|
1
|
Lu H, Stratton CW and Tang YW: Outbreak of
pneumonia of unknown etiology in Wuhan, China: The mystery and the
miracle. J Med Virol. 92:401–402. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang X, Zhang X and He J: Challenges to
the system of reserve medical supplies for public health
emergencies: Reflections on the outbreak of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in China.
Biosci Trends. 14:3–8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bogoch II, Watts A, Thomas-Bachli A, Huber
C, Kraemer MUG and Khan K: Potential for global spread of a novel
coronavirus from China. J Travel Med. 27:taaa0112020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Corman VM, Lienau J and Witzenrath M:
Coronaviruses as the cause of respiratory infections. Internist
(Berl). 60:1136–1145. 2019.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Grifoni A, Sidney J, Zhang Y, Scheuermann
RH, Peters B and Sette A: A sequence homology and bioinformatic
approach can predict candidate targets for immune responses to
SARS-CoV-2. Cell Host Microbe. 27:671–680.e2. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ksiazek TG, Erdman D, Goldsmith CS, Zaki
SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, et al: A
Novel Coronavirus Associated with Severe Acute Respiratory
Syndrome. N Engl J Med. 348:1953–1966. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Reguera J, Mudgal G, Santiago C and
Casasnovas JM: A structural view of coronavirus-receptor
interactions. Virus Res. 94:3–15. 2014. View Article : Google Scholar
|
|
9
|
Huang X, Dong W, Milewska A, Golda A, Qi
Y, Zhu QK, Marasco WA, Baric RS, Sims AC, Pyrc K, et al: Human
coronavirus HKU1 spike protein uses O-Acetylated sialic acid as an
attachment receptor determinant and employs hemagglutinin-esterase
protein as a receptor-destroying enzyme. J Virol. 89:7202–7213.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma
JP, Xiao W, Wang YN, Zhong MH, Li CH, et al: Clinical
characteristics of novel coronavirus cases in tertiary hospitals in
Hubei Province. Chin Med J (Engl). 133:1025–1031. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guan WJ and Zhong NS: Clinical
characteristics of Covid-19 in China. Reply. N Engl J Me.
382:1861–1862. 2020.
|
|
15
|
Qu R, Ling Y, Zhang YH, Wei LY, Chen X, Li
XM, Liu XY, Liu HM, Guo Z, Ren H and Wang Q: Platelet-to-lymphocyte
ratio is associated with prognosis in patients with coronavirus
disease-19. J Med Virol. Mar;17:10.1002/jmv.25767. 2020. View Article : Google Scholar
|
|
16
|
Gasparyan AY, Ayvazyan L, Mukanova U,
Yessirkepov M and Kitas GD: The platelet-to-lymphocyte ratio as an
inflammatory marker in rheumatic diseases. Ann Lab Med. 39:345–357.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Terpos E, Ntanasis-Stathopoulos I, Elalamy
I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T,
Gerotziafas G and Dimopoulos MA: Hematological findings and
complications of COVID-19. Am J Hematol. 95:834–847. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Singhal T: A review of coronavirus
disease-2019 (COVID-19). Indian J Pediatr. 87:281–286. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang M, Hon KL, Li K, Fok TF and Li CK:
The effect of SARS coronavirus on blood system: Its clinical
findings and the pathophysiologic hypothesis. Zhongguo Shi Yan Xue
Ye Xue Za Zhi. 11:217–221. 2003.PubMed/NCBI
|
|
20
|
Al-Tawfiq JA, Hinedi K, Abbasi S, Babiker
M, Sunji A and Eltigani M: Hematologic, hepatic, and renal function
changes in hospitalized patients with Middle East respiratory
syndrome coronavirus. Int J Lab Hematol. 39:272–278. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu Y, Yang Y, Zhang C, Huang F, Wang F,
Yuan J, Wang Z, Li J, Li J, Feng C, et al: Clinical and biochemical
indexes from 2019-nCoV infected patients linked to viral loads and
lung injury. Sci China Life Sci. 63:364–374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z,
Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk
factors for mortality of adult inpatients with COVID-19 in Wuhan,
China: A retrospective cohort study. Lancet. 395:1054–1062. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lippi G, Plebani M and Henry BM:
Thrombocytopenia is associated with severe coronavirus disease 2019
(COVID-19) infections: A meta-analysis. Clin Chim Acta.
506:145–148. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P,
Pan P, Wang W, Hu D, Liu X, et al: Coronavirus infections and
immune responses. J Med Virol. 92:424–432. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen L, Liu HG, Liu W, Liu J, Liu K, Shang
J, Deng Y and Wei S: Analysis of clinical features of 29 patients
with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za
Zhi. 43:E0052020.(In Chinese). PubMed/NCBI
|
|
27
|
Chan JF, Yuan S, Kok KH, To KK, Chu H,
Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster
of pneumonia associated with the 2019 novel coronavirus indicating
person-to-person transmission: A study of a family cluster. Lancet.
395:514–523. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J,
Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics of
2019 novel coronavirus infection in China. medRxiv. Jan
1;2020.02.06.20020974. 2020.
|
|
29
|
Arachchillage DRJ and Laffan M: Abnormal
coagulation parameters are associated with poor prognosis in
patients with novel coronavirus pneumonia. J Thromb Haemost.
18:1233–1234. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yang M, Ng MH, Li CK, Chan PKS, Liu C, Ye
JY and Chong BH: Thrombopoietin levels increased in patients with
severe acute respiratory syndrome. Thromb Res. 122:473–477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan
S and Yuen KY: Genomic characterization of the 2019 novel
human-pathogenic coronavirus isolated from a patient with atypical
pneumonia after visiting Wuhan. Emerg Microbes Infect. 9:221–236.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng
X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV
on the epithelial cells of oral mucosa. Int J Oral Sci. 12:82020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Collins AR: In vitro detection of
apoptosis in monocytes/macrophages infected with human coronavirus.
Clin Diagn Lab Immunol. 9:1392–1395. 2002.PubMed/NCBI
|
|
34
|
Yang M, Li K, Chui CMY, Yuen PMP, Chan PK,
Chuen CK, Li CK and Fok TF: Expression of interleukin (IL) 1 type I
and type II receptors in megakaryocytic cells and enhancing effects
of IL-1beta on megakaryocytopoiesis and NF-E2 expression. Br J
Haematol. 111:371–380. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang M, Khachigian LM, Hicks C, Chesterman
CN and Chong BH: Identification of PDGF receptors on human
megakaryocytes and megakaryocytic cell lines. Thromb Haemost.
78:892–896. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kontoyiannis DP, Pasqualini R and Arap W:
Aminopeptidase N inhibitors and SARS. Lancet. 361:15582003.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wentworth DE and Holmes KV: Molecular
determinants of species specificity in the coronavirus receptor
aminopeptidase N (CD13): Influence of N-linked glycosylation. J
Virol. 75:9741–9752. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hammarström S: The carcinoembryonic
antigen (CEA) family: Structures, suggested functions and
expression in normal and malignant tissues. Semin Cancer Biol.
9:67–81. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu W and Li H: COVID-19: Attacks the
1-beta chain of hemoglobin and captures the porphyrin to inhibit
human heme metabolism. ChemRxiv. 2020.
|
|
40
|
Scaradavou A: HIV-related
thrombocytopenia. Blood Rev. 16:73–76. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nardi M, Tomlinson S, Greco MA and
Karpatkin S: Complement-independent, peroxide-induced antibody
lysis of platelets in HIV-1-related immune thrombocytopenia. Cell.
106:551–561. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang M, Li CK, Li K, Hon KL, Ng MH, Chan
PK and Fok TF: Hematological findings in SARS patients and possible
mechanisms (review). Int J Mol Med. 14:311–315. 2004.PubMed/NCBI
|
|
43
|
Taichman RS: Blood and bone: Two tissues
whose fates are intertwined to create the hematopoietic stem-cell
niche. Blood. 105:2631–2639. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ru YX, Dong SX, Zhao SX, Li Y, Liang HY,
Zhang MMF, Zhu X and Zheng Y: One cell one niche: Hematopoietic
microenvironments constructed by bone marrow stromal cells with
fibroblastic and histiocytic features. Ultrastruct Pathol.
43:117–125. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lord BI: The architecture of bone marrow
cell populations. Int J Cell Cloning. 331:317–331. 1990. View Article : Google Scholar
|
|
46
|
Kiel MJ, Yilmaz ÖH, Iwashita T, Yilmaz OH,
Terhorst C and Morrison SJ: SLAM family receptors distinguish
hematopoietic stem and progenitor cells and reveal endothelial
niches for stem cells. Cell. 121:1109–1121. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sugiyama T, Kohara H, Noda M and Nagasawa
T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4
chemokine signaling in bone marrow stromal cell niches. Immunity.
25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hamming I, Timens W, Bulthuis ML, Lely AT,
Navis GJ and van Goor H: Tissue distribution of ACE2 protein, the
functional receptor for SARS coronavirus. A first step in
understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ye J, Zhang B, Xu J, Chang Q, McNutt MA,
Korteweg C, Gong E and Gu J: Molecular pathology in the lungs of
severe acute respiratory syndrome patients. Am J Pathol.
170:538–545. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mei H and Hu Y: Characteristics, causes,
diagnosis and treatment of coagulation dysfunction in patients with
COVID-19. Zhonghua Xue Ye Xue Za Zhi. 41:185–191. 2020.(In
Chinese). PubMed/NCBI
|
|
51
|
Panesar NS: What caused lymphopenia in
SARS and how reliable is the lymphokine status in
glucocorticoid-treated patients? Med Hypotheses. 71:298–301. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lefrançais E, Ortiz-Muñoz G, Caudrillier
A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T,
Coughlin SR, et al: The lung is a site of platelet biogenesis and a
reservoir for haematopoietic progenitors. Nature. 544:105–109.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xu Z, Shi L, Wang Y, Zhang J, Huang L,
Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings
of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Niinikoski J, Goldstein R, Linsey M and
Hunt TK: Effect of oxygen-induced lung damage on tissue oxygen
supply. Acta Chir Scand. 139:591–595. 1973.PubMed/NCBI
|
|
55
|
Yang M, Ng MH and Li CK: Thrombocytopenia
in patients with severe acute respiratory syndrome (review).
Hematology. 10:101–105. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
LeVine DN, Cianciolo RE, Linder KE,
Bizikova P, Birkenheuer AJ, Brooks MB, Salous AK, Nordone SK,
Bellinger DA, Marr H, et al: Endothelial alterations in a canine
model of immune thrombocytopenia. Platelets. 30:88–97. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi
Y, Sun R, Tian Z, Xu X and Wei H: Aberrant pathogenic
GM-CSF+ T cells and inflammatory
CD14+CD16+ monocytes in severe pulmonary
syndrome patients of a new coronavirus. bioRxiv. Feb 20–2020.(Epub
ahead of print). doi: 10.1101/2020.02.12.945576.
|
|
58
|
Moore BJ and June CH: Cytokine release
syndrome in severe COVID-19. Science. 368:473–474. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hirano T and Murakami M: COVID-19: A new
virus, but a familiar receptor and cytokine release syndrome.
Immunity. 52:731–733. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cohen J: The immunopathogenesis of sepsis.
Nature. 420:885–891. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Goldbergers A, Middletons KA, Oliver JA,
Paddock C, Yan H, Delissero HM, Albelda SM and Newman PJ:
Biosynthesis and processing of the cell adhesion molecule PECAM-1
includes production of a soluble form. J Biol Chem.
269:17183–17191. 1994.PubMed/NCBI
|
|
62
|
Chaves J, Huen A, Bueso-Ramos C, Safdar A
and Vadhan-Raj S: Aerosolized Ribavirin-induced reversible
hepatotoxicity in a hematopoietic stem cell transplant recipient
with Hodgkin lymphoma. Clin Infect Dis. 42:e72–e75. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Savarino A, Di Trani L, Donatelli I and
Cauda Rand Cassone A: New insights into the antiviral effects of
chloroquine. Lancet Infect Dis. 6:67–69. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y,
Jin N and Jiang C: Anti-malaria drug chloroquine is highly
effective in treating avian influenza A H5N1 virus infection in an
animal model. Cell Res. 23:300–302. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vincent MJ, Bergeron E, Benjannet S,
Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST:
Chloroquine is a potent inhibitor of SARS coronavirus infection and
spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu
M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine
effectively inhibit the recently emerged novel coronavirus
(2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gao J, Tian Z and Yang X: Breakthrough:
Chloroquine phosphate has shown apparent efficacy in treatment of
COVID-19 associated pneumonia in clinical studies. Biosci Trends.
14:72–73. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H,
Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic
derivative of chloroquine, is effective in inhibiting SARS-CoV-2
infection in vitro. Cell Discov. 6:162020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gautret P, Lagier JC, Parola P, Hoang VT,
Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE,
et al: Hydroxychloroquine and azithromycin as a treatment of
COVID-19: Results of an open-label non-randomized clinical trial.
Int J Antimicrob Agents. 56:1059492020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou D, Dai SM and Tong Q: COVID-19: A
recommendation to examine the effect of hydroxychloroquine in
preventing infection and progression. J Antimicrob Chemother.
75:1667–1670. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siegel D, Hui HC, Doerffler E, Clarke MO,
Chun K, Zhang L, Neville S, Carra E, Lew W, Ross B, et al:
Discovery and synthesis of a phosphoramidate prodrug of a
Pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for
the treatment of ebola and emerging viruses. J Med Chem.
60:1648–1661. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sheahan TP, Sims AC, Graham RL, Menachery
VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I,
et al: Broad-spectrum antiviral GS-5734 inhibits both epidemic and
zoonotic coronaviruses. Sci Transl Med. 9:eaal36532017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Agostini ML, Andres EL, Sims AC, Graham
RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, et al:
Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is
mediated by the viral polymerase and the proofreading
exoribonuclease. mBio. 9:e00221–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mulangu S, Dodd LE, Davey RT Jr, Tshiani
Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D,
Tshomba Oloma A, Ibanda A, et al: A randomized, controlled trial of
ebola virus disease therapeutics. N Engl J Med. 381:2293–2303.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Holshue ML, DeBolt C, Lindquist S, Lofy
KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural
A, et al: First case of 2019 novel coronavirus in the United
States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Akutagawa K, Fujita T, Ouhara K, Takemura
T, Tari M, Kajiya M, Matsuda S, Kuramitsu S, Mizuno N, Shiba H and
Kurihara H: Glycyrrhizic acid suppresses inflammation and reduces
the increased glucose levels induced by the combination of
Porphyromonas gulae and ligature placement in diabetic model mice.
Int Immunopharmacol. 68:30–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yan S, Fang C, Cao L, Wang L, Du J, Sun Y,
Tong X, Lu Y and Wu X: Protective effect of glycyrrhizic acid on
cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated
TLR4/NF-κB pathway. Biotechnol Appl Biochem. 66:1024–1030. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen S, Cui G, Peng C, Lavin MF, Sun X,
Zhang E, Yang Y, Guan Y, Du Z and Shao H: Transplantation of
adipose-derived mesenchymal stem cells attenuates pulmonary
fibrosis of silicosis via anti-inflammatory and anti-apoptosis
effects in rats. Stem Cell Res Ther. 9:1102018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cinatl J, Morgenstern B, Bauer G, Chandra
P, Rabenau H and Doerr HW: Glycyrrhizin, an active component of
liquorice roots, and replication of SARS-associated coronavirus.
Lancet. 361:2045–2046. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han
Q, Shan G, Meng F, Du D, Wang S, et al: Transplantation of ACE2(−)
mesenchymal stem cells improves the outcome of patients with
COVID-19 pneumonia. Aging Dis. 11:216–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen
L, Huang L, Meng F, Huang L, Wang N, et al: Ruxolitinib in
treatment of severe coronavirus disease 2019 (COVID-19): A
multicenter, single-blind, randomized controlled trial. J Allergy
Clin Immunol. 146:137–146.e3. 2020. View Article : Google Scholar : PubMed/NCBI
|