Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2022 Volume 25 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 25 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway

  • Authors:
    • Daihong Cao
    • Yunhan Wang
    • Wentao Li
    • Jiafen Ji
    • Juntang Guo
    • Daijuan Zhang
    • Jiangyue Liu
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
    Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Article Number: 199
    |
    Published online on: April 26, 2022
       https://doi.org/10.3892/mmr.2022.12715
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

It has been reported that oxidative stress plays a prominent role in diabetic macrovascular diseases. 3,4‑Dihydroxyacetophenone (3,4‑DHAP) has been found to have a variety of biological activities. However, few studies have assessed the antioxidant capacity of 3,4‑DHAP and the underlying mechanisms. Thus, the aim of the present study was to explore the effects of 3,4‑DHAP on oxidative stress in human umbilical vein endothelial cells (HUVECs). HUVECs were pre‑treated with 3,4‑DHAP and then exposed to high glucose conditions. Cell viability and cytotoxicity were measured using an MTT assay. Reactive oxygen species (ROS) levels were measured using an inverted fluorescence microscope and a fluorescent enzyme labeling instrument. Protein expression levels of nuclear factor E2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1), microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and poly ADP‑ribose polymerase‑1 (PARP‑1) were measured using western blotting, and mRNA expression of Nrf2 and HO‑1 were measured through reverse transcription‑quantitative PCR (RT‑qPCR). Nrf2 nuclear translocation was evaluated using immunofluorescence analysis and autophagosomes were observed using transmission electron microscope (TEM). The results of the present study demonstrated that compared with the control group, cell viability of the high glucose group was reduced and cell cytotoxicity of the high glucose group was increased. ROS production in the high glucose group was clearly enhanced. In addition, high glucose upregulated Nrf2 and HO‑1 protein and mRNA expression levels. Nuclear translocation of Nrf2 in the high glucose group was also increased. The formation of autophagosomes in the high glucose group was also higher than that in the control group. Furthermore, LC3‑II/LC3‑I and PARP‑1 protein expression levels were increased after treatment with high glucose. However, compared to the high glucose group, 3,4‑DHAP (10 µmol/l) significantly enhanced cell viability. 3,4‑DHAP markedly decreased the production of ROS, increased Nrf2 and HO‑1 protein and mRNA expression levels, and promoted nuclear translocation of Nrf2 in HUVECs. In addition, 3,4‑DHAP promoted the formation of autophagosomes, and notably increased the protein expression levels of LC3‑II/LC3‑I and PARP‑1. Moreover, it was determined that compared to the 3,4‑DHAP group, treatment with 3,4‑DHAP and ML385 enhanced cell viability, and decreased ROS production, Nrf2 and HO‑1 protein and mRNA expression levels, nuclear translocation of Nrf2, and LC3‑II/LC3‑I and PARP‑1 protein expression levels. Collectively, the results of the present study showed that 3,4‑DHAP protected HUVECs against oxidative stress via regulation of the Nrf2/HO‑1 pathway, by increasing autophagy and promoting DNA damage repair.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 138:271–281. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Newman JD, Schwartzbard AZ, Weintraub HS, Goldberg IJ and Berger JS: Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol. 70:883–893. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Sheng B, Truong K, Spitler H, Zhang L, Tong X and Chen L: The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: A systematic review and meta-analysis. Obes Surg. 27:2724–2732. 2017. View Article : Google Scholar : PubMed/NCBI

4 

GBD 2016 Causes of Death Collaborators, . Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390:1151–1210. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, et al: Activation of Nrf2/HO-1 pathway by nardochinoid C inhibits inflammation and oxidative stress in lipopolysaccharide-stimulated macrophages. Front Pharmacol. 9:9112018. View Article : Google Scholar : PubMed/NCBI

6 

Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI and Zhou T: Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci. 20:44722019. View Article : Google Scholar : PubMed/NCBI

7 

Förstermann U, Xia N and Li H: Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 120:713–735. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG and Fernandes AS: The SOD Mimic MnTnHex-2-PyP5+ reduces the viability and migration of 786-O human renal cancer cells. Antioxidants (Basel). 8:4902019. View Article : Google Scholar : PubMed/NCBI

9 

Ge C, Tan J, Zhong S, Lai L, Chen G, Zhao J, Yi C, Wang L, Zhou L, Tang T, et al: Nrf2 mitigates prolonged PM2.5 exposure-triggered liver inflammation by positively regulating SIKE activity: Protection by Juglanin. Redox Biol. 36:1016452020. View Article : Google Scholar : PubMed/NCBI

10 

Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Suzuki T, Motohashi H and Yamamoto M: Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 34:340–346. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M and Levonen AL: Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res. 122:281–320. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW and Dinkova-Kostova AT: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 18:295–317. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K and Yamamoto M: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 24:7130–7139. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Warabi E, Takabe W, Minami T, Inoue K, Itoh K, Yamamoto M, Ishii T, Kodama T and Noguchi N: Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: Role of reactive oxygen/nitrogen species. Free Radic Biol Med. 42:260–269. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Farkhondeh T, Pourbagher-Shahri AM, Azimi-Nezhad M, Forouzanfar F, Brockmueller A, Ashrafizadeh M, Talebi M, Shakibaei M and Samarghandian S: Roles of Nrf2 in gastric cancer: Targeting for therapeutic strategies. Molecules. 26:31572021. View Article : Google Scholar : PubMed/NCBI

17 

Su L, Cao P and Wang H: Tetrandrine mediates renal function and redox homeostasis in a streptozotocin-induced diabetic nephropathy rat model through Nrf2/HO-1 reactivation. Ann Transl Med. 8:9902020. View Article : Google Scholar : PubMed/NCBI

18 

Zhang S, Li T, Zhang L, Wang X, Dong H, Li L, Fu D, Li Y, Zi X, Liu HM, et al: A novel chalcone derivative S17 induces apoptosis through ROS dependent DR5 up-regulation in gastric cancer cells. Sci Rep. 7:98732017. View Article : Google Scholar : PubMed/NCBI

19 

Ci X, Lv H, Wang L, Wang X, Peng L, Qin FX and Cheng G: The antioxidative potential of farrerol occurs via the activation of Nrf2 mediated HO-1 signaling in RAW 264.7 cells. Chem Biol Interact. 239:192–199. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Mohammad J, Singh RR, Riggle C, Haugrud B, Abdalla MY and Reindl KM: JNK inhibition blocks piperlongumine-induced cell death and transcriptional activation of heme oxygenase-1 in pancreatic cancer cells. Apoptosis. 24:730–744. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M and Zhou J: Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy. 11:503–515. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Zhao YG, Codogno P and Zhang H: Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 22:733–750. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Laverdure S, Wang Z, Yang J, Yamamoto T, Thomas T, Sato T, Nagashima K and Imamichi T: Interleukin-27 promotes autophagy in human serum-induced primary macrophages via an mTOR- and LC3-independent pathway. Sci Rep. 11:148982021. View Article : Google Scholar : PubMed/NCBI

25 

Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D and Klein C: Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: Study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 288:2223–2237. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Yang A, Pantoom S and Wu YW: Elucidation of the anti-autophagy mechanism of the Legionella effector RavZ using semisynthetic LC3 proteins. Elife. 6:e239052017. View Article : Google Scholar : PubMed/NCBI

27 

Han X, Liu JX and Li XZ: Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes. Acta Pharmacol Sin. 32:38–44. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M and Cipak L: Maintenance of genome stability: The unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet. 64:971–983. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Wang Y, Luo W and Wang Y: PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst). 81:1026512019. View Article : Google Scholar : PubMed/NCBI

30 

Zhou Y, Tang S, Chen T and Niu MM: Structure-based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors. Molecules. 24:42582019. View Article : Google Scholar : PubMed/NCBI

31 

Schiewer MJ, Mandigo AC, Gordon N, Huang F, Gaur S, de Leeuw R, Zhao SG, Evans J, Han S, Parsons T, et al: PARP-1 regulates DNA repair factor availability. EMBO Mol Med. 10:e88162018. View Article : Google Scholar : PubMed/NCBI

32 

Pazzaglia S and Pioli C: Multifaceted Role of PARP-1 in DNA repair and inflammation: Pathological and therapeutic implications in cancer and non-cancer diseases. Cells. 9:412019. View Article : Google Scholar : PubMed/NCBI

33 

Liu Y, Song H, Song H, Feng X, Zhou C and Huo Z: Targeting autophagy potentiates the anti-tumor effect of PARP inhibitor in pediatric chronic myeloid leukemia. AMB Express. 9:1082019. View Article : Google Scholar : PubMed/NCBI

34 

Wang L, Wei W, Xiao Q, Yang H and Ci X: Farrerol Ameliorates APAP-induced hepatotoxicity via activation of Nrf2 and autophagy. Int J Biol Sci. 15:788–799. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Fan SF, Zhou NH, Hu SL and Xu SG: Effects of 3,4-dihydroxyacetophenone in shortening of action potential duration of cardiac cells (author's transl). Zhongguo Yao Li Xue Bao. 2:107–110. 1981.(In Chinese). PubMed/NCBI

36 

Kim YJ, No JK, Lee JS, Kim MS and Chung HY: Antimelanogenic activity of 3,4-dihydroxyacetophenone: Inhibition of tyrosinase and MITF. Biosci Biotechnol Biochem. 70:532–534. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Lu XY and Chen WC: Effect of 3, 4-dihydroxyacetophenone on Na+, K+-ATPase activity of injured mitochondria and the oxygen consumption of brain cells of rat. Yao Xue Xue Bao. 40:13–16. 2005.PubMed/NCBI

38 

Zhang D, Liu J, Wang L, Wang J, Li W, Zhuang B, Hou J and Liu T: Effects of 3,4-dihydroxyacetophenone on the hypercholesterolemia-induced atherosclerotic rabbits. Biol Pharm Bull. 36:733–740. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E, Castell JV and Gombau L: Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro. 27:954–963. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Arakawa S, Honda S, Yamaguchi H and Shimizu S: Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 93:378–385. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, Jakobsen MR, Nevels MM, Bowie AG and Unterholzner L: Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell. 71:745–760.e5. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Hemmingsen B, Gimenez-Perez G, Mauricio D, Roqué IFM, Metzendorf MI and Richter B: Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. Dec 4–2017.(Epub ahead of print). View Article : Google Scholar

44 

Wu Y, Song F, Li Y, Li J, Cui Y, Hong Y, Han W, Wu W, Lakhani I, Li G and Wang Y: Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE(−/-) Mice. J Cell Mol Med. 25:521–534. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Kaur R, Kaur M and Singh J: Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol. 17:1212018. View Article : Google Scholar : PubMed/NCBI

46 

Sena CM, Leandro A, Azul L, Seiça R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI

47 

Jiao B, Wang YS, Cheng YN, Gao JJ and Zhang QZ: Valsartan attenuated oxidative stress, decreased MCP-1 and TGF-β1 expression in glomerular mesangial and epithelial cells induced by high-glucose levels. Biosci Trends. 5:173–181. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Wang M, Sun X, Yu D, Xu J, Chung K and Li H: Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Sci Rep. 6:324372016. View Article : Google Scholar : PubMed/NCBI

49 

Guo J, Zhao MH, Shin KT, Niu YJ, Ahn YD, Kim NH and Cui XS: The possible molecular mechanisms of bisphenol A action on porcine early embryonic development. Sci Rep. 7:86322017. View Article : Google Scholar : PubMed/NCBI

50 

An J, Li Q, Yang J, Zhao Z, Wu Y, Wang Y and Wang W: Wheat F-box protein TaFBA1 positively regulates plant drought tolerance but negatively regulates stomatal closure. Front Plant Sci. 10:12422019. View Article : Google Scholar : PubMed/NCBI

51 

Zhang R, Liu B, Fan X, Wang W, Xu T, Wei S, Zheng W, Yuan Q, Gao L, Yin X, et al: Aldehyde dehydrogenase 2 protects against post-cardiac arrest myocardial dysfunction through a novel mechanism of suppressing mitochondrial reactive oxygen species production. Front Pharmacol. 11:3732020. View Article : Google Scholar : PubMed/NCBI

52 

Bazhin AV, Philippov PP and Karakhanova S: Reactive oxygen species in cancer biology and anticancer therapy. Oxid Med Cell Longev. 2016:41978152016. View Article : Google Scholar : PubMed/NCBI

53 

Senoner T and Dichtl W: Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients. 11:20902019. View Article : Google Scholar : PubMed/NCBI

54 

Kang Q and Yang C: Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 37:1017992020. View Article : Google Scholar : PubMed/NCBI

55 

Shah MS and Brownlee M: Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 118:1808–1829. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Zhong Z, Fu X, Li H, Chen J, Wang M, Gao S, Zhang L, Cheng C, Zhang Y, Li P, et al: Citicoline protects auditory hair cells against neomycin-induced damage. Front Cell Dev Biol. 8:7122020. View Article : Google Scholar : PubMed/NCBI

57 

Das SK, Prusty A, Samantaray D, Hasan M, Jena S, Patra JK, Samanta L and Thatoi H: Effect of Xylocarpus granatum bark extract on amelioration of hyperglycaemia and oxidative stress associated complications in STZ-induced diabetic mice. Evid Based Complement Alternat Med. 2019:84931902019. View Article : Google Scholar : PubMed/NCBI

58 

Wang SX, Wen X, Bell C and Appiah S: Liposome-delivered baicalein induction of myeloid leukemia K562 cell death via reactive oxygen species generation. Mol Med Rep. 17:4524–4530. 2018.PubMed/NCBI

59 

Yang DS, Xi-Rui W and Ting-Yuan M: Effects of 3,4-dihydroxyacetophenone on the biosynthesis of TXA2 and PGI2 in human placental villus and umbilical artery segments in vitro. Prostaglandins. 38:497–504. 1989. View Article : Google Scholar : PubMed/NCBI

60 

Wu P, Ye D, Zhang D, Zhang L, Wan J and Pan Q: Dual effect of 3,4-dihydroxyacetophenone on LPS-induced apoptosis in RAW264.7 cells by modulating the production of TNF-alpha. J Huazhong Univ Sci Technolog Med Sci. 25:131–134. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Fan X, Wei W, Huang J, Liu X and Ci X: Isoorientin attenuates cisplatin-induced nephrotoxicity through the inhibition of oxidative stress and apoptosis via activating the SIRT1/SIRT6/Nrf-2 pathway. Front Pharmacol. 11:2642020. View Article : Google Scholar : PubMed/NCBI

62 

Qin JJ, Cheng XD, Zhang J and Zhang WD: Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: A systematic review. Cell Commun Signal. 17:1212019. View Article : Google Scholar : PubMed/NCBI

63 

Li T, Chen B, Du M, Song J, Cheng X, Wang X and Mao X: Casein glycomacropeptide hydrolysates exert cytoprotective effect against cellular oxidative stress by Up-Regulating HO-1 expression in HepG2 cells. Nutrients. 9:312017. View Article : Google Scholar : PubMed/NCBI

64 

Martinez RM, Fattori V, Saito P, Pinto IC, Rodrigues CCA, Melo CPB, Bussmann AJC, Staurengo-Ferrari L, Bezerra JR, Vignoli JA, et al: The lipoxin Receptor/FPR2 agonist BML-111 protects mouse skin against ultraviolet B radiation. Molecules. 25:29532020. View Article : Google Scholar : PubMed/NCBI

65 

Piao CH, Fan YJ, Nguyen TV, Song CH and Chai OH: Mangiferin alleviates ovalbumin-induced allergic rhinitis via Nrf2/HO-1/NF-κB signaling pathways. Int J Mol Sci. 21:34152020. View Article : Google Scholar : PubMed/NCBI

66 

Probst BL, McCauley L, Trevino I, Wigley WC and Ferguson DA: Cancer cell growth is differentially affected by constitutive activation of NRF2 by KEAP1 deletion and pharmacological activation of NRF2 by the synthetic triterpenoid, RTA 405. PLoS One. 10:e01352572015. View Article : Google Scholar : PubMed/NCBI

67 

Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 11:3214–3225. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Liu X, Zhu Q, Zhang M, Yin T, Xu R, Xiao W, Wu J, Deng B, Gao X, Gong W, et al: Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2018:71615922018. View Article : Google Scholar : PubMed/NCBI

69 

Zhao Y, Sun Y, Wang G, Ge S and Liu H: Dendrobium officinale polysaccharides protect against MNNG-Induced PLGC in rats via activating the NRF2 and antioxidant enzymes HO-1 and NQO-1. Oxid Med Cell Longev. 2019:93102452019. View Article : Google Scholar : PubMed/NCBI

70 

Gomes LR, Menck CFM and Leandro GS: Autophagy roles in the modulation of DNA repair pathways. Int J Mol Sci. 18:23512017. View Article : Google Scholar : PubMed/NCBI

71 

Liao SX, Sun PP, Gu YH, Rao XM, Zhang LY and Ou-Yang Y: Autophagy and pulmonary disease. Ther Adv Respir Dis. 13:17534666198905382019. View Article : Google Scholar : PubMed/NCBI

72 

Xu F, Li X, Yan L, Yuan N, Fang Y, Cao Y, Xu L, Zhang X, Xu L, Ge C, et al: Autophagy promotes the repair of Radiation-Induced DNA damage in bone marrow hematopoietic cells via enhanced STAT3 signaling. Radiat Res. 187:382–396. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Galati S, Boni C, Gerra MC, Lazzaretti M and Buschini A: Autophagy: A player in response to oxidative stress and DNA damage. Oxid Med Cell Longev. 2019:56929582019. View Article : Google Scholar : PubMed/NCBI

74 

Poluzzi C, Iozzo RV and Schaefer L: Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev. 97:156–173. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Nguyen TM, Subramanian IV, Xiao X, Ghosh G, Nguyen P, Kelekar A and Ramakrishnan S: Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels. J Cell Mol Med. 13:3687–3698. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Deng W, Long Q, Zeng J, Li P, Yang W, Chen X and Xie J: Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Sci Rep. 7:467162017. View Article : Google Scholar : PubMed/NCBI

77 

Qiao X, Wang X, Shang Y, Li Y and Chen SZ: Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond). 38:432018. View Article : Google Scholar : PubMed/NCBI

78 

Lee JH, Parveen A, Do MH, Kang MC, Yumnam S and Kim SY: Molecular mechanisms of methylglyoxal-induced aortic endothelial dysfunction in human vascular endothelial cells. Cell Death Dis. 11:4032020. View Article : Google Scholar : PubMed/NCBI

79 

Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C and Jung JU: Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol. 10:776–787. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Shaltiel IA, Krenning L, Bruinsma W and Medema RH: The same, only different-DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci. 128:607–620. 2015.PubMed/NCBI

81 

Ivy SP, de Bono J and Kohn EC: The ‘Pushmi-Pullyu’ of DNA REPAIR: Clinical synthetic lethality. Trends Cancer. 2:646–656. 2016. View Article : Google Scholar : PubMed/NCBI

82 

He G, Siddik ZH, Huang Z, Koomen J, Kobayashi R, Khokhar AR and Kuang J: Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene. 24:2929–2943. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Bartek J and Lukas J: Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 13:738–747. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Eckert MA, Orozco C, Xiao J, Javellana M and Lengyel E: The Effects of chemotherapeutics on the ovarian cancer microenvironment. Cancers (Basel). 13:31362021. View Article : Google Scholar : PubMed/NCBI

85 

Min X, Heng H, Yu HL, Dan M, Jie C, Zeng Y, Ning H, Liu ZG, Wang ZY and Lin W: Anticancer effects of 10-hydroxycamptothecin induce apoptosis of human osteosarcoma through activating caspase-3, p53 and cytochrome c pathways. Oncol Lett. 15:2459–2464. 2018.PubMed/NCBI

86 

Isakoff SJ, Puhalla S, Domchek SM, Friedlander M, Kaufman B, Robson M, Telli ML, Diéras V, Han HS, Garber JE, et al: A randomized Phase II study of veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in BRCA1/2 metastatic breast cancer: Design and rationale. Future Oncol. 13:307–320. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI and Cuadrado A: Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 12:1902–1916. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Feng LX, Zhao F, Liu Q, Peng JC, Duan XJ, Yan P, Wu X, Wang HS, Deng YH and Duan SB: Role of Nrf2 in lipopolysaccharide-induced acute kidney injury: Protection by human umbilical cord blood mononuclear cells. Oxid Med Cell Longev. 2020:61234592020. View Article : Google Scholar : PubMed/NCBI

89 

Yang J, Yu J, Li D, Yu S, Ke J, Wang L, Wang Y, Qiu Y, Gao X, Zhang J and Huang L: Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure. Autophagy. 13:82–98. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Lin W, Yin CY, Yu Q, Zhou SH, Chai L, Fan J and Wang WD: Expression of glucose transporter-1, hypoxia inducible factor-1α and beclin-1 in head and neck cancer and their implication. Int J Clin Exp Pathol. 11:3708–3717. 2018.PubMed/NCBI

91 

Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, de Almodóvar MR, Siles E, Rivas AL, et al: ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao D, Wang Y, Li W, Ji J, Guo J, Zhang D and Liu J: 3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway. Mol Med Rep 25: 199, 2022.
APA
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., & Liu, J. (2022). 3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway. Molecular Medicine Reports, 25, 199. https://doi.org/10.3892/mmr.2022.12715
MLA
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., Liu, J."3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway". Molecular Medicine Reports 25.6 (2022): 199.
Chicago
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., Liu, J."3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway". Molecular Medicine Reports 25, no. 6 (2022): 199. https://doi.org/10.3892/mmr.2022.12715
Copy and paste a formatted citation
x
Spandidos Publications style
Cao D, Wang Y, Li W, Ji J, Guo J, Zhang D and Liu J: 3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway. Mol Med Rep 25: 199, 2022.
APA
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., & Liu, J. (2022). 3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway. Molecular Medicine Reports, 25, 199. https://doi.org/10.3892/mmr.2022.12715
MLA
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., Liu, J."3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway". Molecular Medicine Reports 25.6 (2022): 199.
Chicago
Cao, D., Wang, Y., Li, W., Ji, J., Guo, J., Zhang, D., Liu, J."3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway". Molecular Medicine Reports 25, no. 6 (2022): 199. https://doi.org/10.3892/mmr.2022.12715
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team