng. Government publisher
of medicine literature. Medgiz, Saint Petersburg, pp 3–163, 1957
(Translated from Russian). http://moodle.pharmi.uz/library/books/Рус/Қўшимча%20адабиётлар/Жень-шень.pdf
|
|
9
|
Fischer FEL and Meyer CA: Enumeratio
plantarum novarum a cl. Schrenk lectarum [Flora change from Cl.
Schrenk Lectarum]. Petropoli Publishers. 1841–1842
|
|
10
|
Arsenyev VK: Myths, legends, traditions,
and fables of peoples of Far East. Monograph Series, International
Institute of Ethnolinguistic and Oriental Studies (IIEOS). ISSN
1230-3283; 10, ISBN 83-902273-4-7. 1995.
|
|
11
|
Przhevalsky N: Mongolia, The Tangut
Country and the Solitudes of Northern Tibet. Morgan E.D..Yule H:
(London). Sampson Low Marston, Searle & Rivington.
2(24)1876.
|
|
12
|
Maak R: Journey through the Ussuri river
valley. The Siberian Department of the Imperial Russian
Geographical Society, 1–2. V. Bezobrazov and Co Printers. (Saint
Petersburg). 1861.
|
|
13
|
Maximowicz CJ: Diagnoses des nouvelles
plantes du Japon et de la Mandjourie [Diagnoses of the new plants
of Japan and Mandjourie]. Bulletin de l'Academie Imperiale des
Sciences de St. Petersbourg. Tome dix-huitieme. (Saint
Petersbourg). XII decade. 41.1873
|
|
14
|
Komarov VL: Coniferae of Manchuria. Trudy
Imp. Saint Petersburg. Obsc. 32. 230–241. 1902.
|
|
15
|
Shishkin IK: Studies about the flora of
Iman River. Materials of the Vladivostok, Branch of the Russian
Geographical Society. 5:128–130. 1930.
|
|
16
|
Gutnikova ZI: Ginseng in Suputinsky
reserve. Materials of the Academy of Sciences of the USSR.
4:257–267. 1941.
|
|
17
|
Gutnikova ZI: Preliminary data on the
culture of ginseng in the conditions of Suputinsky reserve.
Materials of the Academy of Sciences of the USSR. 1955.
|
|
18
|
Vysotsky KK: To the question of the
biology of wild ginseng. Main Directorate of USSR Reserves.
7:254–262. 1940.
|
|
19
|
Bayanova VB: Conditions of ginseng growth
in the ‘Kedrovaya Pad’ reserve. Materials of the mountain taiga
station of the Academy of Sciences of the USSR. 4:217–231.
1941.
|
|
20
|
Kurentsova GE: Medicinal plants of the
Soviet Far East. Materials of the mountain taiga station of the
Academy of Sciences of the USSR. 4:15–97. 1941.
|
|
21
|
Zakutinsky DI: Pharmacology of ginseng
root. Pharmacol Toxicol. 7:13–16. 1944.
|
|
22
|
Burkat ME and Saksonov P: Materials for
the pharmacological characterization of ginseng root. Pharmacol
Toxicol. 10:7–16. 1947.
|
|
23
|
Kiselev VS: Pharmacological study of the
ginseng root. Pharmacol Toxicol. 11:50–57. 1948.
|
|
24
|
Shapiro ML: Ginseng is an active
therapeutic drug. J Sov Med. 6:17–19. 1947.
|
|
25
|
Kuzminskaya RA: Treatment of vegetative
dystonia with ginseng root. Neuropathol Psych. 2:62–63. 1949.
|
|
26
|
Buturlin VV: The use of ginseng root in
clinical practice. Sov Med. 5:34–36. 1950.PubMed/NCBI
|
|
27
|
Brekhman II and Dardymov IV:
Pharmacological investigation of glycosides from ginseng and
eleutherococcus. Lloydia. 32:46–51. 1969.PubMed/NCBI
|
|
28
|
Elyakov GB, Strigina LI, Uvarova NI,
Vaskovsky VE, Dzizenko AK and Kochetkov NK: Glycosides from ginseng
roots. Tetrahedron Lett. 5:3591–3597. 1964. View Article : Google Scholar
|
|
29
|
Elyakov GB, Strigina LI and Kochetkov NK:
Glycosides from ginseng roots. VI. Structure of the carbohydrate
chain of panaxoside A. Chemistry of Natural Compounds. 1(3):
114–116. 1965. View Article : Google Scholar
|
|
30
|
Chen Y, Sun J, Fang L, Liu M, Peng S, Liao
H, Lehmann J and Zhang Y: Tacrine-ferulic acid-nitric oxide (NO)
donor trihybrids as potent, multifunctional acetyl- and
butyrylcholinesterase inhibitors. J Med Chem. 55:4309–4321. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Geula C and Mesulam MM: Cholinesterases
and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord.
9 (Suppl 2):23–28. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wilkinson DG, Francis PT, Schwam E and
Payne-Parrish J: Cholinesterase inhibitors used in the treatment of
Alzheimer's disease: The relationship between pharmacological
effects and clinical efficacy. Drugs Aging. 21:453–478. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Raschetti R, Albanese E, Vanacore N and
Maggini M: Cholinesterase inhibitors in mild cognitive impairment:
A systematic review of randomised trials. PLoS Med. 4:e3382007.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Collins LE, Paul NE, Abbas SF, Leser CE,
Podurgiel SJ, Galtieri DJ, Chrobak JJ, Baqi Y, Müller CE and
Salamone JD: Oral tremor induced by galantamine in rats: A model of
the parkinsonian side effects of cholinomimetics used to treat
Alzheimer's disease. Pharmacol Biochem Behav. 99:414–422. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ikonomovic MD, Mufson EJ, Wuu J, Bennett
DA and DeKosky ST: Reduction of choline acetyltransferase activity
in primary visual cortex in mild to moderate Alzheimer's disease.
Arch Neurol. 62:425–430. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Choi RJ, Roy A, Jung HJ, Ali MY, Min BS,
Park CH, Yokozawa T, Fan TP, Choi JS and Jung HA: BACE1 molecular
docking and anti-Alzheimer's disease activities of ginsenosides. J
Ethnopharmacol. 190:219–230. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li S, Liu C, Liu C and Zhang Y: Extraction
and in vitro screening of potential acetylcholinesterase
inhibitors from the leaves of Panax japonicus. J Chromatogr
B Analyt Technol Biomed Life Sci. 1061-1062:139–145. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shin K, Guo H, Cha Y, Ban YH, Seo W, Choi
Y, Kim TS, Lee SP, Kim JC, Choi EK, et al: Cereboost™, an American
ginseng extract, improves cognitive function via up-regulation of
choline acetyltransferase expression and neuroprotection. Regul
Toxicol Pharmacol. 78:53–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lee MR, Yun BS, Liu L, Zhang DL, Wang Z,
Wang CL, Gu LJ, Wang CY, Mo EK and Sung CK: Effect of black ginseng
on memory improvement in the amnesic mice induced by scopolamine. J
Ginseng Res. 34:51–58. 2010. View Article : Google Scholar
|
|
40
|
Wang Q, Sun LH, Jia W, Liu XM, Dang HX,
Mai WL, Wang N, Steinmetz A, Wang YQ and Xu CJ: Comparison of
ginsenosides Rg1 and Rb1 for their effects on improving
scopolamine-induced learning and memory impairment in mice.
Phytother Res. 24:1748–1754. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chu S, Gu J, Feng L, Liu J, Zhang M, Jia
X, Liu M and Yao D: Ginsenoside Rg5 improves cognitive dysfunction
and beta-amyloid deposition in STZ-induced memory impaired rats via
attenuating neuroinflammatory responses. Int Immunopharmacol.
19:317–326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Choi JG, Kim N, Huh E, Lee H, Oh MH, Park
JD, Pyo MK and Oh MS: White ginseng protects mouse hippocampal
cells against amyloid-beta oligomer toxicity. Phytother Res.
31:497–506. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Pi Z, Song F and Liu Z:
Ginsenosides attenuate d-galactose- and AlCl3-induced spatial
memory impairment by restoring the dysfunction of the
neurotransmitter systems in the rat model of Alzheimer's disease. J
Ethnopharmacol. 194:188–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Karp G: Cell and Molecular Biology:
Concepts and Experiments. (6th). John Wiley & Sons. (New York,
NY). 2009.
|
|
45
|
Vassar R, Bennett BD, Babu-Khan S, Kahn S,
Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, et
al: Beta-secretase cleavage of Alzheimer's amyloid precursor
protein by the transmembrane aspartic protease BACE. Science.
286:735–741. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ohnishi S and Takano K: Amyloid fibrils
from the viewpoint of protein folding. Cell Mol Life Sci.
61:511–524. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fahrenholz F: Alpha-secretase as a
therapeutic target. Curr Alzheimer Res. 4:412–417. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gubandru M, Margina D, Tsitsimpikou C,
Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis AM and Kouretas D:
Alzheimer's disease treated patients showed different patterns for
oxidative stress and inflammation markers. Food Chem Toxicol.
61:209–214. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao G, Su P, Zhang S, Guo L, Zhang H,
Liang Y, Qin C and Zhang W: Ginsenoside Re reduces Aβ production by
activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur J
Pharmacol. 793:101–108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Quan Q, Wang J, Li X and Wang Y:
Ginsenoside Rg1 decreases Aβ1-42 level by upregulating
PPARγ and IDE expression in the hippocampus of a rat model of
Alzheimer's disease. PLoS One. 8:e591552013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yan X, Hu G, Yan W, Chen T, Yang F, Zhang
X, Zhao G and Liu J: Ginsenoside Rd promotes non-amyloidogenic
pathway of amyloid precursor protein processing by regulating
phosphorylation of estrogen receptor alpha. Life Sci. 168:16–23.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shi C, Zheng DD, Fang L, Wu F, Kwong WH
and Xu J: Ginsenoside Rg1 promotes nonamyloidogenic cleavage of APP
via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim
Biophys Acta. 1820:453–460. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shi C, Na N, Zhu X and Xu J: Estrogenic
effect of ginsenoside Rg1 on APP processing in post-menopausal
platelets. Platelets. 24:51–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang X, Wang J, Xing Y, Gong L, Li H, Wu
Z, Li Y, Wang J, Wang Y, Dong L and Li S: Effects of ginsenoside
Rg1 or 17β-estradiol on a cognitively impaired, ovariectomized rat
model of Alzheimer's disease. Neuroscience. 220:191–200. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Huang J, Wu D, Wang J, Li F, Lu L, Gao Y
and Zhong Z: Effects of Panax notoginseng saponin on α, β,
and γ secretase involved in Aβ deposition in SAMP8 mice.
Neuroreport. 25:89–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zetterberg H, Alexander DM, Spandidos DA
and Blennow K: Additional evidence for antagonistic pleiotropic
effects of APOE. Alzheimers Dement. 5:752009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Endres K and Fahrenholz F: Upregulation of
the α-secretase ADAM10-risk or reason for hope? FEBS J.
277:1585–1596. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Qiu J, Li W, Feng SH, Wang M and He ZY:
Ginsenoside Rh2 promotes nonamyloidgenic cleavage of amyloid
precursor protein via a cholesterol-dependent pathway. Genet Mol
Res. 13:3586–3598. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Reiss AB and Voloshyna I: Regulation of
cerebral cholesterol metabolism in Alzheimer disease. J Investig
Med. 60:576–582. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Barrett PJ, Song Y, Van Horn WD, Hustedt
EJ, Schafer JM, Hadziselimovic A, Beel AJ and Sanders CR: The
amyloid precursor protein has a flexible transmembrane domain and
binds cholesterol. Science. 336:1168–1171. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Korade Z and Kenworthy AK: Lipid rafts,
cholesterol, and the brain. Neuropharmacology. 55:1265–1273. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Di Paolo G and De Camilli P:
Phosphoinositides in cell regulation and membrane dynamics. Nature.
443:651–657. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Balla A and Balla T: Phosphatidylinositol
4-kinases: Old enzymes with emerging functions. Trends Cell Biol.
16:351–361. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kang MS, Baek SH, Chun YS, Moore AZ,
Landman N, Berman D, Hyun Ok Yang, Morishima-Kawashima M, Osawa S,
Funamoto S, et al: Modulation of lipid kinase PI4KIIα activity and
lipid raft association of presenilin 1 underlies γ-secretase
inhibition by ginsenoside (20S) Rg3. J Biol Chem. 288:20868–20882.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kwik J, Boyle S, Fooksman D, Margolis L,
Sheetz MP and Edidin M: Membrane cholesterol, lateral mobility, and
the phosphatidylinositol 4,5-bisphosphate-dependent organization of
cell actin. Proc Natl Acad Sci USA. 100:13964–13969. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fraering PC, Ye W, Strub JM, Dolios G,
LaVoie MJ, Ostaszewski BL, van Dorsselaer A, Wang R, Selkoe DJ and
Wolfe MS: Purification and characterization of the human
γ-secretase complex. Biochemistry. 43:9774–9789. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Barber J: Merck & Co. terminates Phase
III study of verubecestat in prodromal Alzheimer's disease. First
Word Farma. Feb 13–2018.https://www.firstwordpharma.com/node/1542930
|
|
68
|
Doody RS, Raman R, Farlow M, Iwatsubo T,
Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, et al
Alzheimer's Disease Cooperative Study Steering Committee;
Semagacestat Study Group, : A phase 3 trial of semagacestat for
treatment of Alzheimer's disease. N Engl J Med. 369:341–350. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang L, Hao J, Zhang J, Xia W, Dong X, Hu
X, Kong F and Cui X: Ginsenoside Rg3 promotes beta-amyloid peptide
degradation by enhancing gene expression of neprilysin. J Pharm
Pharmacol. 61:375–380. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
He Y, Zhao H and Su G: Ginsenoside Rg1
decreases neurofibrillary tangles accumulation in retina by
regulating activities of neprilysin and PKA in retinal cells of AD
mice model. J Mol Neurosci. 52:101–106. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tohda C, Matsumoto N, Zou K, Meselhy MR
and Komatsu K: Abeta(25–35)-induced memory impairment, axonal
atrophy, and synaptic loss are ameliorated by M1, A metabolite of
protopanaxadiol-type saponins. Neuropsychopharmacology. 29:860–868.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Androutsopoulos VP, Kanavouras K and
Tsatsakis AM: Role of paraoxonase 1 (PON1) in organophosphate
metabolism: Implications in neurodegenerative diseases. Toxicol
Appl Pharmacol. 256:418–424. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li N, Liu Y, Li W, Zhou L, Li Q, Wang X
and He P: A UPLC/MS-based metabolomics investigation of the
protective effect of ginsenosides Rg1 and Rg2 in mice with
Alzheimer's disease. J Ginseng Res. 40:9–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li N, Zhou L, Li W, Liu Y, Wang J and He
P: Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's
disease mouse model: A metabolomics study. J Chromatogr B Analyt
Technol Biomed Life Sci. 985:54–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li F, Wu X, Li J and Niu Q: Ginsenoside
Rg1 ameliorates hippocampal long-term potentiation and memory in an
Alzheimer's disease model. Mol Med Rep. 13:4904–4910. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li X, Liu Y, Zhang X, Yuan H and Quan Q:
[Effect of ginsenoside Rg1 on expressions of phosphory protein tau
and N-methyl-D-aspartate receptor subunits NR1 and NR2B in rat
brain slice model of Alzheimer's disease]. Zhongguo Zhong Yao Za
Zhi. 35:3339–3343. 2010.(In Chinese). PubMed/NCBI
|
|
77
|
Roberson ED, Halabisky B, Yoo JW, Yao J,
Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, et al:
Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments
depend on tau levels in multiple mouse models of Alzheimer's
disease. J Neurosci. 31:700–711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Broestl L, Worden K, Moreno AJ, Davis EJ,
Wang D, Garay B, Singh T, Verret L, Palop JJ and Dubal DB: Ovarian
Cycle Stages Modulate Alzheimer-Related Cognitive and Brain Network
Alterations in Female Mice. eNeuro. 5(pii): ENEURO.0132–17.2018.
2018.
|
|
79
|
Yang JT, Wang ZJ, Cai HY, Yuan L, Hu MM,
Wu MN and Qi JS: Sex Differences in Neuropathology and Cognitive
Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of
Alzheimer's Disease. Neurosci Bull. 34:736–746. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang Y, Kan H, Yin Y, Wu W, Hu W, Wang M
and Li W and Li W: Protective effects of ginsenoside Rg1 on chronic
restraint stress induced learning and memory impairments in male
mice. Pharmacol Biochem Behav. 120:73–81. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mu JS, Lin H, Ye JX, Lin M and Cui XP: Rg1
exhibits neuroprotective effects by inhibiting the endoplasmic
reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic
pathway in a rat model of Alzheimer's disease. Mol Med Rep.
12:3862–3868. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang ZJ, Sun L, Peng W, Ma S, Zhu C, Fu F
and Heinbockel T: Ginseng derivative ocotillol enhances neuronal
activity through increased glutamate release: A possible mechanism
underlying increased spontaneous locomotor activity of mice.
Neuroscience. 195:1–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang C-M, Liu M-Y, Wang F, Wei MJ, Wang S,
Wu CF and Yang JY: Anti-amnesic effect of pseudoginsenoside-F11 in
two mouse models of Alzheimer's disease. Pharmacol Biochem Behav.
106:57–67. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yan S, Li Z, Li H, Arancio O and Zhang W:
Notoginsenoside R1 increases neuronal excitability and ameliorates
synaptic and memory dysfunction following amyloid elevation. Sci
Rep. 4:63522014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Liu J, Zhang Z, Bi P, Qi Z and
Zhang C: Anti neuroinflammation effect of ginsenoside Rbl in a rat
model of Alzheimer disease. Neurosci Let. 487:70–72. 2011.
View Article : Google Scholar
|
|
86
|
Lv C, Li Q, Zhang Y, Sui Z, He B, Xu H,
Yin Y, Chen X and Bi K: A UFLC-MS/MS method with a switching
ionization mode for simultaneous quantitation of polygalaxanthone
III, four ginsenosides and tumulosic acid in rat plasma:
Application to a comparative pharmacokinetic study in normal and
Alzheimer's disease rats. J Mass Spectrom. 48:904–913. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu J, Yan X, Li L, Zhu Y, Qin K, Zhou L,
Sun D, Zhang X, Ye R and Zhao G: Ginsennoside rd attenuates
cognitive dysfunction in a rat model of Alzheimer's disease.
Neurochem Res. 37:2738–2747. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu J, Yan X, Li L, Li Y, Zhou L, Zhang X,
Hu X and Zhao G: Gingenoside Rd Improves Learning and Memory
Ability in APP Transgenic Mice. J Mol Neurosci. 57:522–528. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi
SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, et al: Gintonin, a
ginseng-derived lysophosphatidic acid receptor ligand, attenuates
Alzheimer's disease-related neuropathies: Involvement of
non-amyloidogenic processing. J Alzheimers Dis. 31:207–223. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Choi DW and Rothman SM: The role of
glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu
Rev Neurosci. 13:171–182. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Braughler JM and Hall ED: Central nervous
system trauma and stroke. I. Biochemical considerations for oxygen
radical formation and lipid peroxidation. Free Radic Biol Med.
6:289–301. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sousa SC, Maciel EN, Vercesi AE and
Castilho RF: Ca2+-induced oxidative stress in brain
mitochondria treated with the respiratory chain inhibitor rotenone.
FEBS Lett. 543:179–183. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dante S, Hauss T and Dencher NA: β-amyloid
25 to 35 is intercalated in anionic and zwitterionic lipid
membranes to different extents. Biophys J. 83:2610–2616. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ekinci FJ, Malik KU and Shea TB:
Activation of the L voltage-sensitive calcium channel by
mitogen-activated protein (MAP) kinase following exposure of
neuronal cells to β-amyloid. MAP kinase mediates β-amyloid-induced
neurodegeneration. J Biol Chem. 274:30322–30327. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cui J, Wang J, Zheng M, Gou D, Liu C and
Zhou Y: Ginsenoside Rg2 protects PC12 cells against
β-amyloid25-35-induced apoptosis via the phosphoinositide
3-kinase/Akt pathway. Chem Biol Interact. 275:152–161. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li N, Liu B, Dluzen DE and Jin Y:
Protective effects of ginsenoside Rg2 against glutamate-induced
neurotoxicity in PC12 cells. J Ethnopharmacol. 111:458–463. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen X, Huang T, Zhang J, Song J, Chen L
and Zhu Y: Involvement of calpain and p25 of CDK5 pathway in
ginsenoside Rb1's attenuation of β-amyloid peptide25-35-induced tau
hyperphosphorylation in cortical neurons. Brain Res. 1200:99–106.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Quan QK, Li X, Yuan HF, Wang Y and Liu WL:
Ginsenoside Rg1 inhibits high-voltage-activated calcium channel
currents in hippocampal neurons of beta-amyloid peptide-exposed rat
brain slices. Chin J Integr Med. Jan 15–2016.(Epub ahead of print).
View Article : Google Scholar
|
|
99
|
Kim S and Rhim H: Ginsenosides inhibit
NMDA receptor-mediated epileptic discharges in cultured hippocampal
neurons. Arch Pharm Res. 27:524–530. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shin E-J, Koh YH, Kim A-Y, Nah SY, Jeong
JH, Chae JS, Kim SC, Yen TP, Yoon HJ and Kim WK: Ginsenosides
attenuate kainic acid-induced synaptosomal oxidative stress via
stimulation of adenosine A(2A) receptors in rat hippocampus. Behav
Brain Res. 197:239–245. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Blomgren K, Zhu C, Wang X, Karlsson JO,
Leverin AL, Bahr BA, Mallard C and Hagberg H: Synergistic
activation of caspase-3 by m-calpain after neonatal
hypoxia-ischemia-a mechanism of pathological apoptosis. J Biol
Chem. 276:10191–10198. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gervais FG, Xu D, Robertson GS,
Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M,
Shearman MS, et al: Involvement of caspases in proteolytic cleavage
of Alzheimer's amyloid-β precursor protein and amyloidogenic A β
peptide formation. Cell. 97:395–406. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li H, Song J, Zhang J, Wang T, Yan Y, Tao
Z, Li S, Zhang H, Kang T and Yang J: Ginseng protein reverses
amyloid beta peptide and H2O2 cytotoxicity in
neurons, and ameliorates cognitive impairment in AD rats induced by
a combination of D-galactose and AlCl3. Phytother Res. 31:284–295.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Choi RCY, Zhu JT, Leung KW, Chu GK, Xie
HQ, Chen VP, Zheng KY, Lau DT, Dong TT, Chow PC, et al: A flavonol
glycoside, isolated from roots of Panax notoginseng, reduces
amyloid-β-induced neurotoxicity in cultured neurons: Signaling
transduction and drug development for Alzheimer's disease. J
Alzheimers Dis. 19:795–811. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
May MJ and Ghosh S: IkappaB kinases:
Kinsmen with different crafts. Science. 284:271–273. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Boissière F, Hunot S, Faucheux B,
Duyckaerts C, Hauw JJ, Agid Y and Hirsch EC: Nuclear translocation
of NF-kappaB in cholinergic neurons of patients with Alzheimer's
disease. Neuroreport. 8:2849–2852. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Park EK, Shin YW, Lee HU, Kim SS, Lee YC,
Lee BY and Kim DH: Inhibitory effect of ginsenoside Rb1 and
compound K on NO and prostaglandin E2 biosyntheses of RAW264.7
cells induced by lipopolysaccharide. Biol Pharm Bull. 28:652–656.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kim SF, Huri DA and Snyder SH: Inducible
nitric oxide synthase binds, S-nitrosylates, and activates
cyclooxygenase-2. Science. 310:1966–1970. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Prast H and Philippu A: Nitric oxide as
modulator of neuronal function. Prog Neurobiol. 64:51–68. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li Y, Zhao Y, Li G, Wang J, Li T, Li W and
Lu J: Regulation of neuronal nitric oxide synthase exon 1f gene
expression by nuclear factor-kappaB acetylation in human
neuroblastoma cells. J Neurochem. 101:1194–1204. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kashour T, Burton T, Dibrov A and Amara
FM: Late Simian virus 40 transcription factor is a target of the
phosphoinositide 3-kinase/Akt pathway in anti-apoptotic Alzheimer's
amyloid precursor protein signalling. Biochem J. 370:1063–1075.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
van der Heide LP, Ramakers GMJ and Smidt
MP: Insulin signaling in the central nervous system: Learning to
survive. Prog Neurobiol. 79:205–221. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nunomura A, Perry G, Aliev G, Hirai K,
Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S,
et al: Oxidative damage is the earliest event in Alzheimer disease.
J Neuropathol Exp Neurol. 60:759–767. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y,
Zhang J and Yang J: Neuroprotective effects of ginseng protein on
PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3
inducing rats model of Alzheimer's disease. J Ethnopharmacol.
179:162–169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kanemaru K: Immunotherapy targeting
misfolded proteins in neurodegenerative disease. Brain Nerv.
65:469–474. 2013.(In Japanese).
|
|
116
|
Song XY, Hu JF, Chu SF, Zhang Z, Xu S,
Yuan YH, Han N, Liu Y, Niu F, He X and Chen NH: Ginsenoside Rg1
attenuates okadaic acid induced spatial memory impairment by the
GSK3β/tau signaling pathway and the Aβ formation prevention in
rats. Eur J Pharmacol. 710:29–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Plattner F, Angelo M and Giese KP: The
roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3
in tau hyperphosphorylation. J Biol Chem. 281:25457–25465. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li L, Liu Z, Liu J, Tai X, Hu X, Liu X, Wu
Z, Zhang G, Shi M and Zhao G: Ginsenoside Rd attenuates
beta-amyloid-induced tau phosphorylation by altering the functional
balance of glycogen synthase kinase 3beta and protein phosphatase
2A. Neurobiol Dis. 54:320–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhang X, Shi M, Ye R, Wang W, Liu X, Zhang
G, Han J, Zhang Y, Wang B, Zhao J, et al: Ginsenoside Rd attenuates
tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after
transient forebrain ischemia. Neurochem Res. 39:1363–1373. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu F, Shi J, Tanimukai H, Gu J, Gu J,
Grundke-Iqbal I, Iqbal K and Gong CX: Reduced O-GlcNAcylation links
lower brain glucose metabolism and tau pathology in Alzheimer's
disease. Brain. 132:1820–1832. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li L, Liu J, Yan X, Qin K, Shi M, Lin T,
Zhu Y, Kang T and Zhao G: Protective effects of ginsenoside Rd
against okadaic acid-induced neurotoxicity in vivo and in
vitro. J Ethnopharmacol. 138:135–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Xu B, Gottschalk W, Chow A, Wilson RI,
Schnell E, Zang K, Wang D, Nicoll RA, Lu B and Reichardt LF: The
role of brain-derived neurotrophic factor receptors in the mature
hippocampus: Modulation of long-term potentiation through a
presynaptic mechanism involving TrkB. J Neurosci. 20:6888–6897.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Sakata K, Mastin JR, Duke SM, Vail MG,
Overacre AE, Dong BE and Jha S: Effects of antidepressant treatment
on mice lacking brain-derived neurotrophic factor expression
through promoter IV. Eur J Neurosci. 37:1863–1874. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
West AE, Chen WG, Dalva MB, Dolmetsch RE,
Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X and Greenberg ME:
Calcium regulation of neuronal gene expression. Proc Natl Acad Sci
USA. 98:11024–11031. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shi YQ, Huang TW, Chen LM, Pan XD, Zhang
J, Zhu YG and Chen XC: Ginsenoside Rg1 attenuates amyloid-β
content, regulates PKA/CREB activity, and improves cognitive
performance in SAMP8 mice. J Alzheimers Dis. 19:977–989. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Bao C, Wang Y, Min H, Zhang M, Du X, Han R
and Liu X: Combination of ginsenoside Rg1 and bone marrow
mesenchymal stem cell transplantation in the treatment of cerebral
ischemia reperfusion injury in rats. Cell Physiol Biochem.
37:901–910. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhou Y, Li HQ, Lu L, Fu DL, Liu AJ, Li JH
and Zheng GQ: Ginsenoside Rg1 provides neuroprotection against
blood brain barrier disruption and neurological injury in a rat
model of cerebral ischemia/reperfusion through downregulation of
aquaporin 4 expression. Phytomedicine. 21:998–1003. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Li Y, Guan Y, Wang Y, Yu CL, Zhai FG and
Guan LX: Neuroprotective effect of the ginsenoside Rg1 on cerebral
ischemic injury in vivo and in vitro is mediated by PPARγ-regulated
antioxidative and anti-inflammatory pathways. Evid Based Complement
Alternat Med. 2017:78420822017.doi: 10.1155/2017/7842082.
PubMed/NCBI
|
|
129
|
Yang Y, Li X, Zhang L, Liu L, Jing G and
Cai H: Ginsenoside Rg1 suppressed inflammation and neuron apoptosis
by activating PPARγ/HO-1 in hippocampus in rat model of cerebral
ischemia-reperfusion injury. Int J Clin Exp Pathol. 8:2484–2494.
2015.PubMed/NCBI
|
|
130
|
Lin M, Sun W, Gong W, Ding Y, Zhuang Y and
Hou Q: Ginsenoside Rg1 protects against transient focal cerebral
ischemic injury and suppresses its systemic metabolic changes in
cerebral injury rats. Acta Pharmaceutica Sinica B. 5:277–284. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Xie CL, Li JH, Wang WW, Zheng GQ and Wang
LX: Neuroprotective effect of ginsenoside-Rg1 on cerebral
ischemia/reperfusion injury in rats by downregulating
protease-activated receptor-1 expression. Life Sci. 121:145–151.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sun C, Lai X, Huang X and Zeng Y:
Protective effects of ginsenoside Rg1 on astrocytes and cerebral
ischemic-reperfusion mice. Biol Pharm Bull. 37:1891–1898. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li J, Liu Y, Li W, Wang Z, Guo P, Li L and
Li N: Metabolic profiling of the effects of ginsenoside Re in an
Alzheimer's disease mouse model. Behav Brain Res. 337:160–172.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Hwang JY, Shim JS, Song MY, Yim SV, Lee SE
and Park KS: Proteomic analysis reveals that the protective effects
of ginsenoside Rb1 are associated with the actin cytoskeleton in
β-amyloid-treated neuronal cells. J Ginseng Res. 40:278–284. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Dubois B, Feldman HH, Jacova C, Dekosky
ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D,
Gauthier S, Jicha G, et al: Research criteria for the diagnosis of
Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet
Neurol. 6:734–746. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Heo JH, Lee ST, Chu K, Oh MJ, Park HJ,
Shim JY and Kim M: Heat-processed ginseng enhances the cognitive
function in patients with moderately severe Alzheimer's disease.
Nutr Neurosci. 15:278–282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yang Q, Lin J, Zhang H, Liu Y, Kan M, Xiu
Z, Chen X, Lan X, Shi X, Li N and Qu X: Ginsenoside compound K
regulates amyloid β via the Nrf2/Keap1 signalling pathway in mice
with scopolamine hydrobromide-induced memory impairments. J Mol
Neurosci. 67:62–71. 2019.PubMed/NCBI
|
|
138
|
Lee ST, Chu K, Sim JY, Heo JH and Kim M:
Panax ginseng enhances cognitive performance in Alzheimer
disease. Alzheimer Dis Assoc Disord. 22:222–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Heo JH, Lee ST, Chu K, Oh MJ, Park HJ,
Shim JY and Kim M: An open-label trial of Korean red ginseng as an
adjuvant treatment for cognitive impairment in patients with
Alzheimer's disease. Eur J Neurol. 15:865–868. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Heo JH, Park MH and Lee JH: Effect of
Korean red ginseng on cognitive function and quantitative EEG in
patients with Alzheimer's disease: A preliminary study. J Altern
Complement Med. 22:280–285. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY,
Chu K and Kim M: Improvement of cognitive deficit in Alzheimer's
disease patients by long term treatment with korean red ginseng. J
Ginseng Res. 35:457–461. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Burns A, Gauthier S and Perdomo C:
Efficacy and safety of donepezil over 3 years: An open-label,
multicentre study in patients with Alzheimer's disease. Int J
Geriatr Psychiatry. 22:806–812. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Minthon L, Wallin AK, Eriksson S, Wattmo C
and Andreasen N: Long-term rivastigmine treatment in a routine
clinical setting. Acta Neurol Scand. 119:180–185. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Scholey A, Ossoukhova A, Owen L, Ibarra A,
Pipingas A, He K, Roller M and Stough C: Effects of American
ginseng (Panax quinquefolius) on neurocognitive function: An
acute, randomised, double-blind, placebo-controlled, crossover
study. Psychopharmacology (Berl). 212:345–356. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Liu L, Hoang-Gia T, Wu H, Lee MR, Gu L,
Wang C, Yun BS, Wang Q, Ye S and Sung CK: Ginsenoside Rb1 improves
spatial learning and memory by regulation of cell genesis in the
hippocampal subregions of rats. Brain Res. 1382:147–154. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Huang T, Fang F, Chen L, Zhu Y, Zhang J,
Chen X and Yan SS: Ginsenoside Rg1 attenuates oligomeric
Aβ1-42-induced mitochondrial dysfunction. Curr Alzheimer Res.
9:388–395. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Zhang JT, Liu Y, Qu ZW, Zhang XL and Xiao
HL: [Influence of ginsenoside Rb1 and Rg1 on some central
neurotransmitter receptors and protein biosynthesis in the mouse
brain]. Yao Xue Xue Bao. 23:12–16. 1988.(In Chinese). PubMed/NCBI
|
|
148
|
Ying Y, Zhang JT, Shi CZ, Qu ZW and Liu Y:
[Study on the nootropic mechanism of ginsenoside Rb1 and
Rg1--influence on mouse brain development]. Acta pharmaceutica
Sinica. 29:241–245. 1994.(In Chinese). PubMed/NCBI
|
|
149
|
Zeng XS, Zhou XS, Luo FC, Jia JJ, Qi L,
Yang ZX, Zhang W and Bai J: Comparative analysis of the
neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from
Panax notoginseng against cerebral ischemia. Can J Physiol
Pharmacol. 92:102–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Huang XP, Ding H, Lu JD, Tang YH, Deng BX
and Deng CQ: Effects of the combination of the main active
components of Astragalus and Panax notoginseng on
inflammation and apoptosis of nerve cell after cerebral
ischemia-reperfusion. Am J Chin Med. 43:1419–1438. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Wang X, Zeng C, Lin J, Chen T, Zhao T, Jia
Z, Xie X, Qiu Y, Su M, Jiang T, et al: Metabonomics approach to
assessing the modulatory effects of St John's wort, ginsenosides,
and clomipramine in experimental depression. J Proteome Res.
11:6223–6230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Yamada N, Araki H and Yoshimura H:
Identification of antidepressant-like ingredients in ginseng root
(Panax ginseng C.A. Meyer) using a menopausal
depressive-like state in female mice: Participation of
5-HT2A receptors. Psychopharmacology (Berl).
216:589–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Kang A, Hao H, Zheng X, Liang Y, Xie Y,
Xie T, Dai C, Zhao Q, Wu X, Xie L and Wang G: Peripheral
anti-inflammatory effects explain the ginsenosides paradox between
poor brain distribution and anti-depression efficacy. J
Neuroinflammation. 8:1002011. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Zhang H, Li Z, Zhou Z, Yang H, Zhong Z and
Lou C: Antidepressant-like effects of ginsenosides: A comparison of
ginsenoside Rb3 and its four deglycosylated derivatives,
Rg3, Rh2, compound K, and
20(S)-protopanaxadiol in mice models of despair. Pharmacol
Biochem Behav. 140:17–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z,
Chen C and Li L: Antidepressant-like effects of ginsenoside Rg3 in
mice via activation of the hippocampal BDNF signaling cascade. J
Nat Med. 71:367–379. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Liu X-Y, Zhou X-Y, Hou J-C, Zhu H, Wang Z,
Liu JX and Zheng YQ: Ginsenoside Rd promotes neurogenesis in rat
brain after transient focal cerebral ischemia via activation of
PI3K/Akt pathway. Acta Pharmacol Sin. 36:421–428. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Xie Z, Shi M, Zhang C, Zhao H, Hui H and
Zhao G: Ginsenoside Rd protects against cerebral
ischemia-reperfusion injury via decreasing the expression of the
NMDA receptor 2B subunit and its phosphorylated product. Neurochem
Res. 41:2149–2159. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Chen LM, Zhou XM, Cao YL and Hu WX:
Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion
injury in rats. J Asian Nat Prod Res. 10:439–445. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
He B, Chen P, Yang J, Yun Y, Zhang X, Yang
R and Shen Z: Neuroprotective effect of 20(R)-ginsenoside Rg(3)
against transient focal cerebral ischemia in rats. Neurosci Lett.
526:106–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Jiang B, Xiong Z, Yang J, Wang W, Wang Y,
Hu ZL, Wang F and Chen JG: Antidepressant-like effects of
ginsenoside Rg1 are due to activation of the BDNF signalling
pathway and neurogenesis in the hippocampus. Br J Pharmacol.
166:1872–1887. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Liu Z, Qi Y, Cheng Z, Zhu X, Fan C and Yu
SY: The effects of ginsenoside Rg1 on chronic stress induced
depression-like behaviors, BDNF expression and the phosphorylation
of PKA and CREB in rats. Neuroscience. 322:358–369. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Cui J, Jiang L and Xiang H: Ginsenoside
Rb3 exerts antidepressant-like effects in several animal models. J
Psychopharmacol. 26:697–713. 2012. View Article : Google Scholar : PubMed/NCBI
|