Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2022 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2022 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential intervention target of atherosclerosis: Ferroptosis (Review)

  • Authors:
    • Jia Li
    • Ling Xu
    • Yi Xuan Zuo
    • Xue Qin Chang
    • Hai Tao Chi
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 343
    |
    Published online on: September 21, 2022
       https://doi.org/10.3892/mmr.2022.12859
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Atherosclerosis (AS) is a chronic inflammatory disease of the blood vessels, which is mainly characterized by the form of atherosclerotic plaques and vascular endothelial injury. Its formation involves abnormal lipid metabolism, oxidative stress and inflammation, as well as other processes. AS is the direct cause of various acute cardiovascular and cerebrovascular diseases, such as acute myocardial infarction and acute ischemic stroke. Early intervention in the atherosclerotic inflammatory process and lesion progression is beneficial, and has been associated with the primary prevention of a range of related diseases. Ferroptosis is a non‑apoptotic form of cell death different from cell necrosis and autophagy, which has been shown to participate in atherogenesis and atherosclerotic progression through numerous signaling pathways. The main characteristic of ferroptosis is the formation of high levels of cellular iron catalytic free radicals, unsaturated fatty acid accumulation and iron‑induced lipid reactive oxygen species accumulation, which can cause oxidative stress, and subsequent DNA, protein and lipid damage. There are numerous hypotheses about the pathogenesis of AS. At present, it has been suggested that ferroptosis can accelerate the progression of AS and that inflammation is associated with the whole process of AS. The mechanisms and signaling pathways related to the involvement of neuroinflammation and ferroptosis in the progression of AS, and therapeutic targets associated with ferroptosis have not yet been elucidated. The present review article evaluated the involvement of ferroptosis in the progression of AS from the perspectives of ferroptotic cell death, the pathogenesis of AS and nervous system inflammation, with the aim of exploring new therapeutic targets for AS.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Wang H, Liu C, Zhao Y and Gao G: Mitochondria regulation in ferroptosis. Eur J Cell Biol. 99:1510582020. View Article : Google Scholar : PubMed/NCBI

3 

Qiu Y, Cao Y, Cao W, Jia Y and Lu N: The application of ferroptosis in diseases. Pharmacol Res. 159:1049192020. View Article : Google Scholar : PubMed/NCBI

4 

Lin L, Zhang MX, Zhang L, Zhang D, Li C and Li YL: Autophagy, pyroptosis, and ferroptosis: New regulatory mechanisms for atherosclerosis. Front Cell Dev Biol. 9:8099552022. View Article : Google Scholar : PubMed/NCBI

5 

Chen X, Li X, Xu X, Li L, Liang N, Zhang L, Lv J, Wu YC and Yin H: Ferroptosis and cardiovascular disease: Role of free radical-induced lipid peroxidation. Free Radic Res. 55:405–415. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Ross R: Atherosclerosis-an inflammatory disease. N Engl J Med. 340:115–126. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Barquera S, Pedroza-Tobias A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE: Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Herrington W, Lacey B, Sherliker P, Armitage J and Lewington S: Epidemiology of atherosclerosis and the potential to reduce the global Burden of atherothrombotic disease. Circ Res. 118:535–546. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Wang Y, Zhao X, Liu L, Soo YO, Pu Y, Pan Y, Wang Y, Zou X, Leung TW, Cai Y, et al: Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: The Chinese Intracranial Atherosclerosis (CICAS) study. Stroke. 45:663–669. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47 (Suppl 8):C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Wang Y, Zhao Y, Ye T, Yang L, Shen Y and Li H: Ferroptosis signaling and regulators in atherosclerosis. Front Cell Dev Biol. 9:8094572021. View Article : Google Scholar : PubMed/NCBI

12 

Jiang C, Zhang J, Zhu J, Wang X, Wen Z, Zhao X and Yuan C; CARE-II Investigators, : Association between coexisting intracranial artery and extracranial carotid artery atherosclerotic diseases and ipsilateral cerebral infarction: A Chinese atherosclerosis risk evaluation (CARE-II) study. Stroke Vasc Neurol. 6:595–602. 2021. View Article : Google Scholar : PubMed/NCBI

13 

GBD 2019 Stroke Collaborators, . Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of disease study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Saini V, Guada L and Yavagal DR: Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97 (Suppl 2):S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Ornello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, Carolei A and Sacco S: Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: A systematic review and meta-analysis. Stroke. 49:814–819. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Gong L, Tian X, Zhou J, Dong Q, Tan Y, Lu Y, Wu J, Zhao Y and Liu X: Iron dyshomeostasis induces binding of APP to BACE1 for amyloid pathology, and impairs APP/Fpn1 complex in microglia: Implication in pathogenesis of cerebral microbleeds. Cell Transplant. 28:1009–1017. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zhang C: Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 5:750–760. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Pisano G, Lombardi R and Fracanzani AL: Vascular damage in patients with nonalcoholic fatty liver disease: Possible role of iron and ferritin. Int J Mol Sci. 17:6752016. View Article : Google Scholar : PubMed/NCBI

19 

Valenti L, Dongiovanni P, Motta BM, Swinkels DW, Bonara P, Rametta R, Burdick L, Frugoni C, Fracanzani AL and Fargion S: Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler Thromb Vasc Biol. 31:683–690. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, Li W, Wang JJ, Bao YX, Liu Y, et al: Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol. 40:1018652021. View Article : Google Scholar : PubMed/NCBI

22 

Yuan H, Pratte J and Giardina C: Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol. 186:1144862021. View Article : Google Scholar : PubMed/NCBI

23 

Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brune B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI

24 

Shan X, Lv ZY, Yin MJ, Chen J, Wang J and Wu QN: The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021:88801412021. View Article : Google Scholar : PubMed/NCBI

25 

Weinberg ED: The hazards of iron loading. Metallomics. 2:732–740. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Yang F, Bao Q, Wang Z, Ma M, Shen J, Ye F and Xie X: Sex-specific genetically predicted iron status in relation to 12 vascular diseases: A mendelian randomization study in the UK Biobank. Biomed Res Int. 2020:62460412020. View Article : Google Scholar : PubMed/NCBI

27 

Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, Ma W, Li L and Xie W: Ferroptosis: The potential value target in atherosclerosis. Cell Death Dis. 12:7822021. View Article : Google Scholar : PubMed/NCBI

28 

Xiao Z, Kong B, Fang J, Qin T, Dai C, Shuai W and Huang H: Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 12:9367–9376. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Naito Y, Masuyama T and Ishihara M: Iron and cardiovascular diseases. J Cardiol. 77:160–165. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI

31 

Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y and Ali F: Atherosclerotic cardiovascular disease: A review of initiators and protective factors. Inflammopharmacology. 24:1–10. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI

33 

Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI

34 

Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. Jun 6–2021.(Epub ahead of print). View Article : Google Scholar

35 

Mishra SR, Mahapatra KK, Behera BP, Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R and Bhutia SK: Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int J Biochem Cell Biol. 136:1060132021. View Article : Google Scholar : PubMed/NCBI

36 

Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zhao Z, Wu J, Xu H, Zhou C, Han B, Zhu H, Hu Z, Ma Z, Ming Z, Yao Y, et al: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11:6292020. View Article : Google Scholar : PubMed/NCBI

38 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Li N, Jiang W, Wang W, Xiong R, Wu X and Geng Q: Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res. 166:1054662021. View Article : Google Scholar : PubMed/NCBI

41 

Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu Y, Ding XL, Zou JJ, Xu S, Tang F, et al: Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther. 7:592022. View Article : Google Scholar : PubMed/NCBI

42 

Oh BM, Lee SJ, Park GL, Hwang YS, Lim J, Park ES, Lee KH, Kim BY, Kwon YT, Cho HJ and Lee HG: Erastin inhibits septic shock and inflammatory gene expression via suppression of the NF-kappaB pathway. J Clin Med. 8:22102019. View Article : Google Scholar : PubMed/NCBI

43 

Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Xiao FJ, Zhang D, Wu Y, Jia QH, Zhang L, Li YX, Yang YF, Wang H, Wu CT and Wang LS: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 515:448–454. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Fan Z, Cai L, Wang S, Wang J and Chen B: Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 12:6289882021. View Article : Google Scholar : PubMed/NCBI

48 

Noguchi N: Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases. Arch Biochem Biophys. 595:109–112. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Chu D and Zhang Z: Trichosanthis pericarpium aqueous extract protects H9c2 cardiomyocytes from Hypoxia/Reoxygenation injury by regulating PI3K/Akt/NO pathway. Molecules. 23:24092018. View Article : Google Scholar : PubMed/NCBI

50 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y and Wang P: The neuroprotective effects of carvacrol on ischemia/reperfusioninduced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Y, Lu X, Tai B, Li W and Li T: Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci. 15:6153722021. View Article : Google Scholar : PubMed/NCBI

54 

Wei X, Yi X, Zhu XH and Jiang DS: Posttranslational modifications in ferroptosis. Oxid Med Cell Longev. 2020:88320432020. View Article : Google Scholar : PubMed/NCBI

55 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019. View Article : Google Scholar : PubMed/NCBI

57 

Ratan RR: The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol. 27:479–498. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Song X and Long D: Nrf2 and Ferroptosis: A new research direction for neurodegenerative diseases. Front Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI

59 

Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI

60 

Anandhan A, Dodson M, Schmidlin CJ, Liu P and Zhang DD: Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol. 27:436–447. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI

62 

Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI

63 

Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI

64 

Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu R and Jiang H: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY). 12:12943–12959. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Colak G and Johnson GV: Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiol Dis. 45:1042–1050. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Yang Y, Wang Y, Guo L, Gao W, Tang TL and Yan M: Interaction between macrophages and ferroptosis. Cell Death Dis. 13:3552022. View Article : Google Scholar : PubMed/NCBI

67 

Marques VB, Leal MAS, Mageski JGA, Fidelis HG, Nogueira BV, Vasquez EC, Meyrelles SDS, Simões MR and Dos Santos L: Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 233:1167022019. View Article : Google Scholar : PubMed/NCBI

68 

Bosseboeuf E and Raimondi C: Signalling, metabolic pathways and iron homeostasis in endothelial cells in health, atherosclerosis and Alzheimer's disease. Cells. 9:20552020. View Article : Google Scholar : PubMed/NCBI

69 

Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Xiao L, Luo G, Guo X, Jiang C, Zeng H, Zhou F, Li Y, Yu J and Yao P: Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1585312020. View Article : Google Scholar : PubMed/NCBI

71 

Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z and Yan X: Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 27:352–372. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D and Chen R: Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 8:802018. View Article : Google Scholar : PubMed/NCBI

73 

Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, Wang S, Lin Y, Lou L, Wu A, et al: Mechanistic Insight into PPARү and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol. 12:7500782021. View Article : Google Scholar : PubMed/NCBI

74 

Gistera A and Hansson GK: The immunology of atherosclerosis. Nat Rev Nephrol. 13:368–380. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Lee GR: The balance of Th17 versus treg cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI

76 

Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, Chen W, Zhang C and Zhang Y: Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 13:167–179. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res. 114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK and Matsui T: Pathological roles of iron in cardiovascular disease. Curr Drug Targets. 19:1068–1076. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Martinet W, Coornaert I, Puylaert P and De Meyer GRY: Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol. 10:3062019. View Article : Google Scholar : PubMed/NCBI

81 

Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G and Zhang X: Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation. 14:1872017. View Article : Google Scholar : PubMed/NCBI

82 

Zhang T, Jiang Y, Zhang S, Tie T, Cheng Y, Su X, Man Z, Hou J, Sun L, Tian M, et al: The association between homocysteine and ischemic stroke subtypes in Chinese: A meta-analysis. Medicine (Baltimore). 99:e194672020. View Article : Google Scholar : PubMed/NCBI

83 

Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW and Murthy SN: The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond). 14:782017. View Article : Google Scholar : PubMed/NCBI

84 

Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X and Zhao M: Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev. 2020:53940962020. View Article : Google Scholar : PubMed/NCBI

85 

Jonsson AL and Backhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 14:79–87. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Chapkin RS, Navarro SL, Hullar MAJ and Lampe JW: Diet and gut microbes act coordinately to enhance programmed cell death and reduce colorectal cancer risk. Dig Dis Sci. 65:840–851. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Hayase E and Jenq RR: Too much TMAO and GVHD. Blood. 136:383–385. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA and Solas M: Implication of trimethylamine N-Oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients. 10:13982018. View Article : Google Scholar : PubMed/NCBI

89 

Lassiger-Herfurth A, Pontarollo G, Grill A and Reinhardt C: The gut microbiota in cardiovascular disease and arterial thrombosis. Microorganisms. 7:6912019. View Article : Google Scholar : PubMed/NCBI

90 

Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M and Pinto A: Molecular biology of atherosclerotic ischemic strokes. Int J Mol Sci. 21:93722020. View Article : Google Scholar : PubMed/NCBI

91 

Cornelissen A, Guo L, Sakamoto A, Virmani R and Finn AV: New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine. 47:598–606. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Chen X, Kang R, Kroemer G and Tang D: Ferroptosis in infection, inflammation, and immunity. J Exp Med. 218:e202105182021. View Article : Google Scholar : PubMed/NCBI

94 

Wolf D and Ley K: Immunity and inflammation in atherosclerosis. Circ Res. 124:315–327. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Jeney V, Balla G and Balla J: Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol. 5:3792014. View Article : Google Scholar : PubMed/NCBI

96 

Raman SV, Winner MW III, Tran T, Velayutham M, Simonetti OP, Baker PB, Olesik J, McCarthy B, Ferketich AK and Zweier JL: In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging. 1:49–57. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI

98 

Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, et al: Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 41:2681–2695. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Neven E, De Schutter TM, Behets GJ, Gupta A and D'Haese PC: Iron and vascular calcification. Is there a link? Nephrol Dial Transplant. 26:1137–1145. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Kempf T and Wollert KC: Iron and atherosclerosis: Too much of a good thing can be bad. Eur Heart J. 41:2696–2698. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Le Y, Zhang Z, Wang C and Lu D: Ferroptotic cell death: New regulatory mechanisms for metabolic diseases. Endocr Metab Immune Disord Drug Targets. 21:785–800. 2021. View Article : Google Scholar : PubMed/NCBI

102 

He L, Liu YY, Wang K, Li C, Zhang W, Li ZZ, Huang XZ and Xiong Y: Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem Biophys Res Commun. 575:1–7. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Stadler N, Lindner RA and Davies MJ: Direct detection and quantification of transition metal ions in human atherosclerotic plaques: Evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol. 24:949–954. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Bai T, Li M, Liu Y, Qiao Z and Wang Z: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Chen Z, Yan Y, Qi C, Liu J, Li L and Wang J: The role of ferroptosis in cardiovascular disease and its therapeutic significance. Front Cardiovasc Med. 8:7332292021. View Article : Google Scholar : PubMed/NCBI

106 

Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J and Zheng S: Targeting ferroptosis to treat cardiovascular diseases: A new continent to be explored. Front Cell Dev Biol. 9:7379712021. View Article : Google Scholar : PubMed/NCBI

107 

Zhao J, Wu Y, Liang S and Piao X: Activation of SSAT1/ALOX15 axis aggravates cerebral ischemia/reperfusion injury via triggering neuronal ferroptosis. Neuroscience. 485:78–90. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Selim M: Treatment with the iron chelator, deferoxamine mesylate, alters serum markers of oxidative stress in stroke patients. Transl Stroke Res. 1:35–39. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY and Jiang JY: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Millan M, DeGregorio-Rocasolano N, Perez de la Ossa N, Reverté S, Costa J, Giner P, Silva Y, Sobrino T, Rodríguez-Yáñez M, Nombela F, et al: Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: Safety and optimal dose selection in a randomized clinical trial. Antioxidants (Basel). 10:12702021. View Article : Google Scholar : PubMed/NCBI

111 

Li W, Xiang Z, Xing Y, Li S and Shi S: Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis. 13:3082022. View Article : Google Scholar : PubMed/NCBI

112 

Bai YT, Xiao FJ, Wang H, Ge RL and Wang LS: Hypoxia protects H9c2 cells against Ferroptosis through SENP1-mediated protein DeSUMOylation. Int J Med Sci. 18:1618–1627. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, et al: Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-kB phosphorylation. Front Immunol. 10:24082019. View Article : Google Scholar : PubMed/NCBI

114 

Yang L, Wang H, Yang X, Wu Q, An P, Jin X, Liu W, Huang X, Li Y, Yan S, et al: Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 5:1382020. View Article : Google Scholar : PubMed/NCBI

115 

Erta M, Quintana A and Hidalgo J: Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 8:1254–1266. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Nunes C, Teixeira N, Serra D, Freitas V, Almeida L and Laranjinha J: Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb). 5:53–65. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Zuo S, Li Q, Liu X, Feng H and Chen Y: The potential therapeutic effects of artesunate on stroke and other central nervous system diseases. Biomed Res Int. 2016:14890502016. View Article : Google Scholar : PubMed/NCBI

118 

Khoshnam SE, Winlow W, Farzaneh M, Farbood Y and Moghaddam HF: Pathogenic mechanisms following ischemic stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Iadecola C, Buckwalter MS and Anrather J: Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J Clin Invest. 130:2777–2788. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y, Cui X and Lu Y: The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 145:1124232022. View Article : Google Scholar : PubMed/NCBI

121 

Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI

122 

Yan HF, Tuo QZ, Yin QZ and Lei P: The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool Res. 41:220–230. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL and Kent TA: Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol. 184:1017162020. View Article : Google Scholar : PubMed/NCBI

124 

Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Lu J, Xu F and Lu H: LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260:1183052020. View Article : Google Scholar : PubMed/NCBI

126 

Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI

127 

Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI

128 

Lu H, Wang B, Cui N and Zhang Y: Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROSdependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med Rep. 17:6639–6646. 2018.PubMed/NCBI

129 

Liu Z, Lv X, Song E and Song Y: Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 407:1152412020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Xu L, Zuo YX, Chang XQ and Chi HT: Potential intervention target of atherosclerosis: Ferroptosis (Review). Mol Med Rep 26: 343, 2022.
APA
Li, J., Xu, L., Zuo, Y.X., Chang, X.Q., & Chi, H.T. (2022). Potential intervention target of atherosclerosis: Ferroptosis (Review). Molecular Medicine Reports, 26, 343. https://doi.org/10.3892/mmr.2022.12859
MLA
Li, J., Xu, L., Zuo, Y. X., Chang, X. Q., Chi, H. T."Potential intervention target of atherosclerosis: Ferroptosis (Review)". Molecular Medicine Reports 26.5 (2022): 343.
Chicago
Li, J., Xu, L., Zuo, Y. X., Chang, X. Q., Chi, H. T."Potential intervention target of atherosclerosis: Ferroptosis (Review)". Molecular Medicine Reports 26, no. 5 (2022): 343. https://doi.org/10.3892/mmr.2022.12859
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Xu L, Zuo YX, Chang XQ and Chi HT: Potential intervention target of atherosclerosis: Ferroptosis (Review). Mol Med Rep 26: 343, 2022.
APA
Li, J., Xu, L., Zuo, Y.X., Chang, X.Q., & Chi, H.T. (2022). Potential intervention target of atherosclerosis: Ferroptosis (Review). Molecular Medicine Reports, 26, 343. https://doi.org/10.3892/mmr.2022.12859
MLA
Li, J., Xu, L., Zuo, Y. X., Chang, X. Q., Chi, H. T."Potential intervention target of atherosclerosis: Ferroptosis (Review)". Molecular Medicine Reports 26.5 (2022): 343.
Chicago
Li, J., Xu, L., Zuo, Y. X., Chang, X. Q., Chi, H. T."Potential intervention target of atherosclerosis: Ferroptosis (Review)". Molecular Medicine Reports 26, no. 5 (2022): 343. https://doi.org/10.3892/mmr.2022.12859
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team