Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2022 Volume 25 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 25 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review)

  • Authors:
    • Lili Cao
    • Jiawei Wang
    • Yujuan Zhang
    • Feng Tian
    • Chunfang Wang
  • View Affiliations / Copyright

    Affiliations: School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
  • Article Number: 200
    |
    Published online on: April 26, 2022
       https://doi.org/10.3892/mmr.2022.12716
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
View Figures

Figure 1

View References

1 

Christiansen C: Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Osteoporosis Int. 295:914–915. 1987.

2 

Management of osteoporosis in postmenopausal women, . 2010 position statement of The North American Menopause Society. Menopause. 17:25–56. 2010. View Article : Google Scholar

3 

Langdahl BL and Harslof T: Medical treatment of osteoporotic vertebral fractures. Ther Adv Musculoskel. 3:17–29. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Leong KH: Medical treatment of osteoporosis-increasing options. Ann Acad Med Singap. 31:43–47. 2002.PubMed/NCBI

5 

Nahas NE, Samy AM and Omer MO: Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: A systematic analysis from the global burden of disease study 2019. Lancet Healthy Longev. 2:e580–e592. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Harborne JB and Baxter H: The Handbook of Natural Flavonoids. 2:pp18001999.

7 

Kimira M, Arai Y, Shimoi K and Watanabe S: Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 8:168–175. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Cushnie T and Lamb AJ: Antimicrobial activity of flavonoids. Int J Antimicrob Ag. 26:343–356. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Kim SY, Lee JY, Park YD, Kang KL, Lee JC and Heo JS: Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells. PLoS One. 8:e675042013. View Article : Google Scholar : PubMed/NCBI

10 

Zhang P, Dai KR and Yan SG: Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol. 607:1–5. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Black DM and Rosen CJ: Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 374:254–262. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 843:1–129. 1994.PubMed/NCBI

13 

Kanis JA, Melton LJ III, Christiansen C, Johnston CC and Khaltaev N: The diagnosis of osteoporosis. J Bone Miner Res. 9:1137–1141. 1994. View Article : Google Scholar : PubMed/NCBI

14 

Johnell O, Kanis JA, Oden A, Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, et al: Predictive value of BMD for hip and other fractures. J Bone Miner Res. 20:1185–1194. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Jianning Y: Osteoporosis prevalence and community-based diagnosis and management of osteoporosis-related chronic pain in China. Chin Gen Pract. 23:2223–2228. 2020.

16 

Office of the Surgeon General (US), . Bone Health and Osteoporosis: A report of the surgeon general. Rockville (MD): Office of the Surgeon General (US); 2004

17 

Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br Med Bull. 133:105–117. 2020.PubMed/NCBI

18 

van Staa T, Dennison EM, Leufkens H and Cooper C: Epidemiology of fractures in England and Wales. Bone. 29:517–522. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Ensrud KE and Crandall CJ: Osteoporosis. Ann Intern Med. 167:ITC17–ITC32. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Dewan N, Macdermid JC, Grewal R and Beattie K: Risk factors predicting subsequent falls and osteoporotic fractures at 4 years after distal radius fracture-a prospective cohort study. Arch Osteoporos. 13:322018. View Article : Google Scholar : PubMed/NCBI

21 

Balasuriya B and Rupasinghe H: Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis. 5:172–188. 2010.

22 

Wang TY, Li Q and Bi KS: Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci. 13:12–23. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Alvarez-Arellano L, Salazar-García M and Corona JC: Neuroprotective effects of quercetin in pediatric neurological diseases. Molecules. 25:55972020. View Article : Google Scholar : PubMed/NCBI

24 

Manca ML, Castangia I, Caddeo C, Pando D, Escribano E, Valenti D, Lampis S, Zaru M, Fadda AM and Manconi M: Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf B Biointerfaces. 123:566–574. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI and Lampen A: Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 622018.doi: 10.1002/mnfr.201700447. PubMed/NCBI

26 

David A, Arulmoli R and Parasuraman S: Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 10:84–89. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Mehrbod P, Abdalla MA, Fotouhi F, Heidarzadeh M, Aro AO, Eloff JN, McGaw LJ and Fasina FO: Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement Altern Med. 18:1842018. View Article : Google Scholar : PubMed/NCBI

28 

Flores IR, Vásquez-Murrieta MS, Franco-Hernández MO, Márquez-Herrera CE, Ponce-Mendoza A and Del Socorro López-Cortéz M: Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chem. 344:1286082021. View Article : Google Scholar : PubMed/NCBI

29 

Torres N, Martínez-Lüscher J, Porte E, Yu R and Kurtural SK: Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem. 343:1284472020. View Article : Google Scholar : PubMed/NCBI

30 

Maria P, Vivian O, Tatiana P and Sandra P: Physicochemical stability, antioxidant activity, and acceptance of beet and orange mixed juice during refrigerated storage. Beverages. 3:362017. View Article : Google Scholar

31 

Santiago B, Calvo AA, Gullón B, Feijoo G, Moreira MT and González-García S: Production of flavonol quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: An environmental life cycle approach. Chem Eng J. 392:1237722020. View Article : Google Scholar

32 

Ribes-Moya AM, Adalid AM, Raigón MD, Hellín P, Fita A and Rodríguez-Burruezo A: Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J Sci Food Agr. 100:2208–2223. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Sun J, Janisiewicz WJ, Takeda F, Evans B, Wayne JM, Mengliang Z, Liangli Y and Chen P: Effect of nighttime UV-C irradiation of strawberry plants on phenolic content of fruit: Targeted and non-targeted metabolomic analysis. J Berry Res. 10:365–380. 2020. View Article : Google Scholar

34 

Zhou W, Liang X, Dai P, Chen Y, Zhang Y, Zhang M, Lu L, Jin C and Lin X: Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. Int J Mol Sci. 20:42052019. View Article : Google Scholar : PubMed/NCBI

35 

Formica JV and Regelson W: Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol. 33:1061–1080. 1995. View Article : Google Scholar : PubMed/NCBI

36 

Nugroho A, Hesty H, Choi JS and Park HJ: Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac J Trop Biomed. 7:208–213. 2017. View Article : Google Scholar

37 

Bolling BW, Mckay DL and Blumberg JB: The phytochemical composition and antioxidant actions of tree nuts. Asia Pac J Clin Nutr. 19:117–123. 2010.PubMed/NCBI

38 

Stavric B: Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin Biochem. 27:245–248. 1994. View Article : Google Scholar : PubMed/NCBI

39 

Batiha ES, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM and Elewa YHA: The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods. 9:3742020. View Article : Google Scholar : PubMed/NCBI

40 

Beecher GR, Warden BA and Merken H: Analysis of tea polyphenols. Proc Soc Exp Biol Med. 220:267–270. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N and Burman AC: Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med Chem. 9:138–161. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Boots AW, Haenen GR and Bast A: Health effects of quercetin: From mechanism to nutraceutical. Eur J Pharmacol. 585:325–337. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Yamaguchi M and Weitzmann MN: Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int J Mol Med. 28:521–525. 2011.PubMed/NCBI

44 

Chen M, Wu J, Luo Q, Mo S, Lyu Y, Wei Y and Dong J: The Anticancer properties of Herba Epimedii and its main bioactive Componentsicariin and Icariside II. Nutrients. 8:5632016. View Article : Google Scholar : PubMed/NCBI

45 

Huang W, Zeng S, Xiao G, Wei G, Liao S, Chen J, Sun W, Lv H and Wang Y: Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. Front Plant Sci. 6:6892015. View Article : Google Scholar : PubMed/NCBI

46 

Huang KC: The pharmacology of Chinese herbs. Pharmacol Chin Herbs. 1993.

47 

Makarova MN, Pozharitskaya ON, Shikov AN, Tesakova SV, Makarov VG and Tikhonov VP: Effect of lipid-based suspension of Epimedium koreanum Nakai extract on sexual behavior in rats. J Ethnopharmacol. 114:412–416. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Ma H, He X, Yang Y, Li M, Hao D and Jia Z: The genus Epimedium: An ethnopharmacological and phytochemical review. J Ethnopharmacol. 134:519–541. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Xie X, Pei F, Wang H, Tan Z, Yang Z and Kang P: Icariin: A promising osteoinductive compound for repairing bone defect and osteonecrosis. J Biomater Appl. 30:290–299. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Wang Z, Wang D, Yang D, Zhen W, Zhang J and Peng S: The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int. 29:535–544. 2018. View Article : Google Scholar : PubMed/NCBI

51 

He C, Wang Z and Shi J: Pharmacological effects of icariin. Adv Pharmacol. 87:179–203. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Gary AB and McIntosh C: Radioimmunoassay for the quantitative determination of hesperidin and analysis of its distribution in Citrus sinensis. Phytochemistry. 27:249–254. 1988. View Article : Google Scholar

53 

Rady H: Pharmacographia: A History of the principal Drugs of Vegetable Origin met with in Great Britain and British India. Nature. 11:42–44. 1874. View Article : Google Scholar

54 

Garg A, Garg S, Zaneveld LJ and Singla AK: Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 15:655–669. 2001. View Article : Google Scholar : PubMed/NCBI

55 

Parhiz H, Roohbakhsh A, Soltani F, Rezaee R and Iranshahi M: Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother Res. 29:323–331. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Li R, Cai L, Xie XF, Peng L, Wu TN and Li J: 7,3′-dimethoxy hesperetin inhibits inflammation by inducing synovial apoptosis in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol. 35:139–146. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Yang Z, Liu Z, Wang J and Zhu H: Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 45:395–398. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Itoh K, Masuda M, Naruto S, Murata K and Matsuda H: Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J Nat Med. 63:443–450. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Trzeciakiewicz A, Habauzit V, Mercier S, Lebecque P, Davicco MJ, Coxam V, Demigne C and Horcajada MN: Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem. 21:424–431. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Ashraful AM, Nusrat S, Mahbubur RM, Uddin SJ, Reza HM and Sarker SD: Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr. 5:404–417. 2014. View Article : Google Scholar : PubMed/NCBI

61 

E. P. O. Additives and Products or Substances used in Animal Feed, . Scientific Opinion on the safety and efficacy of naringin when used as a sensory additive for all animal species. EfSA J. 9:24162011.

62 

Joshi R, Kulkarni YA and Wairkar S: Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci. 215:43–56. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Wang Y, Yin L, Li Y, Liu P and Cui Q: Preventive effects of puerarin on alcohol-induced osteonecrosis. Clin Orthop Relat Res. 466:1059–1067. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Akintunde JK, Akintola TE, Hammed MO, Amoo CO, Adegoke AM and Ajisafe LO: Naringin protects against Bisphenol-A induced oculopathy as implication of cataract in hypertensive rat model. Biomed Pharmacother. 126:1100432020. View Article : Google Scholar : PubMed/NCBI

65 

Zhang YF, Meng NN, Li HZ, Wen YJ, Liu JT, Zhang CL, Yuan XH and Jin XD: Effect of naringin on oxidative stress and endoplasmic reticulum stress in diabetic cardiomyopathy. Zhongguo Zhong Yao Za Zhi. 43:596–602. 2018.(In Chinese). PubMed/NCBI

66 

Choi JH and Yun JW: Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition. 32:1002–1010. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y and Zarghami N: Effects of Chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev. 9:e41902016. View Article : Google Scholar : PubMed/NCBI

68 

Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ and Kang YH: Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin. 38:1129–1140. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Shoieb SM, Esmat A, Khalifa AE and Abdel-Naim AB: Chrysin attenuates testosterone-induced benign prostate hyperplasia in rats. Food Chem Toxicol. 111:650–659. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Zeinali M, Rezaee SA and Hosseinzadeh H: An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 92:998–1009. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Vedagiri A and Thangarajan S: Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer's disease. Neuropeptides. 58:111–125. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Khan R, Khan AQ, Qamar W, Lateef A, Ali F, Rehman MU, Tahir M, Sharma S and Sultana S: Chrysin abrogates cisplatin-induced oxidative stress, p53 expression, goblet cell disintegration and apoptotic responses in the jejunum of Wistar rats. Br J Nutr. 108:1574–1585. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Khan MS, Devaraj H and Devaraj N: Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol. 251:85–94. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Shen Y, Tian P, Li D, Wu Y, Wan C, Yang T, Chen L, Wang T and Wen F: Chrysin suppresses cigarette smoke-induced airway inflammation in mice. Int J Clin Exp Med. 8:2001–2008. 2015.PubMed/NCBI

75 

Rehman MU, Ali N, Rashid S, Jain T, Nafees S, Tahir M, Khan AQ, Lateef A, Khan R, Hamiza OO, et al: Alleviation of hepatic injury by chrysin in cisplatin administered rats: Probable role of oxidative and inflammatory markers. Pharmacol Rep. 66:1050–1059. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Ravishankar D, Salamah M, Attina A, Pothi R, Vallance TM, Javed M, Williams HF, Alzahrani EMS, Kabova E, Vaiyapuri R, et al: Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Sci Rep. 7:57382017. View Article : Google Scholar : PubMed/NCBI

77 

Shibata S, Murakami T, Nishikawa Y and Harada M: The constituents of pueraria root. Chem Pharm Bull. 7:134–136. 1959. View Article : Google Scholar

78 

Keung WM and Vallee BL: Kudzu root: An ancient Chinese source of modern antidipsotropic agents. Phytochemistry. 47:499–506. 1998. View Article : Google Scholar : PubMed/NCBI

79 

Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT and Aldrich RW: Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 407:870–876. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Hsu FL, Liu IM, Kuo DH, Chen WC, Su HC and Cheng JT: Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J Nat Prod. 66:788–792. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Hao LN, Zhang YQ, Shen YH, Wang ZY and Wang YH: Inducible nitric oxide synthase and Fas/FasL with C3 expression of mouse retinal pigment epithelial cells in response to stimulation by peroxynitrite and antagonism of puerarin. Chin Med J. 124:2522–2529. 2011.PubMed/NCBI

82 

Shao HM, Tang YH, Jiang PJ, Zhu HQ, Zhang YC, Ji JM, Ji O and Shen Q: Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 18:296–299. 2010.(In Chinese). PubMed/NCBI

83 

Cheng Y, Zhu G, Guan Y, Liu Y, Hu Y and Li Q: Protective effects of puerarin against 1-methyl-4-phenylpyridinium-induced mitochondrial apoptotic death in differentiated SH-SY5Y cells. Zhongguo Zhong Yao Za Zhi. 36:1222–1226. 2011.(In Chinese). PubMed/NCBI

84 

Zou Y, Hong B, Fan L, Zhou L, Liu Y, Wu Q, Zhang X and Dong M: Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: Involvement of the GSK-3β/Nrf2 signaling pathway. Free Radical Res. 47:55–63. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Song JL, Baek HJ, Chang HL and Kim HP: Antiinflammatory activity of isoflavonoids from Pueraria radix and biochanin A derivatives. Arch Pharm Res. 17:31–35. 1994. View Article : Google Scholar : PubMed/NCBI

86 

Overstreet DH, Kralic JE, Morrow AL, Ma ZZ, Zhong ZM and Lee D: NPI-031G (puerarin) reduces anxiogenic effects of alcohol withdrawal or benzodiazepine inverse or 5-HT2C agonists. Pharmacol Biochem Behav. 75:619–625. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Yong PH and Jeong HG: Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1. Toxicol Appl Pharmacol. 233:371–381. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Cho HJ, Jun HJ, Ji HL, Jia Y, Hoang MH, Shim JH, Park KH and Lee SJ: Acute effect of high-dose isoflavones from Pueraria lobata (Willd.) Ohwi on lipid and bone metabolism in ovariectomized mice. Phytother Res. 26:1864–1871. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Chen X, Wang Z, Duan N, Zhu G, Schwarz EM and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Compston JE, McClung MR and Leslie WD: Osteoporosis. Lancet. 393:364–376. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Lerner UH, Kindstedt E and Lundberg P: The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol. 46 (Suppl 21):S33–S51. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Urist MR: Bone: Formation by autoinduction. Science. 150:893–899. 1965. View Article : Google Scholar : PubMed/NCBI

93 

Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI and Reddi AH: Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem. 264:13377–13380. 1989. View Article : Google Scholar : PubMed/NCBI

94 

Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM and Wang EA: Novel regulators of bone formation: Molecular clones and activities. Science. 242:1528–1534. 1988. View Article : Google Scholar : PubMed/NCBI

95 

Xu C and Di C: The BMP signaling and in vivo bone formation. Gene. 357:1–8. 2005. View Article : Google Scholar

96 

Hinck AP, Mueller TD and Springer TA: Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 8:a221032016. View Article : Google Scholar : PubMed/NCBI

97 

von Bubnoff A and Cho KW: Intracellular BMP signaling regulation in vertebrates: Pathway or network? Dev Biol. 239:1–14. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Nohe A, Keating E, Knaus P and Petersen NO: Signal transduction of bone morphogenetic protein receptors. Cell Signal. 16:291–299. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs. 189:133–137. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Phimphilai M, Zhao Z, Boules H, Roca H and Franceschi RT: BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Mineral Res. 21:637–646. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Tan X, Weng T, Zhang J, Wang J, Li W, Wan H, Lan Y, Cheng X, Hou N, Liu H, et al: Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci. 120:2162–2170. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Liang W and Luo Z, Ge S, Li M, Du J, Yang M, Yan M, Ye Z and Luo Z: Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol. 670:317–324. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Zhou C and Lin Y: Osteogenic differentiation of adipose-derived stem cells promoted by quercetin. Cell Prolif. 47:124–132. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K, Kumari R, Rawat P, Maurya R, Sanyal S and Chattopadhyay N: A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: The role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res. 26:2096–2111. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Liu M, Li Y and Yang ST: Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 11:276–284. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K and Selvamurugan N: Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohyd Polym. 195:356–367. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Willert K and Nusse R: Beta-catenin: A key mediator of Wnt signaling. Curr Opin Genet Dev. 8:95–102. 1998. View Article : Google Scholar : PubMed/NCBI

108 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Kestler HA and Kühl M: From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci. 363:1333–1347. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Lin FX, Du SX, Liu DZ, Hu QX, Yu GY, Wu CC, Zheng GZ, Xie D, Li XD and Chang B: Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway. Am J Transl Res. 8:5098–5107. 2016.PubMed/NCBI

111 

Johnson GL and Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI

112 

Mercedes SS, Diniz FF, Gomes GN and Diana B: The Mitogen-activated protein kinase (MAPK) pathway: Role in immune evasion by trypanosomatids. Front Microbiol. 7:1832016.PubMed/NCBI

113 

Arthur JS and Ley SC: Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 13:679–692. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Ronkina N and Gaestel M: MAPK-activated protein kinases: Servant or partner? Annu Rev Biochem. Feb 18–2022.(Epub ahead of print). doi: 10.1146/annurev-biochem-081720-114505. View Article : Google Scholar : PubMed/NCBI

115 

Wu Y, Xia L, Zhou Y, Xu Y and Jiang X: Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Prolif. 48:375–384. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Liu L, Zheng J, Yang Y, Ni L, Chen H and Yu D: Hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation of BMSCs through regulating the ERK signaling pathway. Med Mol Morphol. 54:1–7. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Xue D, Chen E, Zhang W, Gao X, Wang S, Zheng Q, Pan Z, Li H and Liu L: The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget. 8:21031–21043. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Yang X, Yang Y, Zhou S, Gong X, Dai Q, Zhang P and Jiang L: Puerarin Stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Curr Mol Med. 17:488–496. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Franke TF, Hornik CP, Segev L, Shostak GA and Sugimoto C: PI3K/Akt and apoptosis: Size matters. Oncogene. 22:8983–8998. 2004. View Article : Google Scholar : PubMed/NCBI

120 

Lien EC, Dibble CC and Toker A: PI3K signaling in cancer: Beyond AKT. Curr Opin Cell Biol. 45:62–71. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada K, et al: A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood. 96:941–949. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Gu YX, Du J, Si MS, Mo JJ, Qiao SC and Lai HC: The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces. J Biomed Mater Res A. 101:748–754. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Xi JC, Zang HY, Guo LX, Xue HB, Liu XD, Bai YB and Ma YZ: The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. J Recept Signal Transduct Res. 35:640–645. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J, Ma HP, Xian CJ and Chen KM: Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone. 66:189–198. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Lv H, Che T, Tang X, Liu L and Cheng J: Puerarin enhances proliferation and osteoblastic differentiation of human bone marrow stromal cells via a nitric oxide/cyclic guanosine monophosphate signaling pathway. Mol Med Rep. 12:2283–2290. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Zhang Y, Yan M, Yu QF, Yang PF, Zhang HD, Sun YH, Zhang ZF and Gao YF: Puerarin prevents LPS-induced osteoclast formation and bone loss via inhibition of Akt activation. Biol Pharm Bull. 39:2028–2035. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Simonet WS, Lacey DL, Dunstan CR, Kelley MC and Boyle WJ: Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI

128 

Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, et al: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93:165–176. 1998. View Article : Google Scholar : PubMed/NCBI

129 

Xu J, Tan JW, Huang L, Gao XH, Laird R, Liu D, Wysocki S and Zheng MH: Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. Bone. 15:2178–2186. 2000.PubMed/NCBI

130 

Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, et al: The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 145:527–538. 1999. View Article : Google Scholar : PubMed/NCBI

131 

Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, et al: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 247:610–615. 1998. View Article : Google Scholar : PubMed/NCBI

132 

Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, et al: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 139:1329–1337. 1998. View Article : Google Scholar : PubMed/NCBI

133 

Kostenuik P and Shalhoub V: Osteoprotegerin: A physiological and pharmacological inhibitor of bone resorption. Curr Pharm Design. 7:613–635. 2001. View Article : Google Scholar : PubMed/NCBI

134 

Hofbauer LC, Kühne CA and Viereck V: The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 4:268–275. 2004.PubMed/NCBI

135 

Yuan SY, Sheng T, Qi L, Zhang YL, Liu XM, Ma T, Zheng H, Yan Y, Ishimi Y and Wang XX: Puerarin prevents bone loss in ovariectomized mice and inhibits osteoclast formation in vitro. Chin J Nat Med. 14:265–269. 2016.PubMed/NCBI

136 

Shan Z, Cheng N, Huang R, Zhao B and Zhou Y: Puerarin promotes the proliferation and differentiation of MC3T3-E1 cells via microRNA106b by targeting receptor activator of nuclear factor-κB ligand. Exp Ther Med. 15:55–60. 2018.PubMed/NCBI

137 

Turner RT, Maran A, Lotinun S, Hefferan T and Sibonga JD: Animal models for osteoporosis. Rev Endocr Metab Disord. 2:117–127. 2001. View Article : Google Scholar : PubMed/NCBI

138 

Huo JF, Zhang ML, Wang XX and Zou DH: Chrysin induces osteogenic differentiation of human dental pulp stem cells. Exp Cell Res. 400:1124662021. View Article : Google Scholar : PubMed/NCBI

139 

Liu H, Li W, Ge X, Jia S and Li B: Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats. Life Sci. 166:20–26. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Huang J, Bao Y, Xiang W, Jing XZ, Guo JC, Yao XD, Wang R and Guo FJ: Icariin regulates the bidirectional differentiation of bone marrow mesenchymal stem cells through canonical Wnt signaling pathway. Evid Based Complement Alternat Med. 2017:80853252017. View Article : Google Scholar : PubMed/NCBI

141 

Wang D, Ma W, Wang F, Dong J, Wang D, Sun B and Wang B: Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt. Cell Physiol Biochem. 36:1563–1576. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, et al: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women's Health Initiative randomized controlled trial. JAMA. 288:321–333. 2002. View Article : Google Scholar : PubMed/NCBI

143 

Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, et al: Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 282:637–645. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao L, Wang J, Zhang Y, Tian F and Wang C: Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review). Mol Med Rep 25: 200, 2022.
APA
Cao, L., Wang, J., Zhang, Y., Tian, F., & Wang, C. (2022). Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review). Molecular Medicine Reports, 25, 200. https://doi.org/10.3892/mmr.2022.12716
MLA
Cao, L., Wang, J., Zhang, Y., Tian, F., Wang, C."Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review)". Molecular Medicine Reports 25.6 (2022): 200.
Chicago
Cao, L., Wang, J., Zhang, Y., Tian, F., Wang, C."Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review)". Molecular Medicine Reports 25, no. 6 (2022): 200. https://doi.org/10.3892/mmr.2022.12716
Copy and paste a formatted citation
x
Spandidos Publications style
Cao L, Wang J, Zhang Y, Tian F and Wang C: Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review). Mol Med Rep 25: 200, 2022.
APA
Cao, L., Wang, J., Zhang, Y., Tian, F., & Wang, C. (2022). Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review). Molecular Medicine Reports, 25, 200. https://doi.org/10.3892/mmr.2022.12716
MLA
Cao, L., Wang, J., Zhang, Y., Tian, F., Wang, C."Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review)". Molecular Medicine Reports 25.6 (2022): 200.
Chicago
Cao, L., Wang, J., Zhang, Y., Tian, F., Wang, C."Osteoprotective effects of flavonoids: Evidence from <em>in vivo</em> and <em>in vitro</em> studies (Review)". Molecular Medicine Reports 25, no. 6 (2022): 200. https://doi.org/10.3892/mmr.2022.12716
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team