Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2020 Volume 21 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2020 Volume 21 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro

  • Authors:
    • Maciej Brązert
    • Wiesława Kranc
    • Piotr Celichowski
    • Maurycy Jankowski
    • Hanna Piotrowska‑Kempisty
    • Leszek Pawelczyk
    • Małgorzata Bruska
    • Maciej Zabel
    • Michał Nowicki
    • Bartosz Kempisty
  • View Affiliations / Copyright

    Affiliations: Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, 60‑535 Poznań, Poland, Department of Anatomy, Poznań University of Medical Sciences, 60‑781 Poznań, Poland, Department of Histology and Embryology, Poznań University of Medical Sciences, 60‑781 Poznań, Poland, Department of Toxicology, Poznań University of Medical Sciences, 60‑631 Poznań, Poland, Division of Histology and Embryology, Department of Human Morphology and Embryology, Wrocław Medical University, 50‑368 Wrocław, Poland
    Copyright: © Brązert et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Pages: 1749-1760
    |
    Published online on: January 31, 2020
       https://doi.org/10.3892/mmr.2020.10972
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The process of neural tissue formation is associated primarily with the course of neurogenesis during embryonic life. The source of neural‑like cells is stem cells, which, under the influence of appropriate differentiating factors, may differentiate/transdifferentiate towards a neural‑like lineage. The present study suggested that, under long‑term in vitro culture conditions, human ovarian granulosa cells (GCs), obtained from granulosa‑rich follicular fluid, acquired new properties and expressed genes characteristic of the ontological groups ‘neurogenesis’ (GO:0022008), ‘neuronal precursor cell proliferation’ (GO:0061351) and ‘nervous system development’ (GO:0007399), which are closely related to the formation of neurons. The present study collected GCs from 20 women referred for the procedure of in vitro fertilization. Cells were maintained in long‑term in vitro culture for 30 days, and RNA was isolated after 1, 7, 15 and 30 days of culture. The expression profile of individual genes was determined using the Affymetrix microarray method. The 131 genes with the highest expression change in relation to day 1 of culture were then selected; the 10 most affected genes found to be primarily involved in nerve cell formation processes were chosen for consideration in this study: CLDN11, OXTR, DFNA5, ATP8B1, ITGA3, CD9, FRY, NANOS1, CRIM1 and NTN4. The results of the present study revealed that these genes may be considered potential markers of the uninduced differentiation potential of GCs. In addition, it was suggested that GCs may be used to develop a cell line showing neuronal characteristics after 30 days of cultivation. In addition, due to their potential, these cells could possibly be used in the treatment of neurodegenerative diseases, not only in the form of ‘cultured neurons’ but also as producers of factors involved in the regeneration of the nervous system.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski JM: Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 6:33–38. 2018. View Article : Google Scholar

2 

Dzafic E, Stimpfel M and Virant-Klun I: Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 30:1255–1261. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Brevini TAL, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G and Gandolfi F: Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Reports. 10:633–642. 2014. View Article : Google Scholar

4 

Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C and Scherberich A: A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 16:2063–2073. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A and Zhang H: The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 27:210–219. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Ming G and Song H: Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 28:223–250. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Ming GL and Song H: Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron. 70:687–702. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Kriegstein A and Alvarez-Buylla A: The Glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 32:149–184. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Pistorius LR: Imaging of the embryonic and fetal central nervous system. Facts Views Vis Obgyn. 1:66–71. 2009.PubMed/NCBI

10 

Liu A and Niswander LA: Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci. 6:945–954. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Rybska M, Knap S, Stefańska K, Jankowski M, Chamier-Gliszczyńska A, Popis M, Jeseta M, Bukowska D, Antosik P, Kempisty B, et al: Transforming growth factor (TGF)-is it a key protein in mammalian reproductive biology? Med J Cell Biol. 6:125–130. 2018. View Article : Google Scholar

12 

D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza P, et al: Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis. 10:365–377. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Denham M and Dottori M: Neural differentiation of induced pluripotent stem cells. Methods Mol Biol. 793:99–110. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Samoilova EM, Kalsin VA, Kushnir NM, Chistyakov DA, Troitskiy AV and Baklaushev VP: Adult neural stem cells: Basic research and production strategies for neurorestorative therapy. Stem Cells Int. 2018:48354912018. View Article : Google Scholar : PubMed/NCBI

15 

Anchan R, Gerami-Naini B, Lindsey JS, Ho JW, Kiezun A, Lipskind S, Ng N, LiCausi JA, Kim CS, Brezina P, et al: Efficient differentiation of steroidogenic and germ-like cells from epigenetically-related iPSCs derived from ovarian granulosa cells. PLoS One. 10:e01192752015. View Article : Google Scholar : PubMed/NCBI

16 

Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ and Eggan K: Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 9:205–218. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et al: Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Brouwer M, Zhou H and Nadif Kasri N: Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev Rep. 12:54–72. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Attwood SW and Edel MJ: iPS-cell technology and the problem of genetic instability-can it ever be safe for clinical use? J Clin Med. 8(pii): E2882019. View Article : Google Scholar : PubMed/NCBI

20 

Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R and Storch A: Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res. 83:1502–1514. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Zheng B, Wang C, He L, Xu X, Qu J, Hu J and Zhang H: Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF. J Cell Physiol. 228:149–162. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Mollinari C, Zhao J, Lupacchini L, Garaci E, Merlo D and Pei G: Transdifferentiation: A new promise for neurodegenerative diseases. Cell Death Dis. 9:8302018. View Article : Google Scholar : PubMed/NCBI

23 

Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B, Semi K, Namihira M, Komiya S, Smith A and Nakashima K: Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells. 30:1163–1173. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH and Han H: Stem cells: A promising candidate to treat neurological disorders. Neural Regen Res. 13:1294–1304. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Gancheva MR, Kremer KL, Gronthos S and Koblar SA: Using dental pulp stem cells for stroke therapy. Front Neurol. 10:4222019. View Article : Google Scholar : PubMed/NCBI

26 

Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell. 153:707–720. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al: Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 136:964–977. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP, et al: Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16:360–368. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Altman J and Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 124:319–335. 1965. View Article : Google Scholar : PubMed/NCBI

30 

Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, et al: Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 555:377–381. 2018. View Article : Google Scholar : PubMed/NCBI

31 

van Praag H, Kempermann G and Gage FH: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 2:266–270. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, et al: Dynamics of hippocampal neurogenesis in adult humans. Cell. 153:1219–1227. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA and Gage FH: Neurogenesis in the adult human hippocampus. Nat Med. 4:1313–1317. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Dennis CV, Suh LS, Rodriguez ML, Kril JJ and Sutherland GT: Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 42:621–638. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B and Kempermann G: Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One. 5:e88092010. View Article : Google Scholar : PubMed/NCBI

36 

Kempermann G, Kuhn HG and Gage FH: More hippocampal neurons in adult mice living in an enriched environment. Nature. 386:493–495. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Chermuła B, Dyszkiewicz-Konwińska M, et al: Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 151:125–143. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Kranc W, Brązert M, Ożegowska K, Nawrocki MJ, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, et al: Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells-A primary culture approach. Int J Mol Sci. 18(pii): E26732017. View Article : Google Scholar : PubMed/NCBI

39 

Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, et al: ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 19:1705–1715. 2019.PubMed/NCBI

40 

Bryja A, Dyszkiewicz-Konwińska M, Jankowski M, Celichowski P, Stefańska K, Chamier-Gliszczyńska A, Borowiec B, Mehr K, Bukowska D, Antosik P, et al: Cation homeostasis and transport related gene markers are differentially expressed in porcine buccal pouch mucosal cells during long-term cells primary culture in vitro. Med J Cell Biol. 6:83–90. 2018. View Article : Google Scholar

41 

Borys-Wójcik S, Kocherova I, Celichowski P, Popis M, Jeseta M, Bukowska D, Antosik P, Nowicki M and Kempisty B: Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM). Med J Cell Biol. 6:155–162. 2018. View Article : Google Scholar

42 

Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G and Gianaroli L; ESHRE working group on Poor Ovarian Response Definition, : ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum Reprod. 26:1616–1624. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Kranc W, Budna J, Dudek M, Bryja A, Chachuła A, Ciesiółka S, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Porowski L, et al: The origin, in vitro differentiation, and stemness specificity of progenitor cells. J Biol Regul Homeost Agents. 31:365–369. 2017.PubMed/NCBI

44 

Chomczynski P and Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI

45 

Brązert M, Iżycki D, Kranc W, Borowiec B, Popis M, Ożegowska K, Bręborowicz A, Rachoń D, Nowicki M and Kempisty B: Genes involved in hormone metabolism and cellular response in human ovarian granulosa cells. J Biol Regul Homeost Agents. 33:461–468. 2019.PubMed/NCBI

46 

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35((Web Server Issue)): W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Walter W, Sánchez-Cabo F and Ricote M: GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 31:2912–2914. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Kossowska-Tomaszczuk K and De Geyter C: Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013:3108592013. View Article : Google Scholar : PubMed/NCBI

52 

Dzafic E, Stimpfel M, Novakovic S, Cerkovnik P and Virant-Klun I: Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014:5082162014. View Article : Google Scholar : PubMed/NCBI

53 

Poloni A, Maurizi G, Foia F, Mondini E, Mattiucci D, Ambrogini P, Lattanzi D, Mancini S, Falconi M, Cinti S, et al: Glial-like differentiation potential of human mature adipocytes. J Mol Neurosci. 55:91–98. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Zhang L, Feng T and Spicer LJ: The role of tight junction proteins in ovarian follicular development and ovarian cancer. Reproduction. 155:183–198. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Wissing ML, Kristensen SG, Andersen CY, Mikkelsen AL, Høst T, Borup R and Grøndahl ML: Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle. Hum Reprod. 29:997–1010. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF and Rodgers RJ: Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles. PLoS One. 9:e974892014. View Article : Google Scholar : PubMed/NCBI

57 

Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ and Nishimori K: Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA. 102:16096–16101. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Gutkowska J and Jankowski M: Oxytocin revisited: Its role in cardiovascular regulation. J Neuroendocrinol. 24:599–608. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Briones BA and Gould E: Adult neurogenesis and stress. In Stress: Physiology, biochemistry, and pathology. Elsevier; 3. pp. pp79–92. 2019

60 

Peng L and Bonaguidi MA: Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am J Pathol. 188:23–28. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Yoo S and Blackshaw S: Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol. 170:53–66. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastião AM, Rodrigues CMP and Solá S: Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol Neurobiol. 55:3725–3738. 2018.PubMed/NCBI

63 

Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, et al: Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 22:589–599.e5. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Danzer SC: Adult neurogenesis in the human brain: Paradise lost? Epilepsy Curr. 18:329–331. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Lin YT, Chen CC, Huang CC, Nishimori K and Hsu KS: Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun. 8:5372017. View Article : Google Scholar : PubMed/NCBI

66 

Zimmerman EA, Nilaver G, Hou-Yu A and Silverman AL: Vasopressinergic and oxytocinergic pathways in the central nervous system. Fed Proc. 43:91–96. 1984.PubMed/NCBI

67 

Busch-Nentwich E, Söllner C, Roehl H and Nicolson T: The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development. 131:943–951. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L and Kroemer G: Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology. 6:e12993022017. View Article : Google Scholar : PubMed/NCBI

69 

Webb MS, Miller AL and Thompson EB: In CEM cells the autosomal deafness gene dfna5 is regulated by glucocorticoids and forskolin. J Steroid Biochem Mol Biol. 107:15–21. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Yao X, Buhi WC, Alvarez IM, Curtis LM and Rarey KE: De novo synthesis of glucocorticoid hormone regulated inner ear proteins in rats. Hear Res. 86:183–188. 1995. View Article : Google Scholar : PubMed/NCBI

71 

Croes L, Beyens M, Fransen E, Ibrahim J, Vanden Berghe W, Suls A, Peeters M, Pauwels P, Van Camp G and Op de Beeck K: Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin Epigenetics. 10:512018. View Article : Google Scholar : PubMed/NCBI

72 

Assou S, Haouzi D, Dechaud H, Gala A, Ferrières A and Hamamah S: Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments. Biomed Res Int. 2013:3545822013. View Article : Google Scholar : PubMed/NCBI

73 

Chen Y, Teng FY and Tang BL: Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: Progress and uncertainties. Cell Mol Life Sci. 63:1649–1657. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Qin X, Han W and Yu Z: Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease. Neural Regen Res. 7:2673–2680. 2012.PubMed/NCBI

75 

Lilja J and Ivaska J: Integrin activity in neuronal connectivity. J Cell Sci. 131(pii): jcs2128032018. View Article : Google Scholar : PubMed/NCBI

76 

Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR, Tang SC, Coksaygan T, Hall PE, Chigurupati S, Patton B, et al: beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol. 7:e10001762009. View Article : Google Scholar : PubMed/NCBI

77 

Honda T, Fujiwara H, Ueda M, Maeda M and Mori T: Integrin alpha 6 is a differentiation antigen of human granulosa cells. J Clin Endocrinol Metab. 80:2899–2905. 1995. View Article : Google Scholar : PubMed/NCBI

78 

Kolle G, Georgas K, Holmes GP, Little MH and Yamada T: CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech Dev. 90:181–193. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Prenkert M, Uggla B, Tidefelt U and Strid H: CRIM1 is expressed at higher levels in drug-resistant than in drug-sensitive myeloid leukemia HL60 cells. Anticancer Res. 30:4157–4161. 2010.PubMed/NCBI

80 

Iwasaki Y, Shiojima T, Tagaya N, Kobayashi T and Kinoshita M: Effect of transforming growth factor β1 on spinal motor neurons after axotomy. J Neurol Sci. 147:9–12. 1997. View Article : Google Scholar : PubMed/NCBI

81 

Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón MA, Nakashima K, et al: Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell. 7:78–89. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Blázquez-Medela AM, Jumabay M and Boström KI: Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev. 20:648–658. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Nilsson EE and Skinner MK: Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod. 69:1265–1272. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Takao Y, Fujiwara H, Yamada S, Hirano T, Maeda M, Fujii S and Ueda M: CD9 is expressed on the cell surface of human granulosa cells and associated with integrin alpha61. Mol Hum Reprod. 5:303–310. 1999. View Article : Google Scholar : PubMed/NCBI

85 

Hayati AR, Nur Fariha MM, Tan GC, Tan AE and Chua K: Potential of human decidua stem cells for angiogenesis and neurogenesis. Arch Med Res. 42:291–300. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Yang Y, Ye Y, Su X, He J, Bai W and He X: MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 11:552017. View Article : Google Scholar : PubMed/NCBI

87 

Virant-Klun I, Rožman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rülicke T, Dovc P and Meden-Vrtovec H: Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 18:137–150. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K and Kobayashi S: Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol. 1:431–437. 1999. View Article : Google Scholar : PubMed/NCBI

89 

Wang Z and Lin H: Nanos maintains germline stem cell self-renewal by preventing differentiation. Science. 303:2016–2019. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Subramaniam K and Seydoux G: nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 126:4861–4871. 1999.PubMed/NCBI

91 

Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M and Reijo Pera RA: Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev Genes Evol. 213:120–126. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Virant-Klun I, Knez K, Tomazevic T and Skutella T: Gene expression profiling of human oocytes developed and matured in vivo or in vitro. Biomed Res Int. 2013:8794892013. View Article : Google Scholar : PubMed/NCBI

93 

Julaton VT and Reijo Pera RA: NANOS3 function in human germ cell development. Hum Mol Genet. 20:2238–2250. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Brązert M, Kranc W, Celichowski P, Jankowski M, Piotrowska‑Kempisty H, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B, Kempisty B, et al: Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol Med Rep 21: 1749-1760, 2020.
APA
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L. ... Kempisty, B. (2020). Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Molecular Medicine Reports, 21, 1749-1760. https://doi.org/10.3892/mmr.2020.10972
MLA
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro". Molecular Medicine Reports 21.4 (2020): 1749-1760.
Chicago
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro". Molecular Medicine Reports 21, no. 4 (2020): 1749-1760. https://doi.org/10.3892/mmr.2020.10972
Copy and paste a formatted citation
x
Spandidos Publications style
Brązert M, Kranc W, Celichowski P, Jankowski M, Piotrowska‑Kempisty H, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B, Kempisty B, et al: Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol Med Rep 21: 1749-1760, 2020.
APA
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L. ... Kempisty, B. (2020). Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Molecular Medicine Reports, 21, 1749-1760. https://doi.org/10.3892/mmr.2020.10972
MLA
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro". Molecular Medicine Reports 21.4 (2020): 1749-1760.
Chicago
Brązert, M., Kranc, W., Celichowski, P., Jankowski, M., Piotrowska‑Kempisty, H., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro". Molecular Medicine Reports 21, no. 4 (2020): 1749-1760. https://doi.org/10.3892/mmr.2020.10972
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team