|
1
|
Rybska M, Knap S, Jankowski M, Jeseta M,
Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski
JM: Characteristic of factors influencing the proper course of
folliculogenesis in mammals. Med J Cell Biol. 6:33–38. 2018.
View Article : Google Scholar
|
|
2
|
Dzafic E, Stimpfel M and Virant-Klun I:
Plasticity of granulosa cells: On the crossroad of stemness and
transdifferentiation potential. J Assist Reprod Genet.
30:1255–1261. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brevini TAL, Pennarossa G, Rahman MM,
Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G and
Gandolfi F: Morphological and molecular changes of human granulosa
cells exposed to 5-azacytidine and addressed toward muscular
differentiation. Stem Cell Rev Reports. 10:633–642. 2014.
View Article : Google Scholar
|
|
4
|
Kossowska-Tomaszczuk K, Pelczar P, Güven
S, Kowalski J, Volpi E, De Geyter C and Scherberich A: A novel
three-dimensional culture system allows prolonged culture of
functional human granulosa cells and mimics the ovarian
environment. Tissue Eng Part A. 16:2063–2073. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kossowska-Tomaszczuk K, De Geyter C, De
Geyter M, Martin I, Holzgreve W, Scherberich A and Zhang H: The
multipotency of luteinizing granulosa cells collected from mature
ovarian follicles. Stem Cells. 27:210–219. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ming G and Song H: Adult neurogenesis in
the mammalian central nervous system. Annu Rev Neurosci.
28:223–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ming GL and Song H: Adult neurogenesis in
the mammalian brain: Significant answers and significant questions.
Neuron. 70:687–702. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kriegstein A and Alvarez-Buylla A: The
Glial nature of embryonic and adult neural stem cells. Annu Rev
Neurosci. 32:149–184. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pistorius LR: Imaging of the embryonic and
fetal central nervous system. Facts Views Vis Obgyn. 1:66–71.
2009.PubMed/NCBI
|
|
10
|
Liu A and Niswander LA: Bone morphogenetic
protein signalling and vertebrate nervous system development. Nat
Rev Neurosci. 6:945–954. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rybska M, Knap S, Stefańska K, Jankowski
M, Chamier-Gliszczyńska A, Popis M, Jeseta M, Bukowska D, Antosik
P, Kempisty B, et al: Transforming growth factor (TGF)-is it a key
protein in mammalian reproductive biology? Med J Cell Biol.
6:125–130. 2018. View Article : Google Scholar
|
|
12
|
D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR,
Johnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza
P, et al: Large-scale generation of human iPSC-derived neural stem
cells/early neural progenitor cells and their neuronal
differentiation. Organogenesis. 10:365–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Denham M and Dottori M: Neural
differentiation of induced pluripotent stem cells. Methods Mol
Biol. 793:99–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Samoilova EM, Kalsin VA, Kushnir NM,
Chistyakov DA, Troitskiy AV and Baklaushev VP: Adult neural stem
cells: Basic research and production strategies for
neurorestorative therapy. Stem Cells Int. 2018:48354912018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Anchan R, Gerami-Naini B, Lindsey JS, Ho
JW, Kiezun A, Lipskind S, Ng N, LiCausi JA, Kim CS, Brezina P, et
al: Efficient differentiation of steroidogenic and germ-like cells
from epigenetically-related iPSCs derived from ovarian granulosa
cells. PLoS One. 10:e01192752015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Son EY, Ichida JK, Wainger BJ, Toma JS,
Rafuse VF, Woolf CJ and Eggan K: Conversion of mouse and human
fibroblasts into functional spinal motor neurons. Cell Stem Cell.
9:205–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Miyoshi N, Ishii H, Nagano H, Haraguchi N,
Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et
al: Reprogramming of mouse and human cells to pluripotency using
mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Brouwer M, Zhou H and Nadif Kasri N:
Choices for induction of pluripotency: Recent developments in human
induced pluripotent stem cell reprogramming strategies. Stem Cell
Rev Rep. 12:54–72. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Attwood SW and Edel MJ: iPS-cell
technology and the problem of genetic instability-can it ever be
safe for clinical use? J Clin Med. 8(pii): E2882019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hermann A, Liebau S, Gastl R, Fickert S,
Habisch HJ, Fiedler J, Schwarz J, Brenner R and Storch A:
Comparative analysis of neuroectodermal differentiation capacity of
human bone marrow stromal cells using various conversion protocols.
J Neurosci Res. 83:1502–1514. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zheng B, Wang C, He L, Xu X, Qu J, Hu J
and Zhang H: Neural differentiation of mesenchymal stem cells
influences chemotactic responses to HGF. J Cell Physiol.
228:149–162. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mollinari C, Zhao J, Lupacchini L, Garaci
E, Merlo D and Pei G: Transdifferentiation: A new promise for
neurodegenerative diseases. Cell Death Dis. 9:8302018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fujimoto Y, Abematsu M, Falk A, Tsujimura
K, Sanosaka T, Juliandi B, Semi K, Namihira M, Komiya S, Smith A
and Nakashima K: Treatment of a mouse model of spinal cord injury
by transplantation of human induced pluripotent stem cell-derived
long-term self-renewing neuroepithelial-like stem cells. Stem
Cells. 30:1163–1173. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ,
Li YQ, Zheng MH and Han H: Stem cells: A promising candidate to
treat neurological disorders. Neural Regen Res. 13:1294–1304. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gancheva MR, Kremer KL, Gronthos S and
Koblar SA: Using dental pulp stem cells for stroke therapy. Front
Neurol. 10:4222019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang B, Gaiteri C, Bodea LG, Wang Z,
McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et
al: Integrated systems approach identifies genetic nodes and
networks in late-onset Alzheimer's disease. Cell. 153:707–720.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Soldner F, Hockemeyer D, Beard C, Gao Q,
Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al:
Parkinson's disease patient-derived induced pluripotent stem cells
free of viral reprogramming factors. Cell. 136:964–977. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hess DC, Wechsler LR, Clark WM, Savitz SI,
Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP, et
al: Safety and efficacy of multipotent adult progenitor cells in
acute ischaemic stroke (MASTERS): A randomised, double-blind,
placebo-controlled, phase 2 trial. Lancet Neurol. 16:360–368. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Altman J and Das GD: Autoradiographic and
histological evidence of postnatal hippocampal neurogenesis in
rats. J Comp Neurol. 124:319–335. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sorrells SF, Paredes MF, Cebrian-Silla A,
Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI,
et al: Human hippocampal neurogenesis drops sharply in children to
undetectable levels in adults. Nature. 555:377–381. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
van Praag H, Kempermann G and Gage FH:
Running increases cell proliferation and neurogenesis in the adult
mouse dentate gyrus. Nat Neurosci. 2:266–270. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Spalding KL, Bergmann O, Alkass K, Bernard
S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C,
Buchholz BA, et al: Dynamics of hippocampal neurogenesis in adult
humans. Cell. 153:1219–1227. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Eriksson PS, Perfilieva E, Björk-Eriksson
T, Alborn AM, Nordborg C, Peterson DA and Gage FH: Neurogenesis in
the adult human hippocampus. Nat Med. 4:1313–1317. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ
and Sutherland GT: Human adult neurogenesis across the ages: An
immunohistochemical study. Neuropathol Appl Neurobiol. 42:621–638.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Knoth R, Singec I, Ditter M, Pantazis G,
Capetian P, Meyer RP, Horvat V, Volk B and Kempermann G: Murine
features of neurogenesis in the human hippocampus across the
lifespan from 0 to 100 years. PLoS One. 5:e88092010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kempermann G, Kuhn HG and Gage FH: More
hippocampal neurons in adult mice living in an enriched
environment. Nature. 386:493–495. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kranc W, Brązert M, Budna J, Celichowski
P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Chermuła B,
Dyszkiewicz-Konwińska M, et al: Genes responsible for
proliferation, differentiation, and junction adhesion are
significantly up-regulated in human ovarian granulosa cells during
a long-term primary in vitro culture. Histochem Cell Biol.
151:125–143. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kranc W, Brązert M, Ożegowska K, Nawrocki
MJ, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M,
Jeseta M, Pawelczyk L, et al: Expression profile of genes
regulating steroid biosynthesis and metabolism in human ovarian
granulosa cells-A primary culture approach. Int J Mol Sci. 18(pii):
E26732017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kranc W, Brązert M, Celichowski P, Bryja
A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L,
Bręborowicz A, et al: ‘Heart development and morphogenesis’ is a
novel pathway for human ovarian granulosa cell differentiation
during long-term in vitro cultivation-a microarray approach. Mol
Med Rep. 19:1705–1715. 2019.PubMed/NCBI
|
|
40
|
Bryja A, Dyszkiewicz-Konwińska M,
Jankowski M, Celichowski P, Stefańska K, Chamier-Gliszczyńska A,
Borowiec B, Mehr K, Bukowska D, Antosik P, et al: Cation
homeostasis and transport related gene markers are differentially
expressed in porcine buccal pouch mucosal cells during long-term
cells primary culture in vitro. Med J Cell Biol. 6:83–90. 2018.
View Article : Google Scholar
|
|
41
|
Borys-Wójcik S, Kocherova I, Celichowski
P, Popis M, Jeseta M, Bukowska D, Antosik P, Nowicki M and Kempisty
B: Protein oligomerization is the biochemical process highly
up-regulated in porcine oocytes before in vitro maturation (IVM).
Med J Cell Biol. 6:155–162. 2018. View Article : Google Scholar
|
|
42
|
Ferraretti AP, La Marca A, Fauser BCJM,
Tarlatzis B, Nargund G and Gianaroli L; ESHRE working group on Poor
Ovarian Response Definition, : ESHRE consensus on the definition of
‘poor response’ to ovarian stimulation for in vitro fertilization:
The Bologna criteria. Hum Reprod. 26:1616–1624. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kranc W, Budna J, Dudek M, Bryja A,
Chachuła A, Ciesiółka S, Borys S, Dyszkiewicz-Konwińska M, Jeseta
M, Porowski L, et al: The origin, in vitro differentiation, and
stemness specificity of progenitor cells. J Biol Regul Homeost
Agents. 31:365–369. 2017.PubMed/NCBI
|
|
44
|
Chomczynski P and Sacchi N: Single-step
method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction. Anal Biochem.
162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Brązert M, Iżycki D, Kranc W, Borowiec B,
Popis M, Ożegowska K, Bręborowicz A, Rachoń D, Nowicki M and
Kempisty B: Genes involved in hormone metabolism and cellular
response in human ovarian granulosa cells. J Biol Regul Homeost
Agents. 33:461–468. 2019.PubMed/NCBI
|
|
46
|
Huang DW, Sherman BT, Tan Q, Kir J, Liu D,
Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA:
DAVID bioinformatics resources: Expanded annotation database and
novel algorithms to better extract biology from large gene lists.
Nucleic Acids Res. 35((Web Server Issue)): W169–W175. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Walter W, Sánchez-Cabo F and Ricote M:
GOplot: An R package for visually combining expression data with
functional analysis. Bioinformatics. 31:2912–2914. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kossowska-Tomaszczuk K and De Geyter C:
Cells with stem cell characteristics in somatic compartments of the
ovary. Biomed Res Int. 2013:3108592013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dzafic E, Stimpfel M, Novakovic S,
Cerkovnik P and Virant-Klun I: Expression of mesenchymal stem
cells-related genes and plasticity of aspirated follicular cells
obtained from infertile women. Biomed Res Int. 2014:5082162014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Poloni A, Maurizi G, Foia F, Mondini E,
Mattiucci D, Ambrogini P, Lattanzi D, Mancini S, Falconi M, Cinti
S, et al: Glial-like differentiation potential of human mature
adipocytes. J Mol Neurosci. 55:91–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang L, Feng T and Spicer LJ: The role of
tight junction proteins in ovarian follicular development and
ovarian cancer. Reproduction. 155:183–198. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wissing ML, Kristensen SG, Andersen CY,
Mikkelsen AL, Høst T, Borup R and Grøndahl ML: Identification of
new ovulation-related genes in humans by comparing the
transcriptome of granulosa cells before and after ovulation
triggering in the same controlled ovarian stimulation cycle. Hum
Reprod. 29:997–1010. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hatzirodos N, Hummitzsch K, Irving-Rodgers
HF and Rodgers RJ: Transcriptome profiling of the theca interna in
transition from small to large antral ovarian follicles. PLoS One.
9:e974892014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Takayanagi Y, Yoshida M, Bielsky IF, Ross
HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young
LJ and Nishimori K: Pervasive social deficits, but normal
parturition, in oxytocin receptor-deficient mice. Proc Natl Acad
Sci USA. 102:16096–16101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gutkowska J and Jankowski M: Oxytocin
revisited: Its role in cardiovascular regulation. J
Neuroendocrinol. 24:599–608. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Briones BA and Gould E: Adult neurogenesis
and stress. In Stress: Physiology, biochemistry, and pathology.
Elsevier; 3. pp. pp79–92. 2019
|
|
60
|
Peng L and Bonaguidi MA: Function and
dysfunction of adult hippocampal neurogenesis in regeneration and
disease. Am J Pathol. 188:23–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yoo S and Blackshaw S: Regulation and
function of neurogenesis in the adult mammalian hypothalamus. Prog
Neurobiol. 170:53–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Soares R, Ribeiro FF, Xapelli S, Genebra
T, Ribeiro MF, Sebastião AM, Rodrigues CMP and Solá S:
Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural
stem cell pool, and early neurogenesis in adult rats. Mol
Neurobiol. 55:3725–3738. 2018.PubMed/NCBI
|
|
63
|
Boldrini M, Fulmore CA, Tartt AN, Simeon
LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork
AJ, et al: Human hippocampal neurogenesis persists throughout
aging. Cell Stem Cell. 22:589–599.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Danzer SC: Adult neurogenesis in the human
brain: Paradise lost? Epilepsy Curr. 18:329–331. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin YT, Chen CC, Huang CC, Nishimori K and
Hsu KS: Oxytocin stimulates hippocampal neurogenesis via oxytocin
receptor expressed in CA3 pyramidal neurons. Nat Commun. 8:5372017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zimmerman EA, Nilaver G, Hou-Yu A and
Silverman AL: Vasopressinergic and oxytocinergic pathways in the
central nervous system. Fed Proc. 43:91–96. 1984.PubMed/NCBI
|
|
67
|
Busch-Nentwich E, Söllner C, Roehl H and
Nicolson T: The deafness gene dfna5 is crucial for ugdh expression
and HA production in the developing ear in zebrafish. Development.
131:943–951. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L
and Kroemer G: Pro-necrotic molecules impact local
immunosurveillance in human breast cancer. Oncoimmunology.
6:e12993022017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Webb MS, Miller AL and Thompson EB: In CEM
cells the autosomal deafness gene dfna5 is regulated by
glucocorticoids and forskolin. J Steroid Biochem Mol Biol.
107:15–21. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yao X, Buhi WC, Alvarez IM, Curtis LM and
Rarey KE: De novo synthesis of glucocorticoid hormone regulated
inner ear proteins in rats. Hear Res. 86:183–188. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Croes L, Beyens M, Fransen E, Ibrahim J,
Vanden Berghe W, Suls A, Peeters M, Pauwels P, Van Camp G and Op de
Beeck K: Large-scale analysis of DFNA5 methylation reveals its
potential as biomarker for breast cancer. Clin Epigenetics.
10:512018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Assou S, Haouzi D, Dechaud H, Gala A,
Ferrières A and Hamamah S: Comparative gene expression profiling in
human cumulus cells according to ovarian gonadotropin treatments.
Biomed Res Int. 2013:3545822013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen Y, Teng FY and Tang BL: Coaxing bone
marrow stromal mesenchymal stem cells towards neuronal
differentiation: Progress and uncertainties. Cell Mol Life Sci.
63:1649–1657. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Qin X, Han W and Yu Z: Neuronal-like
differentiation of bone marrow-derived mesenchymal stem cells
induced by striatal extracts from a rat model of Parkinson's
disease. Neural Regen Res. 7:2673–2680. 2012.PubMed/NCBI
|
|
75
|
Lilja J and Ivaska J: Integrin activity in
neuronal connectivity. J Cell Sci. 131(pii): jcs2128032018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Loulier K, Lathia JD, Marthiens V, Relucio
J, Mughal MR, Tang SC, Coksaygan T, Hall PE, Chigurupati S, Patton
B, et al: beta1 integrin maintains integrity of the embryonic
neocortical stem cell niche. PLoS Biol. 7:e10001762009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Honda T, Fujiwara H, Ueda M, Maeda M and
Mori T: Integrin alpha 6 is a differentiation antigen of human
granulosa cells. J Clin Endocrinol Metab. 80:2899–2905. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kolle G, Georgas K, Holmes GP, Little MH
and Yamada T: CRIM1, a novel gene encoding a cysteine-rich repeat
protein, is developmentally regulated and implicated in vertebrate
CNS development and organogenesis. Mech Dev. 90:181–193. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Prenkert M, Uggla B, Tidefelt U and Strid
H: CRIM1 is expressed at higher levels in drug-resistant than in
drug-sensitive myeloid leukemia HL60 cells. Anticancer Res.
30:4157–4161. 2010.PubMed/NCBI
|
|
80
|
Iwasaki Y, Shiojima T, Tagaya N, Kobayashi
T and Kinoshita M: Effect of transforming growth factor β1 on
spinal motor neurons after axotomy. J Neurol Sci. 147:9–12. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mira H, Andreu Z, Suh H, Lie DC,
Jessberger S, Consiglio A, San Emeterio J, Hortigüela R,
Marqués-Torrejón MA, Nakashima K, et al: Signaling through BMPR-IA
regulates quiescence and long-term activity of neural stem cells in
the adult hippocampus. Cell Stem Cell. 7:78–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Blázquez-Medela AM, Jumabay M and Boström
KI: Beyond the bone: Bone morphogenetic protein signaling in
adipose tissue. Obes Rev. 20:648–658. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nilsson EE and Skinner MK: Bone
morphogenetic protein-4 acts as an ovarian follicle survival factor
and promotes primordial follicle development. Biol Reprod.
69:1265–1272. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Takao Y, Fujiwara H, Yamada S, Hirano T,
Maeda M, Fujii S and Ueda M: CD9 is expressed on the cell surface
of human granulosa cells and associated with integrin alpha61. Mol
Hum Reprod. 5:303–310. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hayati AR, Nur Fariha MM, Tan GC, Tan AE
and Chua K: Potential of human decidua stem cells for angiogenesis
and neurogenesis. Arch Med Res. 42:291–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang Y, Ye Y, Su X, He J, Bai W and He X:
MSCs-derived exosomes and neuroinflammation, neurogenesis and
therapy of traumatic brain injury. Front Cell Neurosci. 11:552017.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Virant-Klun I, Rožman P, Cvjeticanin B,
Vrtacnik-Bokal E, Novakovic S, Rülicke T, Dovc P and Meden-Vrtovec
H: Parthenogenetic embryo-like structures in the human ovarian
surface epithelium cell culture in postmenopausal women with no
naturally present follicles and oocytes. Stem Cells Dev.
18:137–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Asaoka-Taguchi M, Yamada M, Nakamura A,
Hanyu K and Kobayashi S: Maternal Pumilio acts together with Nanos
in germline development in Drosophila embryos. Nat Cell Biol.
1:431–437. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang Z and Lin H: Nanos maintains germline
stem cell self-renewal by preventing differentiation. Science.
303:2016–2019. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Subramaniam K and Seydoux G: nos-1 and
nos-2, two genes related to Drosophila nanos, regulate primordial
germ cell development and survival in Caenorhabditis
elegans. Development. 126:4861–4871. 1999.PubMed/NCBI
|
|
91
|
Jaruzelska J, Kotecki M, Kusz K, Spik A,
Firpo M and Reijo Pera RA: Conservation of a Pumilio-Nanos complex
from Drosophila germ plasm to human germ cells. Dev Genes Evol.
213:120–126. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Virant-Klun I, Knez K, Tomazevic T and
Skutella T: Gene expression profiling of human oocytes developed
and matured in vivo or in vitro. Biomed Res Int. 2013:8794892013.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Julaton VT and Reijo Pera RA: NANOS3
function in human germ cell development. Hum Mol Genet.
20:2238–2250. 2011. View Article : Google Scholar : PubMed/NCBI
|