|
1
|
Christiansen C: Consensus development
conference: Diagnosis, prophylaxis, and treatment of osteoporosis.
Osteoporosis Int. 295:914–915. 1987.
|
|
2
|
Management of osteoporosis in
postmenopausal women, . 2010 position statement of The North
American Menopause Society. Menopause. 17:25–56. 2010. View Article : Google Scholar
|
|
3
|
Langdahl BL and Harslof T: Medical
treatment of osteoporotic vertebral fractures. Ther Adv
Musculoskel. 3:17–29. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Leong KH: Medical treatment of
osteoporosis-increasing options. Ann Acad Med Singap. 31:43–47.
2002.PubMed/NCBI
|
|
5
|
Nahas NE, Samy AM and Omer MO: Global,
regional, and national burden of bone fractures in 204 countries
and territories, 1990-2019: A systematic analysis from the global
burden of disease study 2019. Lancet Healthy Longev. 2:e580–e592.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Harborne JB and Baxter H: The Handbook of
Natural Flavonoids. 2:pp18001999.
|
|
7
|
Kimira M, Arai Y, Shimoi K and Watanabe S:
Japanese intake of flavonoids and isoflavonoids from foods. J
Epidemiol. 8:168–175. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cushnie T and Lamb AJ: Antimicrobial
activity of flavonoids. Int J Antimicrob Ag. 26:343–356. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kim SY, Lee JY, Park YD, Kang KL, Lee JC
and Heo JS: Hesperetin alleviates the inhibitory effects of high
glucose on the osteoblastic differentiation of periodontal ligament
stem cells. PLoS One. 8:e675042013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang P, Dai KR and Yan SG: Effects of
naringin on the proliferation and osteogenic differentiation of
human bone mesenchymal stem cell. Eur J Pharmacol. 607:1–5. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Black DM and Rosen CJ: Clinical practice.
Postmenopausal osteoporosis. N Engl J Med. 374:254–262. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Assessment of fracture risk and its
application to screening for postmenopausal osteoporosis. Report of
a WHO Study Group. World Health Organ Tech Rep Ser. 843:1–129.
1994.PubMed/NCBI
|
|
13
|
Kanis JA, Melton LJ III, Christiansen C,
Johnston CC and Khaltaev N: The diagnosis of osteoporosis. J Bone
Miner Res. 9:1137–1141. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Johnell O, Kanis JA, Oden A, Johnell O,
Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, et
al: Predictive value of BMD for hip and other fractures. J Bone
Miner Res. 20:1185–1194. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jianning Y: Osteoporosis prevalence and
community-based diagnosis and management of osteoporosis-related
chronic pain in China. Chin Gen Pract. 23:2223–2228. 2020.
|
|
16
|
Office of the Surgeon General (US), . Bone
Health and Osteoporosis: A report of the surgeon general. Rockville
(MD): Office of the Surgeon General (US); 2004
|
|
17
|
Clynes MA, Harvey NC, Curtis EM, Fuggle
NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br
Med Bull. 133:105–117. 2020.PubMed/NCBI
|
|
18
|
van Staa T, Dennison EM, Leufkens H and
Cooper C: Epidemiology of fractures in England and Wales. Bone.
29:517–522. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ensrud KE and Crandall CJ: Osteoporosis.
Ann Intern Med. 167:ITC17–ITC32. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dewan N, Macdermid JC, Grewal R and
Beattie K: Risk factors predicting subsequent falls and
osteoporotic fractures at 4 years after distal radius fracture-a
prospective cohort study. Arch Osteoporos. 13:322018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Balasuriya B and Rupasinghe H: Plant
flavonoids as angiotensin converting enzyme inhibitors in
regulation of hypertension. Funct Foods Health Dis. 5:172–188.
2010.
|
|
22
|
Wang TY, Li Q and Bi KS: Bioactive
flavonoids in medicinal plants: Structure, activity and biological
fate. Asian J Pharm Sci. 13:12–23. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alvarez-Arellano L, Salazar-García M and
Corona JC: Neuroprotective effects of quercetin in pediatric
neurological diseases. Molecules. 25:55972020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Manca ML, Castangia I, Caddeo C, Pando D,
Escribano E, Valenti D, Lampis S, Zaru M, Fadda AM and Manconi M:
Improvement of quercetin protective effect against oxidative stress
skin damages by incorporation in nanovesicles. Colloids Surf B
Biointerfaces. 123:566–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Andres S, Pevny S, Ziegenhagen R, Bakhiya
N, Schäfer B, Hirsch-Ernst KI and Lampen A: Safety aspects of the
use of quercetin as a dietary supplement. Mol Nutr Food Res.
622018.doi: 10.1002/mnfr.201700447. PubMed/NCBI
|
|
26
|
David A, Arulmoli R and Parasuraman S:
Overviews of biological importance of quercetin: A bioactive
flavonoid. Pharmacogn Rev. 10:84–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mehrbod P, Abdalla MA, Fotouhi F,
Heidarzadeh M, Aro AO, Eloff JN, McGaw LJ and Fasina FO:
Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside
from Rapanea melanophloeos against influenza a virus. BMC
Complement Altern Med. 18:1842018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Flores IR, Vásquez-Murrieta MS,
Franco-Hernández MO, Márquez-Herrera CE, Ponce-Mendoza A and Del
Socorro López-Cortéz M: Bioactive compounds in tomato (Solanum
lycopersicum) variety saladette and their relationship with soil
mineral content. Food Chem. 344:1286082021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Torres N, Martínez-Lüscher J, Porte E, Yu
R and Kurtural SK: Impacts of leaf removal and shoot thinning on
cumulative daily light intensity and thermal time and their
cascading effects of grapevine (Vitis vinifera L.) berry and
wine chemistry in warm climates. Food Chem. 343:1284472020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Maria P, Vivian O, Tatiana P and Sandra P:
Physicochemical stability, antioxidant activity, and acceptance of
beet and orange mixed juice during refrigerated storage. Beverages.
3:362017. View Article : Google Scholar
|
|
31
|
Santiago B, Calvo AA, Gullón B, Feijoo G,
Moreira MT and González-García S: Production of flavonol quercetin
and fructooligosaccharides from onion (Allium cepa L.)
waste: An environmental life cycle approach. Chem Eng J.
392:1237722020. View Article : Google Scholar
|
|
32
|
Ribes-Moya AM, Adalid AM, Raigón MD,
Hellín P, Fita A and Rodríguez-Burruezo A: Variation in flavonoids
in a collection of peppers (Capsicum sp.) under organic and
conventional cultivation: Effect of the genotype, ripening stage,
and growing system. J Sci Food Agr. 100:2208–2223. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun J, Janisiewicz WJ, Takeda F, Evans B,
Wayne JM, Mengliang Z, Liangli Y and Chen P: Effect of nighttime
UV-C irradiation of strawberry plants on phenolic content of fruit:
Targeted and non-targeted metabolomic analysis. J Berry Res.
10:365–380. 2020. View Article : Google Scholar
|
|
34
|
Zhou W, Liang X, Dai P, Chen Y, Zhang Y,
Zhang M, Lu L, Jin C and Lin X: Alteration of phenolic composition
in lettuce (Lactuca sativa L.) by reducing nitrogen supply
enhances its anti-proliferative effects on colorectal cancer cells.
Int J Mol Sci. 20:42052019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Formica JV and Regelson W: Review of the
biology of Quercetin and related bioflavonoids. Food Chem Toxicol.
33:1061–1080. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nugroho A, Hesty H, Choi JS and Park HJ:
Identification and quantification of flavonoids in Carica papaya
leaf and peroxynitrite-scavenging activity. Asian Pac J Trop
Biomed. 7:208–213. 2017. View Article : Google Scholar
|
|
37
|
Bolling BW, Mckay DL and Blumberg JB: The
phytochemical composition and antioxidant actions of tree nuts.
Asia Pac J Clin Nutr. 19:117–123. 2010.PubMed/NCBI
|
|
38
|
Stavric B: Quercetin in our diet: From
potent mutagen to probable anticarcinogen. Clin Biochem.
27:245–248. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Batiha ES, Beshbishy AM, Ikram M, Mulla
ZS, El-Hack MEA, Taha AE, Algammal AM and Elewa YHA: The
pharmacological activity, biochemical properties, and
pharmacokinetics of the major natural polyphenolic flavonoid:
Quercetin. Foods. 9:3742020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Beecher GR, Warden BA and Merken H:
Analysis of tea polyphenols. Proc Soc Exp Biol Med. 220:267–270.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hirpara KV, Aggarwal P, Mukherjee AJ,
Joshi N and Burman AC: Quercetin and its derivatives: Synthesis,
pharmacological uses with special emphasis on anti-tumor properties
and prodrug with enhanced bio-availability. Anticancer Agents Med
Chem. 9:138–161. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Boots AW, Haenen GR and Bast A: Health
effects of quercetin: From mechanism to nutraceutical. Eur J
Pharmacol. 585:325–337. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yamaguchi M and Weitzmann MN: Quercetin, a
potent suppressor of NF-κB and Smad activation in osteoblasts. Int
J Mol Med. 28:521–525. 2011.PubMed/NCBI
|
|
44
|
Chen M, Wu J, Luo Q, Mo S, Lyu Y, Wei Y
and Dong J: The Anticancer properties of Herba Epimedii and its
main bioactive Componentsicariin and Icariside II. Nutrients.
8:5632016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang W, Zeng S, Xiao G, Wei G, Liao S,
Chen J, Sun W, Lv H and Wang Y: Elucidating the biosynthetic and
regulatory mechanisms of flavonoid-derived bioactive components in
Epimedium sagittatum. Front Plant Sci. 6:6892015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Huang KC: The pharmacology of Chinese
herbs. Pharmacol Chin Herbs. 1993.
|
|
47
|
Makarova MN, Pozharitskaya ON, Shikov AN,
Tesakova SV, Makarov VG and Tikhonov VP: Effect of lipid-based
suspension of Epimedium koreanum Nakai extract on sexual behavior
in rats. J Ethnopharmacol. 114:412–416. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma H, He X, Yang Y, Li M, Hao D and Jia Z:
The genus Epimedium: An ethnopharmacological and phytochemical
review. J Ethnopharmacol. 134:519–541. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xie X, Pei F, Wang H, Tan Z, Yang Z and
Kang P: Icariin: A promising osteoinductive compound for repairing
bone defect and osteonecrosis. J Biomater Appl. 30:290–299. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang Z, Wang D, Yang D, Zhen W, Zhang J
and Peng S: The effect of icariin on bone metabolism and its
potential clinical application. Osteoporos Int. 29:535–544. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
He C, Wang Z and Shi J: Pharmacological
effects of icariin. Adv Pharmacol. 87:179–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gary AB and McIntosh C: Radioimmunoassay
for the quantitative determination of hesperidin and analysis of
its distribution in Citrus sinensis. Phytochemistry. 27:249–254.
1988. View Article : Google Scholar
|
|
53
|
Rady H: Pharmacographia: A History of the
principal Drugs of Vegetable Origin met with in Great Britain and
British India. Nature. 11:42–44. 1874. View Article : Google Scholar
|
|
54
|
Garg A, Garg S, Zaneveld LJ and Singla AK:
Chemistry and pharmacology of the Citrus bioflavonoid hesperidin.
Phytother Res. 15:655–669. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Parhiz H, Roohbakhsh A, Soltani F, Rezaee
R and Iranshahi M: Antioxidant and anti-inflammatory properties of
the citrus flavonoids hesperidin and hesperetin: An updated review
of their molecular mechanisms and experimental models. Phytother
Res. 29:323–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li R, Cai L, Xie XF, Peng L, Wu TN and Li
J: 7,3′-dimethoxy hesperetin inhibits inflammation by inducing
synovial apoptosis in rats with adjuvant-induced arthritis.
Immunopharmacol Immunotoxicol. 35:139–146. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yang Z, Liu Z, Wang J and Zhu H:
Antioxidative effects of hesperetin against lead acetate-induced
oxidative stress in rats. Indian J Pharmacol. 45:395–398. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Itoh K, Masuda M, Naruto S, Murata K and
Matsuda H: Antiallergic activity of unripe Citrus hassaku fruits
extract and its flavanone glycosides on chemical substance-induced
dermatitis in mice. J Nat Med. 63:443–450. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Trzeciakiewicz A, Habauzit V, Mercier S,
Lebecque P, Davicco MJ, Coxam V, Demigne C and Horcajada MN:
Hesperetin stimulates differentiation of primary rat osteoblasts
involving the BMP signalling pathway. J Nutr Biochem. 21:424–431.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ashraful AM, Nusrat S, Mahbubur RM, Uddin
SJ, Reza HM and Sarker SD: Effect of citrus flavonoids, naringin
and naringenin, on metabolic syndrome and their mechanisms of
action. Adv Nutr. 5:404–417. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
E. P. O. Additives and Products or
Substances used in Animal Feed, . Scientific Opinion on the safety
and efficacy of naringin when used as a sensory additive for all
animal species. EfSA J. 9:24162011.
|
|
62
|
Joshi R, Kulkarni YA and Wairkar S:
Pharmacokinetic, pharmacodynamic and formulations aspects of
Naringenin: An update. Life Sci. 215:43–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang Y, Yin L, Li Y, Liu P and Cui Q:
Preventive effects of puerarin on alcohol-induced osteonecrosis.
Clin Orthop Relat Res. 466:1059–1067. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Akintunde JK, Akintola TE, Hammed MO, Amoo
CO, Adegoke AM and Ajisafe LO: Naringin protects against
Bisphenol-A induced oculopathy as implication of cataract in
hypertensive rat model. Biomed Pharmacother. 126:1100432020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang YF, Meng NN, Li HZ, Wen YJ, Liu JT,
Zhang CL, Yuan XH and Jin XD: Effect of naringin on oxidative
stress and endoplasmic reticulum stress in diabetic cardiomyopathy.
Zhongguo Zhong Yao Za Zhi. 43:596–602. 2018.(In Chinese).
PubMed/NCBI
|
|
66
|
Choi JH and Yun JW: Chrysin induces brown
fat-like phenotype and enhances lipid metabolism in 3T3-L1
adipocytes. Nutrition. 32:1002–1010. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mohammadian F, Abhari A, Dariushnejad H,
Nikanfar A, Pilehvar-Soltanahmadi Y and Zarghami N: Effects of
Chrysin-PLGA-PEG nanoparticles on proliferation and gene expression
of miRNAs in gastric cancer cell line. Iran J Cancer Prev.
9:e41902016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang MK, Park SH, Kim YH, Lee EJ, Antika
LD, Kim DY, Choi YJ and Kang YH: Chrysin ameliorates podocyte
injury and slit diaphragm protein loss via inhibition of the
PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin.
38:1129–1140. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shoieb SM, Esmat A, Khalifa AE and
Abdel-Naim AB: Chrysin attenuates testosterone-induced benign
prostate hyperplasia in rats. Food Chem Toxicol. 111:650–659. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zeinali M, Rezaee SA and Hosseinzadeh H:
An overview on immunoregulatory and anti-inflammatory properties of
chrysin and flavonoids substances. Biomed Pharmacother.
92:998–1009. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vedagiri A and Thangarajan S: Mitigating
effect of chrysin loaded solid lipid nanoparticles against Amyloid
β25-35 induced oxidative stress in rat hippocampal region: An
efficient formulation approach for Alzheimer's disease.
Neuropeptides. 58:111–125. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Khan R, Khan AQ, Qamar W, Lateef A, Ali F,
Rehman MU, Tahir M, Sharma S and Sultana S: Chrysin abrogates
cisplatin-induced oxidative stress, p53 expression, goblet cell
disintegration and apoptotic responses in the jejunum of Wistar
rats. Br J Nutr. 108:1574–1585. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Khan MS, Devaraj H and Devaraj N: Chrysin
abrogates early hepatocarcinogenesis and induces apoptosis in
N-nitrosodiethylamine-induced preneoplastic nodules in rats.
Toxicol Appl Pharmacol. 251:85–94. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shen Y, Tian P, Li D, Wu Y, Wan C, Yang T,
Chen L, Wang T and Wen F: Chrysin suppresses cigarette
smoke-induced airway inflammation in mice. Int J Clin Exp Med.
8:2001–2008. 2015.PubMed/NCBI
|
|
75
|
Rehman MU, Ali N, Rashid S, Jain T, Nafees
S, Tahir M, Khan AQ, Lateef A, Khan R, Hamiza OO, et al:
Alleviation of hepatic injury by chrysin in cisplatin administered
rats: Probable role of oxidative and inflammatory markers.
Pharmacol Rep. 66:1050–1059. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ravishankar D, Salamah M, Attina A, Pothi
R, Vallance TM, Javed M, Williams HF, Alzahrani EMS, Kabova E,
Vaiyapuri R, et al: Ruthenium-conjugated chrysin analogues modulate
platelet activity, thrombus formation and haemostasis with enhanced
efficacy. Sci Rep. 7:57382017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shibata S, Murakami T, Nishikawa Y and
Harada M: The constituents of pueraria root. Chem Pharm Bull.
7:134–136. 1959. View Article : Google Scholar
|
|
78
|
Keung WM and Vallee BL: Kudzu root: An
ancient Chinese source of modern antidipsotropic agents.
Phytochemistry. 47:499–506. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Brenner R, Perez GJ, Bonev AD, Eckman DM,
Kosek JC, Wiler SW, Patterson AJ, Nelson MT and Aldrich RW:
Vasoregulation by the beta1 subunit of the calcium-activated
potassium channel. Nature. 407:870–876. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hsu FL, Liu IM, Kuo DH, Chen WC, Su HC and
Cheng JT: Antihyperglycemic effect of puerarin in
streptozotocin-induced diabetic rats. J Nat Prod. 66:788–792. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hao LN, Zhang YQ, Shen YH, Wang ZY and
Wang YH: Inducible nitric oxide synthase and Fas/FasL with C3
expression of mouse retinal pigment epithelial cells in response to
stimulation by peroxynitrite and antagonism of puerarin. Chin Med
J. 124:2522–2529. 2011.PubMed/NCBI
|
|
82
|
Shao HM, Tang YH, Jiang PJ, Zhu HQ, Zhang
YC, Ji JM, Ji O and Shen Q: Inhibitory effect of flavonoids of
puerarin on proliferation of different human acute myeloid leukemia
cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
18:296–299. 2010.(In Chinese). PubMed/NCBI
|
|
83
|
Cheng Y, Zhu G, Guan Y, Liu Y, Hu Y and Li
Q: Protective effects of puerarin against
1-methyl-4-phenylpyridinium-induced mitochondrial apoptotic death
in differentiated SH-SY5Y cells. Zhongguo Zhong Yao Za Zhi.
36:1222–1226. 2011.(In Chinese). PubMed/NCBI
|
|
84
|
Zou Y, Hong B, Fan L, Zhou L, Liu Y, Wu Q,
Zhang X and Dong M: Protective effect of puerarin against
beta-amyloid-induced oxidative stress in neuronal cultures from rat
hippocampus: Involvement of the GSK-3β/Nrf2 signaling pathway. Free
Radical Res. 47:55–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Song JL, Baek HJ, Chang HL and Kim HP:
Antiinflammatory activity of isoflavonoids from Pueraria
radix and biochanin A derivatives. Arch Pharm Res. 17:31–35. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Overstreet DH, Kralic JE, Morrow AL, Ma
ZZ, Zhong ZM and Lee D: NPI-031G (puerarin) reduces anxiogenic
effects of alcohol withdrawal or benzodiazepine inverse or 5-HT2C
agonists. Pharmacol Biochem Behav. 75:619–625. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yong PH and Jeong HG: Mechanism of
phytoestrogen puerarin-mediated cytoprotection following oxidative
injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and
HO-1. Toxicol Appl Pharmacol. 233:371–381. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cho HJ, Jun HJ, Ji HL, Jia Y, Hoang MH,
Shim JH, Park KH and Lee SJ: Acute effect of high-dose isoflavones
from Pueraria lobata (Willd.) Ohwi on lipid and bone metabolism in
ovariectomized mice. Phytother Res. 26:1864–1871. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM
and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res.
59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Compston JE, McClung MR and Leslie WD:
Osteoporosis. Lancet. 393:364–376. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lerner UH, Kindstedt E and Lundberg P: The
critical interplay between bone resorbing and bone forming cells. J
Clin Periodontol. 46 (Suppl 21):S33–S51. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Urist MR: Bone: Formation by
autoinduction. Science. 150:893–899. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Luyten FP, Cunningham NS, Ma S,
Muthukumaran N, Hammonds RG, Nevins WB, Woods WI and Reddi AH:
Purification and partial amino acid sequence of osteogenin, a
protein initiating bone differentiation. J Biol Chem.
264:13377–13380. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wozney JM, Rosen V, Celeste AJ, Mitsock
LM, Whitters MJ, Kriz RW, Hewick RM and Wang EA: Novel regulators
of bone formation: Molecular clones and activities. Science.
242:1528–1534. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xu C and Di C: The BMP signaling and in
vivo bone formation. Gene. 357:1–8. 2005. View Article : Google Scholar
|
|
96
|
Hinck AP, Mueller TD and Springer TA:
Structural biology and evolution of the TGF-β family. Cold Spring
Harb Perspect Biol. 8:a221032016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
von Bubnoff A and Cho KW: Intracellular
BMP signaling regulation in vertebrates: Pathway or network? Dev
Biol. 239:1–14. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nohe A, Keating E, Knaus P and Petersen
NO: Signal transduction of bone morphogenetic protein receptors.
Cell Signal. 16:291–299. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Javed A, Afzal F, Bae JS, Gutierrez S,
Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS and Lian JB:
Specific residues of RUNX2 are obligatory for formation of
BMP2-induced RUNX2-SMAD complex to promote osteoblast
differentiation. Cells Tissues Organs. 189:133–137. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Phimphilai M, Zhao Z, Boules H, Roca H and
Franceschi RT: BMP signaling is required for RUNX2-dependent
induction of the osteoblast phenotype. J Bone Mineral Res.
21:637–646. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tan X, Weng T, Zhang J, Wang J, Li W, Wan
H, Lan Y, Cheng X, Hou N, Liu H, et al: Smad4 is required for
maintaining normal murine postnatal bone homeostasis. J Cell Sci.
120:2162–2170. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liang W and Luo Z, Ge S, Li M, Du J, Yang
M, Yan M, Ye Z and Luo Z: Oral administration of quercetin inhibits
bone loss in rat model of diabetic osteopenia. Eur J Pharmacol.
670:317–324. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhou C and Lin Y: Osteogenic
differentiation of adipose-derived stem cells promoted by
quercetin. Cell Prolif. 47:124–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sharan K, Mishra JS, Swarnkar G, Siddiqui
JA, Khan K, Kumari R, Rawat P, Maurya R, Sanyal S and Chattopadhyay
N: A novel quercetin analogue from a medicinal plant promotes peak
bone mass achievement and bone healing after injury and exerts an
anabolic effect on osteoporotic bone: The role of aryl hydrocarbon
receptor as a mediator of osteogenic action. J Bone Miner Res.
26:2096–2111. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu M, Li Y and Yang ST: Effects of
naringin on the proliferation and osteogenic differentiation of
human amniotic fluid-derived stem cells. J Tissue Eng Regen Med.
11:276–284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Menon AH, Soundarya SP, Sanjay V, Chandran
SV, Balagangadharan K and Selvamurugan N: Sustained release of
chrysin from chitosan-based scaffolds promotes mesenchymal stem
cell proliferation and osteoblast differentiation. Carbohyd Polym.
195:356–367. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Willert K and Nusse R: Beta-catenin: A key
mediator of Wnt signaling. Curr Opin Genet Dev. 8:95–102. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kestler HA and Kühl M: From individual Wnt
pathways towards a Wnt signalling network. Philos Trans R Soc Lond
B Biol Sci. 363:1333–1347. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lin FX, Du SX, Liu DZ, Hu QX, Yu GY, Wu
CC, Zheng GZ, Xie D, Li XD and Chang B: Naringin promotes
osteogenic differentiation of bone marrow stromal cells by
up-regulating Foxc2 expression via the IHH signaling pathway. Am J
Transl Res. 8:5098–5107. 2016.PubMed/NCBI
|
|
111
|
Johnson GL and Lapadat R:
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and
p38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mercedes SS, Diniz FF, Gomes GN and Diana
B: The Mitogen-activated protein kinase (MAPK) pathway: Role in
immune evasion by trypanosomatids. Front Microbiol.
7:1832016.PubMed/NCBI
|
|
113
|
Arthur JS and Ley SC: Mitogen-activated
protein kinases in innate immunity. Nat Rev Immunol. 13:679–692.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ronkina N and Gaestel M: MAPK-activated
protein kinases: Servant or partner? Annu Rev Biochem. Feb
18–2022.(Epub ahead of print). doi:
10.1146/annurev-biochem-081720-114505. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wu Y, Xia L, Zhou Y, Xu Y and Jiang X:
Icariin induces osteogenic differentiation of bone mesenchymal stem
cells in a MAPK-dependent manner. Cell Prolif. 48:375–384. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Liu L, Zheng J, Yang Y, Ni L, Chen H and
Yu D: Hesperetin alleviated glucocorticoid-induced inhibition of
osteogenic differentiation of BMSCs through regulating the ERK
signaling pathway. Med Mol Morphol. 54:1–7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Xue D, Chen E, Zhang W, Gao X, Wang S,
Zheng Q, Pan Z, Li H and Liu L: The role of hesperetin on
osteogenesis of human mesenchymal stem cells and its function in
bone regeneration. Oncotarget. 8:21031–21043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yang X, Yang Y, Zhou S, Gong X, Dai Q,
Zhang P and Jiang L: Puerarin Stimulates osteogenic differentiation
and bone formation through the ERK1/2 and p38-MAPK signaling
pathways. Curr Mol Med. 17:488–496. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Franke TF, Hornik CP, Segev L, Shostak GA
and Sugimoto C: PI3K/Akt and apoptosis: Size matters. Oncogene.
22:8983–8998. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Lien EC, Dibble CC and Toker A: PI3K
signaling in cancer: Beyond AKT. Curr Opin Cell Biol. 45:62–71.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kashii Y, Uchida M, Kirito K, Tanaka M,
Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada K, et
al: A member of Forkhead family transcription factor, FKHRL1, is
one of the downstream molecules of phosphatidylinositol
3-kinase-Akt activation pathway in erythropoietin signal
transduction. Blood. 96:941–949. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gu YX, Du J, Si MS, Mo JJ, Qiao SC and Lai
HC: The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1
preosteoblast proliferation and differentiation on SLA and SLActive
titanium surfaces. J Biomed Mater Res A. 101:748–754. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Xi JC, Zang HY, Guo LX, Xue HB, Liu XD,
Bai YB and Ma YZ: The PI3K/AKT cell signaling pathway is involved
in regulation of osteoporosis. J Recept Signal Transduct Res.
35:640–645. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN,
Zhou J, Ma HP, Xian CJ and Chen KM: Icariin stimulates the
osteogenic differentiation of rat bone marrow stromal cells via
activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone. 66:189–198. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lv H, Che T, Tang X, Liu L and Cheng J:
Puerarin enhances proliferation and osteoblastic differentiation of
human bone marrow stromal cells via a nitric oxide/cyclic guanosine
monophosphate signaling pathway. Mol Med Rep. 12:2283–2290. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang Y, Yan M, Yu QF, Yang PF, Zhang HD,
Sun YH, Zhang ZF and Gao YF: Puerarin prevents LPS-induced
osteoclast formation and bone loss via inhibition of Akt
activation. Biol Pharm Bull. 39:2028–2035. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
MC and Boyle WJ: Osteoprotegerin: A novel secreted protein involved
in the regulation of bone density. Cell. 89:309–319. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lacey DL, Timms E, Tan HL, Kelley MJ,
Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S,
et al: Osteoprotegerin ligand is a cytokine that regulates
osteoclast differentiation and activation. Cell. 93:165–176. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Xu J, Tan JW, Huang L, Gao XH, Laird R,
Liu D, Wysocki S and Zheng MH: Cloning, sequencing, and functional
characterization of the rat homologue of receptor activator of
NF-kappaB ligand. Bone. 15:2178–2186. 2000.PubMed/NCBI
|
|
130
|
Burgess TL, Qian Y, Kaufman S, Ring BD,
Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, et al:
The ligand for osteoprotegerin (OPGL) directly activates mature
osteoclasts. J Cell Biol. 145:527–538. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Mizuno A, Amizuka N, Irie K, Murakami A,
Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, et
al: Severe osteoporosis in mice lacking osteoclastogenesis
inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun.
247:610–615. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yasuda H, Shima N, Nakagawa N, Mochizuki
SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, et
al: Identity of osteoclastogenesis inhibitory factor (OCIF) and
osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits
osteoclastogenesis in vitro. Endocrinology. 139:1329–1337. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Kostenuik P and Shalhoub V:
Osteoprotegerin: A physiological and pharmacological inhibitor of
bone resorption. Curr Pharm Design. 7:613–635. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Hofbauer LC, Kühne CA and Viereck V: The
OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet
Neuronal Interact. 4:268–275. 2004.PubMed/NCBI
|
|
135
|
Yuan SY, Sheng T, Qi L, Zhang YL, Liu XM,
Ma T, Zheng H, Yan Y, Ishimi Y and Wang XX: Puerarin prevents bone
loss in ovariectomized mice and inhibits osteoclast formation in
vitro. Chin J Nat Med. 14:265–269. 2016.PubMed/NCBI
|
|
136
|
Shan Z, Cheng N, Huang R, Zhao B and Zhou
Y: Puerarin promotes the proliferation and differentiation of
MC3T3-E1 cells via microRNA106b by targeting receptor activator of
nuclear factor-κB ligand. Exp Ther Med. 15:55–60. 2018.PubMed/NCBI
|
|
137
|
Turner RT, Maran A, Lotinun S, Hefferan T
and Sibonga JD: Animal models for osteoporosis. Rev Endocr Metab
Disord. 2:117–127. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Huo JF, Zhang ML, Wang XX and Zou DH:
Chrysin induces osteogenic differentiation of human dental pulp
stem cells. Exp Cell Res. 400:1124662021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Liu H, Li W, Ge X, Jia S and Li B:
Coadministration of puerarin (low dose) and zinc attenuates bone
loss and suppresses bone marrow adiposity in ovariectomized rats.
Life Sci. 166:20–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Huang J, Bao Y, Xiang W, Jing XZ, Guo JC,
Yao XD, Wang R and Guo FJ: Icariin regulates the bidirectional
differentiation of bone marrow mesenchymal stem cells through
canonical Wnt signaling pathway. Evid Based Complement Alternat
Med. 2017:80853252017. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wang D, Ma W, Wang F, Dong J, Wang D, Sun
B and Wang B: Stimulation of Wnt/β-catenin signaling to improve
bone development by naringin via interacting with AMPK and Akt.
Cell Physiol Biochem. 36:1563–1576. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Rossouw JE, Anderson GL, Prentice RL,
LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA,
Howard BV, Johnson KC, et al: Risks and benefits of estrogen plus
progestin in healthy postmenopausal women: Principal results From
the Women's Health Initiative randomized controlled trial. JAMA.
288:321–333. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Ettinger B, Black DM, Mitlak BH,
Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas
PD, Zanchetta JR, Stakkestad J, et al: Reduction of vertebral
fracture risk in postmenopausal women with osteoporosis treated
with raloxifene: Results from a 3-year randomized clinical trial.
Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators.
JAMA. 282:637–645. 1999. View Article : Google Scholar : PubMed/NCBI
|