|
1
|
World Health Organization (WHO), . Cancer.
simplehttps://www.who.int/health-topics/cancer#tab=tab_1
|
|
2
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fidler MM, Bray F and Soerjomataram I: The
global cancer burden and human development: A review. Scand J
Public Health. 46:27–36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Du X, Khan AR, Fu M, Ji J, Yu A and Zhai
G: Current development in the formulations of non-injection
administration of paclitaxel. Int J Pharm. 542:242–252. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Reshma PL, Unnikrishnan BS, Preethi GU,
Syama HP, Archana MG, Remya K, Shiji R, Sreekutty J and Sreelekha
TT: Overcoming drug-resistance in lung cancer cells by paclitaxel
loaded galactoxyloglucan nanoparticles. Int J Biol Macromol.
136:266–274. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nakamura F, Seino M, Suzuki Y, Sakaki H,
Sudo T, Ohta T, Tsutsumi S and Nagase S: Successful management of
cutaneous lymphangitis carcinomatosa arising from cervical cancer
with paclitaxel-cisplatin and bevacizumab combination therapy: A
case report and review of the literature. J Med Case Rep.
13:3282019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lan YQ, Wu RP, Huang XB, Wang XL, Zhong
DT, Huang CY and Song JT: Paclitaxel, oxaliplatin, 5-fluorouracil
and leucovorin combination chemotherapy in patients with recurrent
or metastatic gastric cancer. Tumori. 104:22–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sofias AM, Dunne M, Storm G and Allen C:
The battle of ‘nano’ paclitaxel. Adv Drug Deliv Rev. 122:20–30.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Emami F, Banstola A, Vatanara A, Lee S,
Kim JO, Jeong JH and Yook S: Doxorubicin and Anti-PD-L1 antibody
conjugated gold nanoparticles for colorectal cancer
photochemotherapy. Mol Pharm. 16:1184–1199. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Abdel-Rashid RS, Omar SM, Teiama MS,
Khairy A, Magdy M and Anis B: Fabrication of gold nanoparticles in
absence of surfactant as in vitro carrier of plasmid DNA. Int J
Nanomed. 14:8399–8408. 2019. View Article : Google Scholar
|
|
11
|
Uddin MI, Kilburn TC, Yang R, McCollum GW,
Wright DW and Penn JS: Targeted imaging of VCAM-1 mRNA in a mouse
model of laser-induced choroidal neovascularization using antisense
hairpin-DNA-functionalized gold-nanoparticles. Mol Pharm.
15:5514–5520. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chan KP, Chao SH and Kah JCY: Universal
mRNA translation enhancement with gold nanoparticles conjugated to
oligonucleotides with a Poly(T) sequence. ACS Appl Mater
Interfaces. 10:5203–5212. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cragg GM: Paclitaxel (Taxol): A success
story with valuable lessons for natural product drug discovery and
development. Med Res Rev. 18:315–331. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Khanna C, Rosenberg M and Vail DM: A
review of paclitaxel and novel formulations including those
suitable for use in dogs. J Vet Intern Med. 29:1006–1012. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ettinger DS, Wood DE, Aggarwal C, Aisner
DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac
LR, et al: NCCN guidelines insights: Non-small cell lung cancer,
version 1.2020. J Natl Compr Canc Netw. 17:1464–1472. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Goetz MP, Gradishar WJ, Anderson BO,
Abraham J, Aft R, Allison KH, Blair SL, Burstein HJ, Dang C, Elias
AD, et al: NCCN guidelines insights: Breast cancer, version 3.2018.
J Natl Compr Canc Netw. 17:118–126. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Benson AB, Venook AP, Al-Hawary MM,
Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D,
Engstrom PF, et al: NCCN guidelines insights: Colon cancer, version
2.2018. J Natl Compr Canc Netw. 16:359–369. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ajani JA, D'Amico TA, Almhanna K, Bentrem
DJ, Chao J, Das P, Denlinger CS, Fanta P, Farjah F, Fuchs CS, et
al: Gastric Cancer, Version 3.2016, NCCN Clinical Practice
Guidelines in Oncology. J Natl Compr Canc Netw. 14:1286–1312. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhu L and Chen L: Progress in research on
paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 24:402019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Spitz DR, Dornfeld KJ, Krishnan K and
Giusthe D: Oxidative stress in cancer biology and therapy. Humana
Press; 2012, View Article : Google Scholar
|
|
21
|
Hsiao JR, Leu SF and Huang BM: Apoptotic
mechanism of paclitaxel-induced cell death in human head and neck
tumor cell lines. J Oral Pathol Med. 38:188–197. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Honore S, Kamath K, Braguer D, Horwitz SB,
Wilson L, Briand C and Jordan MA: Synergistic suppression of
microtubule dynamics by discodermolide and paclitaxel in non-small
cell lung carcinoma cells. Cancer Res. 64:4957–4964. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Abu Samaan TM, Samec M, Liskova A, Kubatka
P and Büsselberg D: Paclitaxel's mechanistic and clinical effects
on breast cancer. Biomolecules. 9:7892019. View Article : Google Scholar
|
|
24
|
Ai B, Bie Z, Zhang S and Li A: Paclitaxel
targets VEGF-mediated angiogenesis in ovarian cancer treatment. Am
J Cancer Res. 6:1624–1635. 2016.PubMed/NCBI
|
|
25
|
Nakajima T, Elovaara E, Gonzalez FJ,
Gelboin HV, Raunio H, Pelkonen O, Vainio H and Aoyama T: Styrene
metabolism by cDNA-expressed human hepatic and pulmonary
cytochromes P450. Chem Res Toxicol. 7:891–896. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
van Eijk M, Boosman RJ, Schinkel AH,
Huitema ADR and Beijnen JH: Cytochrome P450 3A4, 3A5, and 2C8
expression in breast, prostate, lung, endometrial, and ovarian
tumors: Relevance for resistance to taxanes. Cancer Chemother
Pharmacol. 84:487–499. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Noll EM, Eisen C, Stenzinger A, Espinet E,
Muckenhuber A, Klein C, Vogel V, Klaus B, Nadler W, Rösli C, et al:
CYP3A5 mediates basal and acquired therapy resistance in different
subtypes of pancreatic ductal adenocarcinoma. Nat Med. 22:278–287.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Němcová-Fürstová V, Kopperová D,
Balušíková K, Ehrlichová M, Brynychová M, Václavíková R, Daniel P,
Souček P and Kovář J: Characterization of acquired paclitaxel
resistance of breast cancer cells and involvement of ABC
transporters. Toxicol Appl Pharmacol. 310:215–228. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Njiaju UO, Gamazon ER, Gorsic LK, Delaney
SM, Wheeler HE, Im HK and Dolan ME: Whole-genome studies identify
solute carrier transporters in cellular susceptibility to
paclitaxel. Pharmacogenet Genomics. 22:498–507. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cao X, Hou J, An Q, Assaraf YG and Wang X:
Towards the overcoming of anticancer drug resistance mediated by
p53 mutations. Drug Resist Updat. 49:1006712019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xu JH, Hu SL, Shen GD and Shen G: Tumor
suppressor genes and their underlying interactions in paclitaxel
resistance in cancer therapy. Cancer Cell Int. 16:132016.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Boraschi D, Italiani P, Palomba R, Decuzzi
P, Duschl A, Fadeel B and Moghimi SM: Nanoparticles and innate
immunity: New perspectives on host defence. Semin Immunol.
34:33–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Primard C, Rochereau N, Luciani E, Genin
C, Delair T, Paul S and Verrier B: Traffic of poly(lactic acid)
nanoparticulate vaccine vehicle from intestinal mucus to
sub-epithelial immune competent cells. Biomaterials. 31:6060–6068.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ashour AE, Badran M, Kumar A, Hussain T,
Alsarra IA and Yassin AEB: Physical PEGylation enhances the
cytotoxicity of 5-fluorouracil-loaded PLGA and PCL nanoparticles.
Int J Nanomedicine. 14:9259–9273. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang S and Gao H: Nanoparticles for
modulating tumor microenvironment to improve drug delivery and
tumor therapy. Pharmacol Res. 126:97–108. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang Y, Xie Y, Li J, Peng ZH, Sheinin Y,
Zhou J and Oupický D: Tumor-penetrating nanoparticles for enhanced
anticancer activity of combined photodynamic and hypoxia-activated
therapy. ACS Nano. 11:2227–2238. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Banstola A, Pham TT, Jeong JH and Yook S:
Polydopamine-tailored paclitaxel-loaded polymeric microspheres with
adhered NIR-controllable gold nanoparticles for chemo-phototherapy
of pancreatic cancer. Drug Deliv. 26:629–640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao L, Bi D, Qi X, Guo Y, Yue F, Wang X
and Han M: Polydopamine-based surface modification of paclitaxel
nanoparticles for osteosarcoma targeted therapy. Nanotechnology.
30:2551012019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X,
Chen Y, Lu C and Liu Y: AuNPs as an important inorganic
nanoparticle applied in drug carrier systems. Artif Cells Nanomed
Biotech. 47:4222–4233. 2019. View Article : Google Scholar
|
|
40
|
Das P, Fatehbasharzad P, Colombo M,
Fiandra L and Prosperi D: Multifunctional magnetic gold
nanomaterials for cancer. Trends Biotech. 37:995–1010. 2019.
View Article : Google Scholar
|
|
41
|
Paciotti GF, Myer L, Weinreich D, Goia D,
Pavel N, McLaughlin RE and Tamarkin L: Colloidal gold: A novel
nanoparticle vector for tumor directed drug delivery. Drug Deliv.
11:169–183. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hale SJM, Perrins RD, Garci A CE, Pace A,
Peral U, Patel KR, Robinson A, Williams P, Ding Y, Saito G, et al:
DM1 loaded ultrasmall gold nanoparticles display significant
efficacy and improved tolerability in murine models of
hepatocellular carcinoma. Bioconjug Chem. 30:703–713. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Govindaraju S, Roshini A, Lee MH and Yun
K: Kaempferol conjugated gold nanoclusters enabled efficient for
anticancer therapeutics to A549 lung cancer cells. Int J
Nanomedicine. 14:5147–5157. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang X, Liu Y, Luo L, Li L, Xing S, Yin
T, Bian K, Zhu R and Gao D: A chemo-photothermal synergetic
antitumor drug delivery system: Gold nanoshell coated wedelolactone
liposome. Mater Sci Eng C Mater Biol Appl. 101:505–512. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tortiglione C and de la Fuente JM:
Synthesis of gold nanoparticles for gene silencing. Methods Mol
Biol. 1974:203–214. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang J, Thomas M, Lin P, Cheng JX, Matei
DE and Wei A: siRNA delivery using dithiocarbamate-anchored
oligonucleotides on gold nanorods. Bioconjug Chem. 30:443–453.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ye W, Li H, Li X, Fan X, Jin Q and Ji J:
mRNA guided intracellular self-assembly of DNA-gold nanoparticle
conjugates as a precise trigger to up-regulate cell apoptosis and
activate photothermal therapy. Bioconjug Chem. 30:1763–1772. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Talamantez-Lyburn S, Brown P,
Hondrogiannis N, Ratliff J, Wicks SL, Nana N, Zheng Z, Rosenzweig
Z, Hondrogiannis E, Devadas MS and Ehrlich ES: Gold nanoparticles
loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5
deficient breast cancer cells. Int J of Pharm. 564:281–292. 2019.
View Article : Google Scholar
|
|
49
|
Liu B, Cao W, Qiao G, Yao S, Pan S, Wang
L, Yue C, Ma L, Liu Y and Cui D: Effects of gold nanoprism-assisted
human PD-L1 siRNA on both gene down-regulation and photothermal
therapy on lung cancer. Acta Biomater. 99:307–319. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sukumar UK, Bose RJC, Malhotra M, Babikir
HA, Afjei R, Robinson E, Zeng Y, Chang E, Habte F, Sinclair R, et
al: Intranasal delivery of targeted polyfunctional gold-iron oxide
nanoparticles loaded with therapeutic microRNAs for combined
theranostic multimodality imaging and presensitization of
glioblastoma to temozolomide. Biomaterials. 218:1193422019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang J, Zhao T, Han F, Hu Y and Li Y:
Photothermal and gene therapy combined with immunotherapy to
gastric cancer by the gold nanoshell-based system. J
Nanobiotechnology. 17:802019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen X, Han W, Zhao XAO, Tang W and Wang
F: Epirubicin-loaded marine carrageenan oligosaccharide capped gold
nanoparticle system for pH-triggered anticancer drug release. Sci
Rep. 9:67542019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pedrosa P, Corvo ML, Margarida FS, Martins
P, Carvalheiro MC, Costa PM, Martins C, Martins LMDRS, Baptista PV
and Fernandes AR: Targeting cancer resistance via multifunctional
gold nanoparticles. Int J Mol Sci. 20:55102019. View Article : Google Scholar
|
|
54
|
Cryer AM, Chan C, Eftychidou A, Maksoudian
C, Mahesh M, Tetley TD, Spivey AC and Thorley AJ: Tyrosine kinase
inhibitor gold nanoconjugates for the treatment of non-small cell
lung cancer. ACS App Mat Interfaces. 11:16336–16346. 2019.
View Article : Google Scholar
|
|
55
|
Zhang H, Cui W, Qu X, Wu H, Qu L, Zhang X,
Mäkilä E, Salonen J, Zhu Y, Yang Z, et al: Photothermal-responsive
nanosized hybrid polymersome as versatile therapeutics codelivery
nanovehicle for effective tumor suppression. Proc Nat Acad Sci USA.
116:7744–7749. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Paris JL, Villaverde G, Gómez-Graña S and
Vallet-Regí M: Nanoparticles for multimodal antivascular
therapeutics: Dual drug release, photothermal and photodynamic
therapy. Acta Biomater. 101:459–468. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gasparri AM, Sacch A, Basso V, Cortesi F,
Freschi M, Rrapaj E, Bellone M, Casorati G, Dellabona P, Mondino A,
et al: Boosting interleukin-12 antitumor activity and synergism
with immunotherapy by targeted delivery with isoDGR-tagged
nanogold. Small. 15:e19034622019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Barman S, Das G, Gupta V, Mondal P, Jana
B, Bhunia D, Khan J, Mukherjee D and Ghos S: Dual-arm nanocapsule
targets neuropilin-1 receptor and microtubule: A potential
nanomedicine platform. Mol Pharm. 16:2522–2531. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cruz E and Kayser V: Synthesis and
enhanced cellular uptake in vitro of Anti-HER2 multifunctional gold
nanoparticles. Cancers (Basel). 11:8702019. View Article : Google Scholar
|
|
60
|
Groysbeck N, Stoessel A, Donzeau M, da
Silva EC, Lehmann M, Strub JM, Cianferani S, Dembélé K and Zuber G:
Synthesis and biological evaluation of 2.4 nm thiolate-protected
gold nanoparticles conjugated to Cetuximab for targeting
glioblastoma cancer cells via the EGFR. Nanotechnology. 30:184005.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yi Y, Kim HJ, Zheng M, Mi P, Naito M, Kim
BS, Min HS, Hayash K, Perche F, Toh K, et al: Glucose-linked
sub-50-nm unimer polyion complex-assembled gold nanoparticles for
targeted siRNA delivery to glucose transporter 1-overexpressing
breast cancer stem-like cells. J Control Release. 295:268–277.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lee YJ, Song K, Cha SH, Cho S, Kim YS and
Park Y: Sesquiterpenoids from Tussilago farfara flower bud
extract for the eco-friendly synthesis of silver and gold
nanoparticles possessing antibacterial and anticancer activities.
Nanomaterials (Basel). 9:8192019. View Article : Google Scholar
|
|
63
|
Boomi P, Ganesan RM, Poorani G,
Gurumallesh Prabu H, Ravikumar S and Jeyakanthan J: Biological
synergy of greener gold nanoparticles by using Coleus aromaticus
leaf extract. Mater Sci Eng C Mater Biol Appl. 99:202–210. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Vijayan R, Joseph S and Mathew B:
Indigofera tinctoria leaf extract mediated green synthesis of
silver and gold nanoparticles and assessment of their anticancer,
antimicrobial, antioxidant and catalytic properties. Artif Cells
Nanomed Biotechnol. 46:861–871. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Aljabali AAA, Akkam Y, Al Zoubi MS,
Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M and
Evans DJ: Synthesis of Gold Nanoparticles Using Leaf Extract of
Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials
(Basel). 8:1742018. View Article : Google Scholar
|
|
66
|
Xu L, Li W, Shi Q, Li H, Yang Z, Liao D,
Li L, Yang X and Zhang J: Synthesis of mulberry leaf extract
mediated gold nanoparticles and their ameliorative effect on
Aluminium intoxicated and diabetic retinopathy in rats during
perinatal life. J Photochem Photobiol B. 196:1115022019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ke Y, Al Aboody MS, Alturaiki W, Alsagaby
SA, Alfaiz FA, Veeraraghavan VP and Mickymaray S: Photosynthesized
gold nanoparticles from Catharanthus roseus induces
caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif
Cells Nanomed Biotechnol. 47:1938–1946. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vijayan R, Joseph S and Mathew B:
Anticancer, antimicrobial, antioxidant, and catalytic activities of
green-synthesized silver and gold nanoparticles using Bauhinia
purpurea leaf extract. Bioprocess Biosyst Eng. 42:305–319. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bao QY, Zhang N, Geng DD, Xue GW, Merritt
M, Zhang C and Ding Y: The enhanced longevity and liver
targetability of Paclitaxel by hybrid liposomes encapsulating
paclitaxel-conjugated gold nanoparticles. Int J Pharm. 477:408–415.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ding Y, Zhou YY, Chen H, Geng DD, Wu DY,
Hong J, Shen WB, Hang TG and Zhang C: The performance of
thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles.
Biomaterials. 34:10217–10227. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gibson JD, Khanal BP and Zubarev ER:
Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc.
129:11653–11661. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vemuri SK, Banala RR, Mukherjee S, Uppula
P, Gpv S, A V GR and T M: Novel biosynthesized gold nanoparticles
as anti-cancer agents against breast cancer: Synthesis, biological
evaluation, molecular modelling studies. Mater Sci Eng C Mater Biol
Appl. 99:417–429. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li F, Zhou XF, Zhou HY, Jia JB, Li LW,
Zhai SM and Yan B: Reducing both Pgp overexpression and drug efflux
with anti-cancer gold-paclitaxel nanoconjugates. PLoS One.
11:e01600422016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhong J, Yang S, Wen L and Xing D:
Imaging-guided photoacoustic drug release and synergistic
chemo-photoacoustic therapy with paclitaxel-containing
nanoparticles. J Control Release. 226:77–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Farboudi A, Nouri A, Shirinzad S, Sojoudi
P, Davaran S, Akrami M and Irani M: Synthesis of magnetic gold
coated poly (epsilon-caprolactonediol) based
polyurethane/poly(N-isopropylacrylamide)-grafted-chitosan
core-shell nanofibers for controlled release of paclitaxel and
5-FU. Int J Biol Macromol. 150:1130–1140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Heo DN, Yang DH, Moon HJ, Lee JB, Bae MS,
Lee SC, Lee WJ, Sun IC and Kwon IK: Gold nanoparticles
surface-functionalized with paclitaxel drug and biotin receptor as
theranostic agents for cancer therapy. Biomaterial. 33:856–866.
2012. View Article : Google Scholar
|
|
77
|
Paciotti GF, Zhao JL, Cao SG, Brodie PG,
Tamarkin L, Huhta M, Myer LD, Friedman J and Kingston DG: Synthesis
and evaluation of paclitaxel-loaded gold nanoparticles for
tumor-targeted drug delivery. Bioconjug Chem. 27:2646–2657. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liaskoni A, Angelopoulou A, Voulgari E,
Popescu MT, Tsitsilianis C and Avgoustakis K: Paclitaxel controlled
delivery using a pH-responsive functional-AuNP/block-copolymer
vesicular nanocarrier composite system. Eur J Pharm Sci.
117:177–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Manivasagan P, Bharathiraja S, Bui NQ, Lim
IG and Oh JH: Paclitaxel-loaded chitosan oligosaccharide-stabilized
gold nanoparticles as novel agents for drug delivery and
photoacoustic imaging of cancer cells. Int J Pharm. 511:367–379.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Peralta DV, Heidari Z, Dash S and Tarr MA:
Hybrid paclitaxel and gold nanorod-loaded human serum albumin
nanoparticles for simultaneous chemotherapeutic and photothermal
therapy on 4T1 breast cancer cells. ACS Appl Mater Interfaces.
7:7101–7111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gupta S, Stafford RJ, Javadi S, Ozkan E,
Ensor JE, Wright KC, Elliot AM, Jian Y, Serda RE, Dixon KA, et al:
Effects of near-infrared laser irradiation of biodegradable
microspheres containing hollow gold nanospheres and paclitaxel
administered intraarterially in a rabbit liver tumor model. J Vasc
Interv Radiol. 23:553–561. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhu HY, Han WL, Gan Y, Li QF, Li XL, Shao
LL, Zhu D and Guo HW: Combined modality therapy based on hybrid
gold nanostars coated with temperature sensitive liposomes to
overcome paclitaxel-resistance in hepatic carcinoma. Pharmaceutics.
11:6832019. View Article : Google Scholar
|
|
83
|
England CG, Miller MC, Kuttan A, Trent JO
and Frieboes HB: Release kinetics of paclitaxel and cisplatin from
two and three layered gold nanoparticles. Eur J Pharm Biopharm.
92:120–129. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pandey PC, Pandey G and Narayan RJ:
Polyethylenimine-mediated synthetic insertion of gold nanoparticles
into mesoporous silica nanoparticles for drug loading and
biocatalysis. Biointerphases. 12:0110052017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Q, Zhang X, Sun Y, Wang L, Ding L,
Zhu WH, Di W and Duan YR: Gold-caged copolymer nanoparticles as
multimodal synergistic photodynamic/photothermal/chemotherapy
platform against lethality androgen-resistant prostate cancer.
Biomaterials. 212:73–86. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yahyaei B and Pourali P: One step
conjugation of some chemotherapeutic drugs to the biologically
produced gold nanoparticles and assessment of their anticancer
effects. Sci Rep. 9:102422019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wu J, Liu Y, Tang YX, Wang SJ, Wang CY, Li
YJ, Su XD, Tian JH, Tian Y, Pan J, et al: Synergistic
chemo-photothermal therapy of breast cancer by mesenchymal stem
cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres. ACS Appl
Mater Interfaces. 8:17927–17935. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
You J, Wang Z, Du Y, Yuan H, Zhang P, Zhou
J, Liu F, Li C and Hu F: Specific tumor delivery of paclitaxel
using glycolipid-like polymer micelles containing gold nanospheres.
Biomaterials. 34:4510–4519. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Pardridge WM: The blood-brain barrier,
bottleneck in brain drug development. NeuroRx. 2:3–14. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sonavane G, Tomoda K and Makino K:
Biodistribution of colloidal gold nanoparticles after intravenous
administration, effect of particle size. Colloids Surf B
Biointerfaces. 66:274–280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Khongkow M, Yata T, Boonrungsiman S,
Ruktanonchai UR, Graham D and Namdee K: Surface modification of
gold nanoparticles with neuron-targeted exosome for enhanced
blood-brain barrier penetration. Sci Rep. 9:82782019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang Y, Walker JB, Minic Z, Liu F,
Goshgarian H and Mao G: Transporter protein and drug-conjugated
gold nanoparticles capable of bypassing the blood-brain barrier.
Sci Rep. 6:257942016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Singh N, Nayak J, Sahoo SK and Kumar R:
Glutathione conjugated superparamagnetic
Fe3O4-Au core shell nanoparticles for pH
controlled release of DOX. Mater Sci Eng C Mater Biol App.
100:453–465. 2019. View Article : Google Scholar
|
|
94
|
Gao W, Xu K, Ji L and Tang B: Effect of
gold nanoparticles on glutathione depletion-induced hydrogen
peroxide generation and apoptosis in HL7702 cells. Toxicol Lett.
205:86–95. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Coradeghini R, Gioria S, García CP, Nativo
P, Franchini F, Gilliland D, Ponti J and Rossi F: Size-dependent
toxicity and cell interaction mechanisms of gold nanoparticles on
mouse fibroblasts. Toxicol Lett. 217:205–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Favi PM, Gao M, Johana Sepúlveda Arango L,
Ospina SP, Morales M, Pavon JJ and Webster TJ: Shape and surface
effects on the cytotoxicity of nanoparticles: Gold nanospheres
versus gold nanostars. J Biomed Mater Res A. 103:3449–3462. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Feng ZV, Gunsolus IL, Qiu TA, Hurley KR,
Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, et
al: Impacts of gold nanoparticle charge and ligand type on surface
binding and toxicity to Gram-negative and Gram-positive bacteria.
Chem Sci. 6:5186–5196. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gorain B, Choudhury H, Pandey M and
Kesharwani P: Paclitaxel loaded vitamin E-TPGS nanoparticles for
cancer therapy. Mater Sci Eng C Mater Biol Appl. 91:868–880. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kundranda MN and Niu J: Albumin-bound
paclitaxel in solid tumors: Clinical development and future
directions. Drug Des Devel Ther. 9:3767–3777. 2015. View Article : Google Scholar : PubMed/NCBI
|