Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway

  • Authors:
    • Shuting Zhu
    • Hong Wang
    • Zhihua Zhang
    • Mingming Ma
    • Zhi Zheng
    • Xun Xu
    • Tao Sun
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4837-4847
    |
    Published online on: October 11, 2020
       https://doi.org/10.3892/mmr.2020.11578
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Insulin‑like growth factor binding protein‑related protein 1 (IGFBP‑rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP‑rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro‑angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP‑rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age‑related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription‑quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP‑rP1‑silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP‑rP1‑silencing in RF/6A cells without cytotoxicity. IGFBP‑rP1‑silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia‑induced migration and capillary‑like tube formation of RF/6A cells. Furthermore, IGFBP‑rP1‑silencing significantly upregulated the expression of B‑RAF, phosphorylated (p)‑MEK, p‑ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP‑rP1. These data indicated that silencing IGFBP‑rP1 expression in RF/6A cells effectively promoted the hypoxia‑induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J: Vascular-specific growth factors and blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Daien V, Eldem BM, Talks JS, Korobelnik JF, Mitchell P, Finger RP, Sakamoto T, Wong TY, Evuarherhe O, Carter G and Carrasco J: Real-world data in retinal diseases treated with anti-vascular endothelial growth factor (anti-VEGF) therapy-a systematic approach to identify and characterize data sources. BMC Ophthalmol. 19:2062019. View Article : Google Scholar : PubMed/NCBI

3 

Campbell M and Doyle SL: Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochem Pharmacol. 164:321–325. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Campochiaro PA: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 49:67–81. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Wang H, Chai Z, Hu D, Ji Q, Xin J, Zhang C and Zhong J: A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genomics. 20:612019. View Article : Google Scholar : PubMed/NCBI

6 

Park SM, Lee K, Huh M, Eom S, Park B, Kim KH, Park DH, Kim DS and Kim HK: Development of an in vitro 3D choroidal neovascularization model using chemically induced hypoxia through an ultra-thin, free-standing nanofiber membrane. Mater Sci Eng C Mater Biol Appl. 104:1099642019. View Article : Google Scholar : PubMed/NCBI

7 

Alivand MR, Sabouni F and Soheili ZS: Probable chemical hypoxia effects on progress of CNV through induction of promoter CpG demethylation and overexpression of IL17RC in human RPE cells. Curr Eye Res. 41:1245–1254. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Andre H, Tunik S, Aronsson M and Kvanta A: Hypoxia-inducible factor-1α is associated with sprouting angiogenesis in the murine laser-induced choroidal neovascularization model. Invest Ophthalmol Vis Sci. 56:6591–6604. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW and Hartnett ME: Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 27:331–371. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Hwa V, Oh Y and Rosenfeld RG: The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 20:761–787. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Forbes BE, McCarthy P and Norton RS: Insulin-like growth factor binding proteins: A structural perspective. Front Endocrinol (Lausanne). 3:382012. View Article : Google Scholar : PubMed/NCBI

12 

Sun T, Cao H, Xu L, Zhu B, Gu Q and Xu X: Insulin-like growth factor binding protein-related protein 1 mediates VEGF-induced proliferation, migration and tube formation of retinal endothelial cells. Curr Eye Res. 36:341–349. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Zhang P, Wang H, Cao H, Xu X and Sun T: Insulin-like growth factor binding protein-related protein 1 inhibit retinal neovascularization in the mouse model of oxygen-induced retinopathy. J Ocul Pharmacol Ther. 33:459–465. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Sung HJ, Han JI, Lee JW, Uhm KB and Heo K: TCCR/WSX-1 is a novel angiogenic factor in age-related macular degeneration. Mol Vis. 18:234–240. 2012.PubMed/NCBI

15 

Zhu M, Liu X, Wang S, Miao J, Wu L, Yang X, Wang Y, Kang L, Li W, Cui C, et al: PKR promotes choroidal neovascularization via upregulating the PI3K/Akt signaling pathway in VEGF expression. Mol Vis. 22:1361–1374. 2016.PubMed/NCBI

16 

Feng Y, Wang J, Yuan Y, Zhang X, Shen M and Yuan F: miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7. Faseb J. 32:1626–1639. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Chan C, Hsiao C, Li H, Fang J, Chang D and Hung C: The inhibitory effects of gold nanoparticles on VEGF-A-induced cell migration in choroid-retina endothelial cells. Int J Mol Sci. 21:1092019. View Article : Google Scholar

18 

Liu Z, Liu H, Fang W, Yang Y, Wang H and Peng J: Insulin-like growth factor binding protein 7 modulates estrogen-induced trophoblast proliferation and invasion in HTR-8 and JEG-3 cells. Cell Biochem Biophys. 63:73–84. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Tamura K, Yoshie M, Hashimoto K and Tachikawa E: Inhibitory effect of insulin-like growth factor-binding protein-7 (IGFBP7) on in vitro angiogenesis of vascular endothelial cells in the rat corpus luteum. J Reprod Dev. 60:447–453. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Verhagen HJMP, van Gils N, Martiañez T, van Rhenen A, Rutten A, Denkers F, de Leeuw DC, Smit MA, Tsui M, de Vos Klootwijk LLE, et al: IGFBP7 induces differentiation and loss of survival of human acute myeloid leukemia stem cells without affecting normal hematopoiesis. Cell Rep. 25:3021–3035. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Rozing MP, Durhuus JA, Krogh NM, Subhi Y, Kirkwood TB, Westendorp RG and Sørensen TL: Age-related macular degeneration: A two-level model hypothesis. Prog Retin Eye Res. 100825:2019.

22 

Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY and Wong TY: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health. 2:e106–e116. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Pascolini D and Mariotti SP: Global estimates of visual impairment: 2010. Br J Ophthalmol. 96:614–618. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Lipecz A, Miller L, Kovacs I, Czako C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A and Conley S: Microvascular contributions to age-related macular degeneration (AMD): From mechanisms of choriocapillaris aging to novel interventions. Geroscience. 41:813–845. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE and Ambati BK: Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res. 54:64–102. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Pan H and Finkel T: Key proteins and pathways that regulate lifespan. J Biol Chem. 292:6452–6460. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Jesko H, Stepien A, Lukiw WJ and Strosznajder RP: The cross-talk between sphingolipids and insulin-like growth factor signaling: Significance for aging and neurodegeneration. Mol Neurobiol. 56:3501–3521. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Haywood NJ, Slater TA, Matthews CJ and Wheatcroft SB: The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol Metab. 19:86–96. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Slater T, Haywood NJ, Matthews C, Cheema H and Wheatcroft SB: Insulin-like growth factor binding proteins and angiogenesis: From cancer to cardiovascular disease. Cytokine Growth Factor Rev. 46:28–35. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Bach LA: Endothelial cells and the IGF system. J Mol Endocrinol. 54:R1–R13. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Cha DM, Woo SJ, Kim HJ, Lee C and Park KH: Comparative analysis of aqueous humor cytokine levels between patients with exudative age-related macular degeneration and normal controls. Invest Ophthalmol Vis Sci. 54:7038–7044. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Zhu S, Xu F, Zhang J, Ruan W and Lai M: Insulin-like growth factor binding protein-related protein 1 and cancer. Clin Chim Acta. 431:23–32. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Wilson HM, Birnbaum RS, Poot M, Quinn LS and Swisshelm K: Insulin-like growth factor binding protein-related protein 1 inhibits proliferation of MCF-7 breast cancer cells via a senescence-like mechanism. Cell Growth Differ. 13:205–213. 2002.PubMed/NCBI

34 

Mutaguchi K, Yasumoto H, Mita K, Matsubara A, Shiina H, Igawa M, Dahiya R and Usui T: Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer. Cancer Res. 63:7717–7723. 2003.PubMed/NCBI

35 

Hu S, Chen R, Man X, Feng X, Cen J, Gu W, He H, Li J, Chai Y and Chen Z: Function and expression of insulin-like growth factor-binding protein 7 (IGFBP7) gene in childhood acute myeloid leukemia. Pediatr Hematol Oncol. 28:279–287. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Laranjeira AB, de Vasconcellos JF, Sodek L, Spago MC, Fornazim MC, Tone LG, Brandalise SR, Nowill AE and Yunes JA: IGFBP7 participates in the reciprocal interaction between acute lymphoblastic leukemia and BM stromal cells and in leukemia resistance to asparaginase. Leukemia. 26:1001–1011. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Burger AM, Leyland-Jones B, Banerjee K, Spyropoulos DD and Seth AK: Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. Eur J Cancer. 41:1515–1527. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Zhu S, Zhang J, Xu F, Xu E, Ruan W, Ma Y, Huang Q and Lai M: IGFBP-rP1 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer. Cell Death Dis. 6:e16952015. View Article : Google Scholar : PubMed/NCBI

39 

Seki M, Teishima J, Mochizuki H, Mutaguchi K, Yasumoto H, Oka K, Nagamatsu H, Shoji K and Matsubara A: Restoration of IGFBP-rP1 increases radiosensitivity and chemosensitivity in hormone-refractory human prostate cancer. Hiroshima J Med Sci. 62:13–19. 2013.PubMed/NCBI

40 

Akiel M, Guo C, Li X, Rajasekaran D, Mendoza RG, Robertson CL, Jariwala N, Yuan F, Subler MA, Windle J, et al: IGFBP7 deletion promotes hepatocellular carcinoma. Cancer Res. 77:4014–4025. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Jiang H, Wu M, Liu Y, Song L, Li S, Wang X, Zhang YF, Fang J and Wu S: Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells. J Neurochem. 143:375–388. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Chen S, Zhou Y, Zhou L, Guan Y, Zhang Y and Han X: Anti-neovascularization effects of DMBT in age-related macular degeneration by inhibition of VEGF secretion through ROS-dependent signaling pathway. Mol Cell Biochem. 448:225–235. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Milhavet O, Gary DS and Mattson MP: RNA interference in biology and medicine. Pharmacol Rev. 55:629–648. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Tam C, Wong JH, Cheung R, Zuo T and Ng TB: Therapeutic potentials of short interfering RNAs. Appl Microbiol Biotechnol. 101:7091–7111. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Ramachandran PS, Keiser MS and Davidson BL: Recent advances in RNA interference therapeutics for CNS diseases. Neurotherapeutics. 10:473–485. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Corydon TJ: Antiangiogenic eye gene therapy. Hum Gene Ther. 26:525–537. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Moore NA, Bracha P, Hussain RM, Morral N and Ciulla TA: Gene therapy for age-related macular degeneration. Expert Opin Biol Ther. 17:1235–1244. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Moore SM, Skowronska-Krawczyk D and Chao DL: Emerging concepts for RNA therapeutics for inherited retinal disease. Adv Exp Med Biol. 1185:85–89. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Yang XM, Wang YS, Zhang J, Li Y, Xu JF, Zhu J, Zhao W, Chu DK and Wiedemann P: Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha and VEGF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci. 50:1873–1879. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Lee CS, Choi EY, Lee SC, Koh HJ, Lee JH and Chung JH: Resveratrol inhibits hypoxia-induced vascular endothelial growth factor expression and pathological neovascularization. Yonsei Med J. 56:1678–1685. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Biswal MR, Prentice HM, Smith GW, Zhu P, Tong Y, Dorey CK, Lewin AS and Blanks JC: Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. J Mol Med (Berl). 96:1107–1118. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Zhang T, Li X, Yu W, Yan Z, Zou H and He X: Overexpression of thymosin beta-10 inhibits VEGF mRNA expression, autocrine VEGF protein production, and tube formation in hypoxia-induced monkey choroid-retinal endothelial cells. Ophthalmic Res. 41:36–43. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Jin J, Yuan F, Shen MQ, Feng YF and He QL: Vascular endothelial growth factor regulates primate choroid-retinal endothelial cell proliferation and tube formation through PI3K/Akt and MEK/ERK dependent signaling. Mol Cell Biochem. 381:267–272. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Li R, Du J and Chang Y: Role of autophagy in hypoxia-induced angiogenesis of RF/6A cells in vitro. Curr Eye Res. 41:1566–1570. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Cui K, Zhang S, Liu X, Yan Z, Huang L, Yang X, Zhu R and Sang A: Inhibition of TBK1 reduces choroidal neovascularization in vitro and in vivo. Biochem Bioph Res Co. 503:202–208. 2018. View Article : Google Scholar

56 

Borcar A, Menze MA, Toner M and Hand SC: Metabolic preconditioning of mammalian cells: Mimetic agents for hypoxia lack fidelity in promoting phosphorylation of pyruvate dehydrogenase. Cell Tissue Res. 351:99–106. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Cabral T, Mello L, Lima LH, Polido J, Regatieri CV, Belfort RJ and Mahajan VB: Retinal and choroidal angiogenesis: A review of new targets. Int J Retina Vitreous. 3:312017. View Article : Google Scholar : PubMed/NCBI

58 

Farnoodian M, Sorenson CM and Sheibani N: Negative regulators of angiogenesis, ocular vascular homeostasis, and pathogenesis and treatment of exudative AMD. J Ophthalmic Vis Res. 13:470–486. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM and Sheibani N: Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clin Sci (Lond). 131:1763–1780. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Farnoodian M, Sorenson CM and Sheibani N: PEDF expression affects the oxidative and inflammatory state of choroidal endothelial cells. Am J Physiol Cell Physiol. 314:C456–C472. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Housset M and Sennlaub F: Thrombospondin-1 and pathogenesis of age-related macular degeneration. J Ocul Pharmacol Ther. 31:406–412. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, Yoshii K, Kitazawa K, Hiraga A, Toda M, Kinoshita S, et al: Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep. 8:105202018. View Article : Google Scholar : PubMed/NCBI

63 

Gehart H, Kumpf S, Ittner A and Ricci R: MAPK signalling in cellular metabolism: Stress or wellness? EMBO Rep. 11:834–840. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Sun Y, Liu W, Liu T, Feng X, Yang N and Zhou H: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M and Yousefi B: RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 234:14951–14965. 2019. View Article : Google Scholar

66 

Marampon F, Ciccarelli C and Zani BM: Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation. Int J Mol Sci. 20:25302019. View Article : Google Scholar

67 

Khaliq M and Fallahi-Sichani M: Epigenetic mechanisms of escape from BRAF oncogene dependency. Cancers (Basel). 11:14802019. View Article : Google Scholar

68 

Degirmenci U, Wang M and Hu J: Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells. 9:1982020. View Article : Google Scholar

69 

Huang M, Huang B, Li G and Zeng S: Apatinib affect VEGF-mediated cell proliferation, migration, invasion via blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT pathways in cholangiocarcinoma cell. BMC Gastroenterol. 18:1692018. View Article : Google Scholar : PubMed/NCBI

70 

Yamana S, Tokiyama A, Fujita H, Terao Y, Horibe S, Sasaki N, Satomi-Kobayashi S, Hirata KI and Rikitake Y: Necl-4 enhances the PLCγ-c-Raf-MEK-ERK pathway without affecting internalization of VEGFR2. Biochem Biophys Res Commun. 490:169–175. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Gong J, Zhou S and Yang S: Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci. 20:e4652019. View Article : Google Scholar : PubMed/NCBI

72 

Pachmayr E, Treese C and Stein U: Underlying mechanisms for distant metastasis-molecular biology. Visc Med. 33:11–20. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Zhang EY, Gao B, Shi HL, Huang LF, Yang L, Wu XJ and Wang ZT: 20(S)-protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice. Exp Mol Med. 49:e3872017. View Article : Google Scholar : PubMed/NCBI

74 

Ye X, Xu G, Chang Q, Fan J, Sun Z, Qin Y and Jiang AC: ERK1/2 signaling pathways involved in VEGF release in diabetic rat retina. Invest Ophthalmol Vis Sci. 51:5226–5233. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Hou SY, Li YP, Wang JH, Yang SL, Wang Y, Wang Y and Kuang Y: Aquaporin-3 inhibition reduces the growth of NSCLC cells induced by hypoxia. Cell Physiol Biochem. 38:129–140. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Shen K, Ji L, Gong C, Ma Y, Yang L, Fan Y, Hou M and Wang Z: Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochem Pharmacol. 84:784–792. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X and Sun T: IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 22: 4837-4847, 2020.
APA
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., & Sun, T. (2020). IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Molecular Medicine Reports, 22, 4837-4847. https://doi.org/10.3892/mmr.2020.11578
MLA
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., Sun, T."IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway". Molecular Medicine Reports 22.6 (2020): 4837-4847.
Chicago
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., Sun, T."IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway". Molecular Medicine Reports 22, no. 6 (2020): 4837-4847. https://doi.org/10.3892/mmr.2020.11578
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X and Sun T: IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 22: 4837-4847, 2020.
APA
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., & Sun, T. (2020). IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Molecular Medicine Reports, 22, 4837-4847. https://doi.org/10.3892/mmr.2020.11578
MLA
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., Sun, T."IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway". Molecular Medicine Reports 22.6 (2020): 4837-4847.
Chicago
Zhu, S., Wang, H., Zhang, Z., Ma, M., Zheng, Z., Xu, X., Sun, T."IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway". Molecular Medicine Reports 22, no. 6 (2020): 4837-4847. https://doi.org/10.3892/mmr.2020.11578
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team