Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review)

  • Authors:
    • Wei Yang
    • Jianhui Huang
    • Hui Wu
    • Yuqing Wang
    • Zhiyin Du
    • Yuanbo Ling
    • Weizhuo Wang
    • Qian Wu
    • Wenbin Gao
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China, Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China, Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4967-4980
    |
    Published online on: October 16, 2020
       https://doi.org/10.3892/mmr.2020.11608
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia‑induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Blum D, Stene GB, Solheim TS, Fayers P, Hjermstad MJ, Baracos VE, Fearon K, Strasser F and Kaasa S; Euro-Impact: Validation of the consensus-definition for cancer cachexia and evaluation of a classification model-a study based on data from an international multicentre project (EPCRC-CSA). Ann Oncol. 25:1635–1642. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ and Lindeman RD: Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 147:755–763. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Emery PW, Edwards RH, Rennie MJ, Souhami RL and Halliday D: Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed). 289:584–586. 1984. View Article : Google Scholar : PubMed/NCBI

5 

Warnold I, Lundholm K and Schersten T: Energy balance and body composition in cancer patients. Cancer Res. 38:1801–1807. 1978.PubMed/NCBI

6 

Chang VT, Xia Q and Kasimis B: The functional assessment of anorexia/cachexia therapy (FAACT) appetite scale in veteran cancer patients. J Support Oncol. 3:377–382. 2005.PubMed/NCBI

7 

Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB and Baracos VE: Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 31:1539–1547. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, et al: Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med. 69:491–497. 1980. View Article : Google Scholar : PubMed/NCBI

9 

Dunne RF, Roussel B, Culakova E, Pandya C, Fleming FJ, Hensley B, Magnuson AM, Loh KP, Gilles M, Ramsdale E, et al: Characterizing cancer cachexia in the geriatric oncology population. J Geriatr Oncol. 10:415–419. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Sadeghi M, Keshavarz-Fathi M, Baracos V, Arends J, Mahmoudi M and Rezaei N: Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol. 127:91–104. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Tazi E and Errihani H: Treatment of cachexia in oncology. Indian J Palliat Care. 16:129–137. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL and Reid MB: TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19:362–370. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG and Zimmers TA: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 303:E410–421. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, et al: Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med. 208:2449–2463. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Judge SM, Wu CL, Beharry AW, Roberts BM, Ferreira LF, Kandarian SC and Judge AR: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 14:9972014. View Article : Google Scholar : PubMed/NCBI

16 

Schmitt TL, Martignoni ME, Bachmann J, Fechtner K, Friess H, Kinscherf R and Hildebrandt W: Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. J Mol Med (Berl). 85:647–654. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, Zhang L and Mitch WE: Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem. 290:11177–11187. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Murton AJ, Maddocks M, Stephens FB, Marimuthu K, England R and Wilcock A: Consequences of late-stage non-small-cell lung cancer cachexia on muscle metabolic processes. Clin Lung Cancer. 18:e1–e11. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Sugiyama M, Yamaki A, Furuya M, Inomata N, Minamitake Y, Ohsuye K and Kangawa K: Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. Regul Pept. 178:21–28. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, et al: IGF-1 is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol. 291:R674–683. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Yang J, Zhang Z, Zhang Y, Ni X, Zhang G, Cui X, Liu M, Xu C, Zhang Q, Zhu H, et al: ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-regulated release of extracellular vesicles from cancer cells. Gastroenterology. 156:722–734.e6. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Pin F, Minero VG, Penna F, Muscaritoli M, De Tullio R, Baccino FM and Costelli P: Interference with Ca2+-dependent proteolysis does not alter the course of muscle wasting in experimental cancer cachexia. Front Physiol. 8:2132017. View Article : Google Scholar : PubMed/NCBI

23 

Camperi A, Pin F, Costamagna D, Penna F, Menduina ML, Aversa Z, Zimmers T, Verzaro R, Fittipaldi R, Caretti G, et al: Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget. 8:21778–21793. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Marzetti E, Lorenzi M, Landi F, Picca A, Rosa F, Tanganelli F, Galli M, Doglietto GB, Pacelli F, Cesari M, et al: Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp Gerontol. 87:92–99. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Williams A, Sun X, Fischer JE and Hasselgren PO: The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery. 126:744–750. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Doyle A, Zhang G, Abdel Fattah EA, Eissa NT and Li YP: Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 25:99–110. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Furuno K and Goldberg AL: The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism. Biochem J. 237:859–864. 1986. View Article : Google Scholar : PubMed/NCBI

28 

Lecker SH, Solomon V, Mitch WE and Goldberg AL: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr. 129 (Suppl 1):S227–S237. 1999. View Article : Google Scholar

29 

White JP, Puppa MJ, Gao S, Sato S, Welle SL and Carson JA: Muscle mTORC1 suppression by IL-6 during cancer cachexia: A role for AMPK. Am J Physiol Endocrinol Metab. 304:E1042–E1052. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Li YP, Schwartz RJ, Waddell ID, Holloway BR and Reid MB: Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J. 12:871–880. 1998. View Article : Google Scholar : PubMed/NCBI

31 

Bohnert KR, Gallot YS, Sato S, Xiong G, Hindi SM and Kumar A: Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB J. 30:3053–3068. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Fontes-Oliveira CC, Busquets S, Toledo M, Penna F, Paz Aylwin M, Sirisi S, Silva AP, Orpí M, García A, Sette A, et al: Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: Altered energetic efficiency? Biochim Biophys Acta. 1830:2770–2778. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Mondello P, Mian M, Aloisi C, Fama F, Mondello S and Pitini V: Cancer cachexia syndrome: Pathogenesis, diagnosis, and new therapeutic options. Nutr Cancer. 67:12–26. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Hershko A and Ciechanover A: Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 51:335–364. 1982. View Article : Google Scholar : PubMed/NCBI

36 

Haas AL and Rose IA: The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem. 257:10329–10337. 1982.PubMed/NCBI

37 

Hershko A, Heller H, Elias S and Ciechanover A: Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 258:8206–8214. 1983.PubMed/NCBI

38 

Hershko A: The ubiquitin pathway for protein degradation. Trends Biochem Sci. 16:265–268. 1991. View Article : Google Scholar : PubMed/NCBI

39 

Reiss Y, Heller H and Hershko A: Binding sites of ubiquitin-protein ligase. Binding of ubiquitin-protein conjugates and of ubiquitin-carrier protein. J Biol Chem. 264:10378–10383. 1989.PubMed/NCBI

40 

Voges D, Zwickl P and Baumeister W: The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem. 68:1015–1068. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Glickman MH and Ciechanover A: The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev. 82:373–428. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Rom O and Reznick AZ: The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 98:218–230. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ and Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Li W, Moylan JS, Chambers MA, Smith J and Reid MB: Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Physiol Cell Physiol. 297:C706–C714. 2009. View Article : Google Scholar : PubMed/NCBI

45 

McClung JM, Judge AR, Powers SK and Yan Z: p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 298:C542–C549. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Kaisari S, Rom O, Aizenbud D and Reznick AZ: Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes. Adv Exp Med Biol. 788:7–17. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Patel HJ and Patel BM: TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 170:56–63. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Parajuli P, Kumar S, Loumaye A, Singh P, Eragamreddy S, Nguyen TL, Ozkan S, Razzaque MS, Prunier C, Thissen JP and Atfi A: Twist1 activation in muscle progenitor cells causes muscle loss akin to cancer cachexia. Dev Cell. 45:712–725.e6. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Fry CS, Nayeem SZ, Dillon EL, Sarkar PS, Tumurbaatar B, Urban RJ, Wright TJ, Sheffield-Moore M, Tilton RG and Choudhary S: Glucocorticoids increase skeletal muscle NF-κB inducing kinase (NIK): Links to muscle atrophy. Physiol Rep. 4:2016. View Article : Google Scholar

50 

Gallot YS, Durieux AC, Castells J, Desgeorges MM, Vernus B, Plantureux L, Rémond D, Jahnke VE, Lefai E, Dardevet D, et al: Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res. 74:7344–7356. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Bédard N, Jammoul S, Moore T, Wykes L, Hallauer PL, Hastings KE, Stretch C, Baracos V, Chevalier S, Plourde M, et al: Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting. FASEB J. 29:3889–3898. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Lee H, Lee SJ, Bae GU, Baek NI and Ryu JH: Canadine from corydalis turtschaninovii stimulates myoblast differentiation and protects against myotube atrophy. Int J Mol Sci. 18:27482017. View Article : Google Scholar

53 

Chen L, Yang Q, Zhang H, Wan L, Xin B, Cao Y, Zhang J and Guo C: Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway. J Ethnopharmacol. 260:1130662020. View Article : Google Scholar : PubMed/NCBI

54 

Chong SW, Nguyet LM, Jiang YJ and Korzh V: The chemokine Sdf-1 and its receptor Cxcr4 are required for formation of muscle in zebrafish. BMC Dev Biol. 7:542007. View Article : Google Scholar : PubMed/NCBI

55 

Melchionna R, Di Carlo A, De Mori R, Cappuzzello C, Barberi L, Musarò A, Cencioni C, Fujii N, Tamamura H, Crescenzi M, et al: Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors. Muscle Nerve. 41:828–835. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Bobadilla M, Sainz N, Abizanda G, Orbe J, Rodriguez JA, Páramo JA, Prósper F and Pérez-Ruiz A: The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells Dev. 23:1417–1427. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Martinelli GB, Olivari D, Re Cecconi AD, Talamini L, Ottoboni L, Lecker SH, Stretch C, Baracos VE, Bathe OF, Resovi A, et al: Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Oncogene. 35:6212–6222. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, et al: Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med. 8:348ra3982016. View Article : Google Scholar

59 

Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, Ross JA, Guttridge DC, Lundell L, Fearon KC and Timmons JA: Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med. 2:12010. View Article : Google Scholar : PubMed/NCBI

60 

Eskiler GG, Bezdegumeli E, Ozman Z, Ozkan AD, Bilir C, Kucukakca BN, Ince MN, Men AY, Aktas O, Horoz YE, et al: IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratisl Lek Listy. 66:819–826. 2019.PubMed/NCBI

61 

Pin F, Barreto R, Kitase Y, Mitra S, Erne CE, Novinger LJ, Zimmers TA, Couch ME, Bonewald LF and Bonetto A: Growth of ovarian cancer xenografts causes loss of muscle and bone mass: A new model for the study of cancer cachexia. J Cachexia Sarcopenia Muscle. 9:685–700. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Grabiec AM, Korchynskyi O, Tak PP and Reedquist KA: Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann Rheum Dis. 71:424–431. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, Qi Y and Du J: Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One. 7:e351442012. View Article : Google Scholar : PubMed/NCBI

64 

Miki S, Iwano M, Miki Y, Yamamoto M, Tang B, Yokokawa K, Sonoda T, Hirano T and Kishimoto T: Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEBS Lett. 250:607–610. 1989. View Article : Google Scholar : PubMed/NCBI

65 

Iwase S, Murakami T, Saito Y and Nakagawa K: Steep elevation of blood interleukin-6 (IL-6) associated only with late stages of cachexia in cancer patients. Eur Cytokine Netw. 15:312–316. 2004.PubMed/NCBI

66 

Fujimoto-Ouchi K, Onuma E, Shirane M, Mori K and Tanaka Y: Capecitabine improves cancer cachexia and normalizes IL-6 and PTHrP levels in mouse cancer cachexia models. Cancer Chemother Pharmacol. 59:807–815. 2007. View Article : Google Scholar : PubMed/NCBI

67 

White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW and Carson JA: Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol. 300:R201–R211. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Op den Kamp CM, Gosker HR, Lagarde S, Tan DY, Snepvangers FJ, Dingemans AM, Langen RC and Schols AM: Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia. J Cachexia Sarcopenia Muscle. 6:164–173. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Siddiqui RA and Williams JF: Tentative identification of the toxohormones of cancer cachexia: Roles of vasopressin, prostaglandin E2 and cachectin-TNF. Biochem Int. 20:787–797. 1990.PubMed/NCBI

70 

Llovera M, García-Martínez C, López-Soriano J, Carbó N, Agell N, López-Soriano FJ and Argiles JM: Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol Cell Endocrinol. 142:183–189. 1998. View Article : Google Scholar : PubMed/NCBI

71 

Powrozek T, Mlak R, Brzozowska A, Mazurek M, Golebiowski P and Malecka-Massalska T: Relationship between TNF-α −1031T/C gene polymorphism, plasma level of TNF-α, and risk of cachexia in head and neck cancer patients. J Cancer Res Clin Oncol. 144:1423–1434. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Llovera M, García-Martínez C, Agell N, López-Soriano FJ and Argilés JM: TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun. 230:238–241. 1997. View Article : Google Scholar : PubMed/NCBI

73 

Matsuyama T, Ishikawa T, Okayama T, Oka K, Adachi S, Mizushima K, Kimura R, Okajima M, Sakai H, Sakamoto N, et al: Tumor inoculation site affects the development of cancer cachexia and muscle wasting. Int J Cancer. 137:2558–2565. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Mu X, Agarwal R, March D, Rothenberg A, Voigt C, Tebbets J, Huard J and Weiss K: Notch signaling mediates skeletal muscle atrophy in cancer cachexia caused by osteosarcoma. Sarcoma. 2016:37581622016. View Article : Google Scholar : PubMed/NCBI

75 

Cannon T, Shores C, Yin X, Dahlman J, Guttridge D, Lai V, George J, Buzkova P and Couch M: Immunocompetent murine model of cancer cachexia for head and neck squamous cell carcinoma. Head Neck. 30:320–326. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Mi L, Lin J, Zheng H, Xu X, Zhang J and Zhang D: Bacterial translocation contributes to cachexia from locally advanced gastric cancer. Hepatogastroenterology. 59:2348–2351. 2012.PubMed/NCBI

77 

Kumar S, Kishimoto H, Chua HL, Badve S, Miller KD, Bigsby RM and Nakshatri H: Interleukin-1 alpha promotes tumor growth and cachexia in MCF-7 ×enograft model of breast cancer. Am J Pathol. 163:2531–2541. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Zheng R, Huang S, Zhu J, Lin W, Xu H and Zheng X: Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res. 378:113–125. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Lee S, Kim MB, Kim C and Hwang JK: Whole grain cereal attenuates obesity-induced muscle atrophy by activating the PI3K/Akt pathway in obese C57BL/6N mice. Food Sci Biotechnol. 27:159–168. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Ma XM and Blenis J: Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 10:307–318. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Jiang BH, Aoki M, Zheng JZ, Li J and Vogt PK: Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci USA. 96:2077–2081. 1999. View Article : Google Scholar : PubMed/NCBI

82 

Price DJ, Grove JR, Calvo V, Avruch J and Bierer BE: Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 257:973–977. 1992. View Article : Google Scholar : PubMed/NCBI

83 

Chung J, Kuo CJ, Crabtree GR and Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 69:1227–1236. 1992. View Article : Google Scholar : PubMed/NCBI

84 

Lin TA, Kong X, Saltiel AR, Blackshear PJ and Lawrence JC Jr: Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 270:18531–18538. 1995. View Article : Google Scholar : PubMed/NCBI

85 

Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA and Lawrence JC Jr: cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA. 92:7222–7226. 1995. View Article : Google Scholar : PubMed/NCBI

86 

Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass D: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395–403. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH and Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117:399–412. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Manne ND, Lima M, Enos RT, Wehner P, Carson JA and Blough E: Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse. Int J Oncol. 42:2134–2140. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ and Chen J: mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol. 297:C1434–C1444. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Zimmers TA, Fishel ML and Bonetto A: STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 54:28–41. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG and Zimmers TA: STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 6:e225382011. View Article : Google Scholar : PubMed/NCBI

92 

Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S and Gallouzi IE: STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol Med. 9:622–637. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109 (Suppl 1):S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Hayden MS and Ghosh S: NF-kappaB in immunobiology. Cell Res. 21:223–244. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Thoma A and Lightfoot AP: NF-kB and inflammatory cytokine signalling: Role in skeletal muscle atrophy. Adv Exp Med Biol. 1088:267–279. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Di Marco S, Mazroui R, Dallaire P, Chittur S, Tenenbaum SA, Radzioch D, Marette A and Gallouzi IE: NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol Cell Biol. 25:6533–6545. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Cuenda A and Rousseau S: p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 1773:1358–1375. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Kim J, Won KJ, Lee HM, Hwang BY, Bae YM, Choi WS, Song H, Lim KW, Lee CK and Kim B: p38 MAPK participates in muscle-specific RING finger 1-mediated atrophy in cast-immobilized rat gastrocnemius muscle. Korean J Physiol Pharmacol. 13:491–496. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B and Won KJ: Sabinene prevents skeletal muscle atrophy by inhibiting the MAPK-MuRF-1 pathway in rats. Int J Mol Sci. 20:49552019. View Article : Google Scholar

100 

Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS and Nemirovskaya TL: P38α-MAPK signaling inhibition attenuates soleus atrophy during early stages of muscle unloading. Int J Mol Sci. 21:27562020. View Article : Google Scholar

101 

Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE and Sharples AP: l-glutamine improves skeletal muscle cell differentiation and prevents myotube atrophy after cytokine (TNF-α) stress via reduced p38 MAPK signal transduction. J Cell Physiol. 231:2720–2732. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Morales MG, Olguin H, Di Capua G, Brandan E, Simon F and Cabello-Verrugio C: Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1–7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond). 129:461–476. 2015. View Article : Google Scholar : PubMed/NCBI

103 

O'Neill BT, Bhardwaj G, Penniman CM, Krumpoch MT, Suarez Beltran PA, Klaus K, Poro K, Li M, Pan H, Dreyfuss JM, et al: FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes. 68:556–570. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R and Sun LQ: Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia mice. Cancer Gene Ther. 14:945–952. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Blackwell TA, Cervenka I, Khatri B, Brown JL, Rosa-Caldwell ME, Lee DE, Perry RA Jr, Brown LA, Haynie WS, Wiggs MP, et al: Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice. Physiol Genomics. 50:1071–1082. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Marchildon F, Lamarche E, Lala-Tabbert N, St-Louis C and Wiper-Bergeron N: Expression of CCAAT/enhancer binding protein beta in muscle satellite cells inhibits myogenesis in cancer cachexia. PLoS One. 10:e01455832015. View Article : Google Scholar : PubMed/NCBI

107 

Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP and Carvalho RF: The pathway to cancer cachexia: MicroRNA-regulated networks in muscle wasting based on integrative meta-analysis. Int J Mol Sci. 20:2019. View Article : Google Scholar

108 

Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA Jr, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, et al: Cancer cachexia-induced muscle atrophy: Evidence for alterations in microRNAs important for muscle size. Physiol Genomics. 49:253–260. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Sandri M: Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol. 298:C1291–C1297. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B and Artero R: Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech. 8:679–690. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, Hatakeyama S, Tesfahun AN, Moestue S, Kim J, Nonstad U, et al: Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci Rep. 7:20462017. View Article : Google Scholar : PubMed/NCBI

112 

Penna F, Ballarò R, Martinez-Cristobal P, Sala D, Sebastian D, Busquets S, Muscaritoli M, Argilés JM, Costelli P and Zorzano A: Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function. J Mol Biol. 431:2674–2686. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Pettersen K, Andersen S, van der Veen A, Nonstad U, Hatakeyama S, Lambert C, Lach-Trifilieff E, Moestue S, Kim J, Grønberg BH, et al: Autocrine activin A signalling in ovarian cancer cells regulates secretion of interleukin 6, autophagy, and cachexia. J Cachexia Sarcopenia Muscle. 11:195–207. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Mirza KA and Tisdale MJ: Role of Ca2+ in proteolysis-inducing factor (PIF)-induced atrophy of skeletal muscle. Cell Signal. 24:2118–2122. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Kozutsumi Y, Segal M, Normington K, Gething MJ and Sambrook J: The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 332:462–464. 1988. View Article : Google Scholar : PubMed/NCBI

116 

Bohnert KR, McMillan JD and Kumar A: Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol. 233:67–78. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Liu CY, Schröder M and Kaufman RJ: Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 275:24881–24885. 2000. View Article : Google Scholar : PubMed/NCBI

118 

Bertolotti A, Zhang Y, Hendershot LM, Harding HP and Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2:326–332. 2000. View Article : Google Scholar : PubMed/NCBI

119 

Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI

120 

Shen J, Chen X, Hendershot L and Prywes R: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 3:99–111. 2002. View Article : Google Scholar : PubMed/NCBI

121 

Roy A and Kumar A: ER stress and unfolded protein response in cancer cachexia. Cancers (Basel). 11:19292019. View Article : Google Scholar

122 

Wu J and Kaufman RJ: From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 13:374–384. 2006. View Article : Google Scholar : PubMed/NCBI

123 

Isaac ST, Tan TC and Polly P: Endoplasmic reticulum stress, calcium dysregulation and altered protein translation: Intersection of processes that contribute to cancer cachexia induced skeletal muscle wasting. Curr Drug Targets. 17:1140–1146. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Barreiro E, Salazar-Degracia A, Sancho-Muñoz A and Gea J: Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol. 234:11315–11329. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Tam AB, Mercado EL, Hoffmann A and Niwa M: ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One. 7:e450782012. View Article : Google Scholar : PubMed/NCBI

126 

White JP, Puppa MJ, Sato S, Gao S, Price RL, Baynes JW, Kostek MC, Matesic LE and Carson JA: IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet Muscle. 2:142012. View Article : Google Scholar : PubMed/NCBI

127 

Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, Haynie WS, Hardee JP, Carson JA, Wiggs MP, et al: Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle. 8:926–938. 2017. View Article : Google Scholar : PubMed/NCBI

128 

VanderVeen BN, Fix DK and Carson JA: Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: A role for inflammation. Oxid Med Cell Longev. 2017:32920872017. View Article : Google Scholar : PubMed/NCBI

129 

van der Ende M, Grefte S, Plas R, Meijerink J, Witkamp RF, Keijer J and van Norren K: Mitochondrial dynamics in cancer-induced cachexia. Biochim Biophys Acta Rev Cancer. 1870:137–150. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Dave DT and Patel BM: Mitochondrial metabolism in cancer cachexia: Novel drug target. Curr Drug Metab. 20:1141–1153. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Neyroud D, Nosacka RL, Judge AR and Hepple RT: Colon 26 adenocarcinoma (C26)-induced cancer cachexia impairs skeletal muscle mitochondrial function and content. J Muscle Res Cell Motil. 40:59–65. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Pin F, Novinger LJ, Huot JR, Harris RA, Couch ME, O'Connell TM and Bonetto A: PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia. FASEB J. 33:7778–7790. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN and Fielitz J: Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression. Circ Res. 117:424–436. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, et al: Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol. 100:312–322. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Cisternas F, Morales MG, Meneses C, Simon F, Brandan E, Abrigo J, Vazquez Y and Cabello-Verrugio C: Angiotensin-(1–7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond). 128:307–319. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S and Delafontaine P: Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: Potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol. 45:2322–2332. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Penafuerte CA, Gagnon B, Sirois J, Murphy J, MacDonald N and Tremblay ML: Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br J Cancer. 114:680–687. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Cai X, Zhu C, Xu Y, Jing Y, Yuan Y, Wang L, Wang S, Zhu X, Gao P, Zhang Y, et al: Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways. Sci Rep. 6:268022016. View Article : Google Scholar : PubMed/NCBI

139 

Liu D, Qiao X, Ge Z, Shang Y, Li Y, Wang W, Chen M, Si S and Chen SZ: IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway. Skelet Muscle. 9:82019. View Article : Google Scholar : PubMed/NCBI

140 

Bae T, Jang J, Lee H, Song J, Chae S, Park M, Son CG, Yoon S and Yoon Y: Paeonia lactiflora root extract suppresses cancer cachexia by down-regulating muscular NF-κB signalling and muscle-specific E3 ubiquitin ligases in cancer-bearing mice. J Ethnopharmacol. 246:1122222020. View Article : Google Scholar : PubMed/NCBI

141 

Levolger S, Wiemer EAC, van Vugt JLA, Huisman SA, van Vledder MG, van Damme-van Engel S, Ambagtsheer G, IJzermans JNM and de Bruin RWF: Inhibition of activin-like kinase 4/5 attenuates cancer cachexia associated muscle wasting. Sci Rep. 9:98262019. View Article : Google Scholar : PubMed/NCBI

142 

An JM, Kang EA, Han YM, Oh JY, Lee DY, Choi SH, Kim DH and Hahm KB: Dietary intake of probiotic kimchi ameliorated IL-6-driven cancer cachexia. J Clin Biochem Nutr. 65:109–117. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Liu H, Li L, Zou J, Zhou T, Wang B, Sun H and Yu S: Coix seed oil ameliorates cancer cachexia by counteracting muscle loss and fat lipolysis. BMC Complement Altern Med. 19:2672019. View Article : Google Scholar : PubMed/NCBI

144 

Terawaki K, Sawada Y, Kashiwase Y, Hashimoto H, Yoshimura M, Suzuki M, Miyano K, Sudo Y, Shiraishi S, Higami Y, et al: New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am J Physiol Endocrinol Metab. 306:E373–E387. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Xi QL, Zhang B, Jiang Y, Zhang HS, Meng QY, Chen Y, Han YS, Zhuang QL, Han J, Wang HY, et al: Mitofusin-2 prevents skeletal muscle wasting in cancer cachexia. Oncol Lett. 12:4013–4020. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Toledo M, Busquets S, Penna F, Zhou X, Marmonti E, Betancourt A, Massa D, López-Soriano FJ, Han HQ and Argilés JM: Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and beta-2 agonist. Int J Cancer. 138:2021–2029. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Khamoui AV, Park BS, Kim DH, Yeh MC, Oh SL, Elam ML, Jo E, Arjmandi BH, Salazar G, Grant SC, et al: Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Metabolism. 65:685–698. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Kurinami H, Yasunobe Y, Matsumoto T, Fujino H and Rakugi H: Preventive effects of low-intensity exercise on cancer cachexia-induced muscle atrophy. FASEB J. 33:7852–7862. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Zhang Y, Han X, Ouyang B, Wu Z, Yu H, Wang Y, Liu G and Ji X: Chinese herbal medicine Baoyuan Jiedu decoction inhibited muscle atrophy of cancer cachexia through Atrogin-l and MuRF-1. Evid Based Complement Alternat Med. 2017:62683782017.PubMed/NCBI

150 

Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, Chen S, Zhang X and Yang H: Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPbeta-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol. 311:C101–C115. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Zhuang P, Zhang J, Wang Y, Zhang M, Song L, Lu Z, Zhang L, Zhang F, Wang J, Zhang Y, et al: Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia. Support Care Cancer. 24:1189–1198. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Chen JM, Yang TT, Cheng TS, Hsiao TF, Chang PM, Leu JY, Wang FS, Hsu SL, Huang CF and Lai JM: Modified Sijunzi decoction can alleviate cisplatin-induced toxicity and prolong the survival time of cachectic mice by recovering muscle atrophy. J Ethnopharmacol. 233:47–55. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Molanouri Shamsi M, Chekachak S, Soudi S, Quinn LS, Ranjbar K, Chenari J, Yazdi MH and Mahdavi M: Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine. 90:100–108. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Salazar-Degracia A, Busquets S, Argilés JM, Bargalló-Gispert N, López-Soriano FJ and Barreiro E: Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie. 149:79–91. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Pretto F, Ghilardi C, Moschetta M, Bassi A, Rovida A, Scarlato V, Talamini L, Fiordaliso F, Bisighini C, Damia G, et al: Sunitinib prevents cachexia and prolongs survival of mice bearing renal cancer by restraining STAT3 and MuRF-1 activation in muscle. Oncotarget. 6:3043–3054. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Miao C, Lv Y, Zhang W, Chai X, Feng L, Fang Y, Liu X and Zhang X: Pyrrolidine dithiocarbamate (PDTC) attenuates cancer cachexia by affecting muscle atrophy and fat lipolysis. Front Pharmacol. 8:9152017. View Article : Google Scholar : PubMed/NCBI

157 

Kadoguchi T, Takada S, Yokota T, Furihata T, Matsumoto J, Tsuda M, Mizushima W, Fukushima A, Okita K and Kinugawa S: Deletion of NAD(P)H oxidase 2 prevents angiotensin II-induced skeletal muscle atrophy. Biomed Res Int. 2018:31949172018. View Article : Google Scholar : PubMed/NCBI

158 

Bosaeus I: Nutritional support in multimodal therapy for cancer cachexia. Support Care Cancer. 16:447–451. 2008. View Article : Google Scholar : PubMed/NCBI

159 

Amano K, Morita T, Miyamoto J, Uno T, Katayama H and Tatara R: Perception of need for nutritional support in advanced cancer patients with cachexia: A survey in palliative care settings. Support Care Cancer. 26:2793–2799. 2018. View Article : Google Scholar : PubMed/NCBI

160 

McClement S: Cancer anorexia-cachexia syndrome: Psychological effect on the patient and family. J Wound Ostomy Continence Nurs. 32:264–268. 2005. View Article : Google Scholar : PubMed/NCBI

161 

Zhang WL, Li N, Shen Q, Fan M, Guo XD, Zhang XW, Zhang Z and Liu X: Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. Acta Pharmacol Sin. 41:237–248. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Kang HJ, Jeong MK, Park SJ, Jun HJ and Yoo HS: Efficacy and safety of Yukgunja-Tang for treating anorexia in patients with cancer: The protocol for a pilot, randomized, controlled trial. Medicine (Baltimore). 98:e169502019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q and Gao W: Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 22: 4967-4980, 2020.
APA
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y. ... Gao, W. (2020). Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Molecular Medicine Reports, 22, 4967-4980. https://doi.org/10.3892/mmr.2020.11608
MLA
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y., Wang, W., Wu, Q., Gao, W."Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review)". Molecular Medicine Reports 22.6 (2020): 4967-4980.
Chicago
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y., Wang, W., Wu, Q., Gao, W."Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review)". Molecular Medicine Reports 22, no. 6 (2020): 4967-4980. https://doi.org/10.3892/mmr.2020.11608
Copy and paste a formatted citation
x
Spandidos Publications style
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q and Gao W: Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 22: 4967-4980, 2020.
APA
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y. ... Gao, W. (2020). Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Molecular Medicine Reports, 22, 4967-4980. https://doi.org/10.3892/mmr.2020.11608
MLA
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y., Wang, W., Wu, Q., Gao, W."Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review)". Molecular Medicine Reports 22.6 (2020): 4967-4980.
Chicago
Yang, W., Huang, J., Wu, H., Wang, Y., Du, Z., Ling, Y., Wang, W., Wu, Q., Gao, W."Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review)". Molecular Medicine Reports 22, no. 6 (2020): 4967-4980. https://doi.org/10.3892/mmr.2020.11608
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team