|
1
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang H, Liu C, Zhao Y and Gao G:
Mitochondria regulation in ferroptosis. Eur J Cell Biol.
99:1510582020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Qiu Y, Cao Y, Cao W, Jia Y and Lu N: The
application of ferroptosis in diseases. Pharmacol Res.
159:1049192020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C
and Li YL: Autophagy, pyroptosis, and ferroptosis: New regulatory
mechanisms for atherosclerosis. Front Cell Dev Biol. 9:8099552022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen X, Li X, Xu X, Li L, Liang N, Zhang
L, Lv J, Wu YC and Yin H: Ferroptosis and cardiovascular disease:
Role of free radical-induced lipid peroxidation. Free Radic Res.
55:405–415. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ross R: Atherosclerosis-an inflammatory
disease. N Engl J Med. 340:115–126. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Barquera S, Pedroza-Tobias A, Medina C,
Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE:
Global overview of the epidemiology of atherosclerotic
cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Herrington W, Lacey B, Sherliker P,
Armitage J and Lewington S: Epidemiology of atherosclerosis and the
potential to reduce the global Burden of atherothrombotic disease.
Circ Res. 118:535–546. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang Y, Zhao X, Liu L, Soo YO, Pu Y, Pan
Y, Wang Y, Zou X, Leung TW, Cai Y, et al: Prevalence and outcomes
of symptomatic intracranial large artery stenoses and occlusions in
China: The Chinese Intracranial Atherosclerosis (CICAS) study.
Stroke. 45:663–669. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Falk E: Pathogenesis of atherosclerosis. J
Am Coll Cardiol. 47 (Suppl 8):C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang Y, Zhao Y, Ye T, Yang L, Shen Y and
Li H: Ferroptosis signaling and regulators in atherosclerosis.
Front Cell Dev Biol. 9:8094572021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang C, Zhang J, Zhu J, Wang X, Wen Z,
Zhao X and Yuan C; CARE-II Investigators, : Association between
coexisting intracranial artery and extracranial carotid artery
atherosclerotic diseases and ipsilateral cerebral infarction: A
Chinese atherosclerosis risk evaluation (CARE-II) study. Stroke
Vasc Neurol. 6:595–602. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
GBD 2019 Stroke Collaborators, . Global,
regional, and national burden of stroke and its risk factors,
1990–2019: A systematic analysis for the Global Burden of disease
study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Saini V, Guada L and Yavagal DR: Global
epidemiology of stroke and access to acute ischemic stroke
interventions. Neurology. 97 (Suppl 2):S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ornello R, Degan D, Tiseo C, Di Carmine C,
Perciballi L, Pistoia F, Carolei A and Sacco S: Distribution and
temporal trends from 1993 to 2015 of ischemic stroke subtypes: A
systematic review and meta-analysis. Stroke. 49:814–819. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gong L, Tian X, Zhou J, Dong Q, Tan Y, Lu
Y, Wu J, Zhao Y and Liu X: Iron dyshomeostasis induces binding of
APP to BACE1 for amyloid pathology, and impairs APP/Fpn1 complex in
microglia: Implication in pathogenesis of cerebral microbleeds.
Cell Transplant. 28:1009–1017. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang C: Essential functions of
iron-requiring proteins in DNA replication, repair and cell cycle
control. Protein Cell. 5:750–760. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pisano G, Lombardi R and Fracanzani AL:
Vascular damage in patients with nonalcoholic fatty liver disease:
Possible role of iron and ferritin. Int J Mol Sci. 17:6752016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Valenti L, Dongiovanni P, Motta BM,
Swinkels DW, Bonara P, Rametta R, Burdick L, Frugoni C, Fracanzani
AL and Fargion S: Serum hepcidin and macrophage iron correlate with
MCP-1 release and vascular damage in patients with metabolic
syndrome alterations. Arterioscler Thromb Vasc Biol. 31:683–690.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu J, Kuang F, Kroemer G, Klionsky DJ,
Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and
regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen
MQ, Li W, Wang JJ, Bao YX, Liu Y, et al: Apolipoprotein E
deficiency induces a progressive increase in tissue iron contents
with age in mice. Redox Biol. 40:1018652021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yuan H, Pratte J and Giardina C:
Ferroptosis and its potential as a therapeutic target. Biochem
Pharmacol. 186:1144862021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fuhrmann DC, Mondorf A, Beifuß J, Jung M
and Brune B: Hypoxia inhibits ferritinophagy, increases
mitochondrial ferritin, and protects from ferroptosis. Redox Biol.
36:1016702020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shan X, Lv ZY, Yin MJ, Chen J, Wang J and
Wu QN: The protective effect of cyanidin-3-glucoside on myocardial
ischemia-reperfusion injury through ferroptosis. Oxid Med Cell
Longev. 2021:88801412021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Weinberg ED: The hazards of iron loading.
Metallomics. 2:732–740. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang F, Bao Q, Wang Z, Ma M, Shen J, Ye F
and Xie X: Sex-specific genetically predicted iron status in
relation to 12 vascular diseases: A mendelian randomization study
in the UK Biobank. Biomed Res Int. 2020:62460412020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ouyang S, You J, Zhi C, Li P, Lin X, Tan
X, Ma W, Li L and Xie W: Ferroptosis: The potential value target in
atherosclerosis. Cell Death Dis. 12:7822021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xiao Z, Kong B, Fang J, Qin T, Dai C,
Shuai W and Huang H: Ferrostatin-1 alleviates
lipopolysaccharide-induced cardiac dysfunction. Bioengineered.
12:9367–9376. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Naito Y, Masuyama T and Ishihara M: Iron
and cardiovascular diseases. J Cardiol. 77:160–165. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kajarabille N and Latunde-Dada GO:
Programmed cell-death by ferroptosis: Antioxidants as mitigators.
Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ellulu MS, Patimah I, Khaza'ai H, Rahmat
A, Abed Y and Ali F: Atherosclerotic cardiovascular disease: A
review of initiators and protective factors. Inflammopharmacology.
24:1–10. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong
X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gan B: Mitochondrial regulation of
ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu J, Kang R and Tang D: Signaling
pathways and defense mechanisms of ferroptosis. FEBS J. Jun
6–2021.(Epub ahead of print). View Article : Google Scholar
|
|
35
|
Mishra SR, Mahapatra KK, Behera BP, Patra
S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R
and Bhutia SK: Mitochondrial dysfunction as a driver of NLRP3
inflammasome activation and its modulation through mitophagy for
potential therapeutics. Int J Biochem Cell Biol. 136:1060132021.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jelinek A, Heyder L, Daude M, Plessner M,
Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial
rescue prevents glutathione peroxidase-dependent ferroptosis. Free
Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhao Z, Wu J, Xu H, Zhou C, Han B, Zhu H,
Hu Z, Ma Z, Ming Z, Yao Y, et al: XJB-5-131 inhibited ferroptosis
in tubular epithelial cells after ischemia-reperfusion injury. Cell
Death Dis. 11:6292020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Friedmann Angeli JP, Schneider M, Proneth
B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch
A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator
Gpx4 triggers acute renal failure in mice. Nat Cell Biol.
16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li N, Jiang W, Wang W, Xiong R, Wu X and
Geng Q: Ferroptosis and its emerging roles in cardiovascular
diseases. Pharmacol Res. 166:1054662021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu
Y, Ding XL, Zou JJ, Xu S, Tang F, et al: Thrombin induces
ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion.
Signal Transduct Target Ther. 7:592022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Oh BM, Lee SJ, Park GL, Hwang YS, Lim J,
Park ES, Lee KH, Kim BY, Kwon YT, Cho HJ and Lee HG: Erastin
inhibits septic shock and inflammatory gene expression via
suppression of the NF-kappaB pathway. J Clin Med. 8:22102019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang
L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated
tumour suppression through a distinct ferroptosis pathway. Nat Cell
Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xiao FJ, Zhang D, Wu Y, Jia QH, Zhang L,
Li YX, Yang YF, Wang H, Wu CT and Wang LS: miRNA-17-92 protects
endothelial cells from erastin-induced ferroptosis through
targeting the A20-ACSL4 axis. Biochem Biophys Res Commun.
515:448–454. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun
C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting
ferroptosis-induced brain injury and neuroinflammation. Brain Behav
Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fan Z, Cai L, Wang S, Wang J and Chen B:
Baicalin prevents myocardial ischemia/reperfusion injury through
inhibiting ACSL4 mediated ferroptosis. Front Pharmacol.
12:6289882021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Noguchi N: Ebselen, a useful tool for
understanding cellular redox biology and a promising drug candidate
for use in human diseases. Arch Biochem Biophys. 595:109–112. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chu D and Zhang Z: Trichosanthis
pericarpium aqueous extract protects H9c2 cardiomyocytes from
Hypoxia/Reoxygenation injury by regulating PI3K/Akt/NO pathway.
Molecules. 23:24092018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen X, Yu C, Kang R, Kroemer G and Tang
D: Cellular degradation systems in ferroptosis. Cell Death Differ.
28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guan X, Li X, Yang X, Yan J, Shi P, Ba L,
Cao Y and Wang P: The neuroprotective effects of carvacrol on
ischemia/reperfusioninduced hippocampal neuronal impairment by
ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang Y, Lu X, Tai B, Li W and Li T:
Ferroptosis and its multifaceted roles in cerebral stroke. Front
Cell Neurosci. 15:6153722021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wei X, Yi X, Zhu XH and Jiang DS:
Posttranslational modifications in ferroptosis. Oxid Med Cell
Longev. 2020:88320432020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and
Wang J: Molecular mechanisms of ferroptosis and its role in cancer
therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Alim I, Caulfield JT, Chen Y, Swarup V,
Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie
EJ, et al: Selenium drives a transcriptional adaptive program to
block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ratan RR: The chemical biology of
ferroptosis in the central nervous system. Cell Chem Biol.
27:479–498. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song X and Long D: Nrf2 and Ferroptosis: A
new research direction for neurodegenerative diseases. Front
Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yuan Y, Zhai Y, Chen J, Xu X and Wang H:
Kaempferol ameliorates oxygen-glucose
deprivation/reoxygenation-induced neuronal ferroptosis by
activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Anandhan A, Dodson M, Schmidlin CJ, Liu P
and Zhang DD: Breakdown of an ironclad defense system: the critical
role of NRF2 in mediating ferroptosis. Cell Chem Biol. 27:436–447.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M,
Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell
proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo
ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in
ischemic stroke: Possible targets and molecular mechanisms. Oxid
Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu
R and Jiang H: Nrf2 inhibits ferroptosis and protects against acute
lung injury due to intestinal ischemia reperfusion via regulating
SLC7A11 and HO-1. Aging (Albany NY). 12:12943–12959. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Colak G and Johnson GV: Complete
transglutaminase 2 ablation results in reduced stroke volumes and
astrocytes that exhibit increased survival in response to ischemia.
Neurobiol Dis. 45:1042–1050. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang Y, Wang Y, Guo L, Gao W, Tang TL and
Yan M: Interaction between macrophages and ferroptosis. Cell Death
Dis. 13:3552022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Marques VB, Leal MAS, Mageski JGA, Fidelis
HG, Nogueira BV, Vasquez EC, Meyrelles SDS, Simões MR and Dos
Santos L: Chronic iron overload intensifies atherosclerosis in
apolipoprotein E deficient mice: Role of oxidative stress and
endothelial dysfunction. Life Sci. 233:1167022019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bosseboeuf E and Raimondi C: Signalling,
metabolic pathways and iron homeostasis in endothelial cells in
health, atherosclerosis and Alzheimer's disease. Cells. 9:20552020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wen Q, Liu J, Kang R, Zhou B and Tang D:
The release and activity of HMGB1 in ferroptosis. Biochem Biophys
Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xiao L, Luo G, Guo X, Jiang C, Zeng H,
Zhou F, Li Y, Yu J and Yao P: Macrophage iron retention aggravates
atherosclerosis: Evidence for the role of autocrine formation of
hepcidin in plaque macrophages. Biochim Biophys Acta Mol Cell Biol
Lipids. 1865:1585312020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang
F, Feng J, Yang D, Qin Z and Yan X: Macrophagic CD146 promotes foam
cell formation and retention during atherosclerosis. Cell Res.
27:352–372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han
X, Tang D and Chen R: Research progress on the relationship between
atherosclerosis and inflammation. Biomolecules. 8:802018.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q,
Wang S, Lin Y, Lou L, Wu A, et al: Mechanistic Insight into PPARү
and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol.
12:7500782021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gistera A and Hansson GK: The immunology
of atherosclerosis. Nat Rev Nephrol. 13:368–380. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee GR: The balance of Th17 versus treg
cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Meng X, Yang J, Dong M, Zhang K, Tu E, Gao
Q, Chen W, Zhang C and Zhang Y: Regulatory T cells in
cardiovascular diseases. Nat Rev Cardiol. 13:167–179. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Libby P: The changing landscape of
atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bentzon JF, Otsuka F, Virmani R and Falk
E: Mechanisms of plaque formation and rupture. Circ Res.
114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kobayashi M, Suhara T, Baba Y, Kawasaki
NK, Higa JK and Matsui T: Pathological roles of iron in
cardiovascular disease. Curr Drug Targets. 19:1068–1076. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Martinet W, Coornaert I, Puylaert P and De
Meyer GRY: Macrophage death as a pharmacological target in
atherosclerosis. Front Pharmacol. 10:3062019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen S, Dong Z, Cheng M, Zhao Y, Wang M,
Sai N, Wang X, Liu H, Huang G and Zhang X: Homocysteine exaggerates
microglia activation and neuroinflammation through microglia
localized STAT3 overactivation following ischemic stroke. J
Neuroinflammation. 14:1872017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang T, Jiang Y, Zhang S, Tie T, Cheng Y,
Su X, Man Z, Hou J, Sun L, Tian M, et al: The association between
homocysteine and ischemic stroke subtypes in Chinese: A
meta-analysis. Medicine (Baltimore). 99:e194672020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kumar A, Palfrey HA, Pathak R, Kadowitz
PJ, Gettys TW and Murthy SN: The metabolism and significance of
homocysteine in nutrition and health. Nutr Metab (Lond). 14:782017.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X
and Zhao M: Implication of gut microbiota in cardiovascular
diseases. Oxid Med Cell Longev. 2020:53940962020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jonsson AL and Backhed F: Role of gut
microbiota in atherosclerosis. Nat Rev Cardiol. 14:79–87. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chapkin RS, Navarro SL, Hullar MAJ and
Lampe JW: Diet and gut microbes act coordinately to enhance
programmed cell death and reduce colorectal cancer risk. Dig Dis
Sci. 65:840–851. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hayase E and Jenq RR: Too much TMAO and
GVHD. Blood. 136:383–385. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Janeiro MH, Ramirez MJ, Milagro FI,
Martinez JA and Solas M: Implication of trimethylamine N-Oxide
(TMAO) in disease: Potential biomarker or new therapeutic target.
Nutrients. 10:13982018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lassiger-Herfurth A, Pontarollo G, Grill A
and Reinhardt C: The gut microbiota in cardiovascular disease and
arterial thrombosis. Microorganisms. 7:6912019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tuttolomondo A, Puleo MG, Velardo MC,
Corpora F, Daidone M and Pinto A: Molecular biology of
atherosclerotic ischemic strokes. Int J Mol Sci. 21:93722020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cornelissen A, Guo L, Sakamoto A, Virmani
R and Finn AV: New insights into the role of iron in inflammation
and atherosclerosis. EBioMedicine. 47:598–606. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tabas I and Bornfeldt KE: Macrophage
phenotype and function in different stages of atherosclerosis. Circ
Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen X, Kang R, Kroemer G and Tang D:
Ferroptosis in infection, inflammation, and immunity. J Exp Med.
218:e202105182021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wolf D and Ley K: Immunity and
inflammation in atherosclerosis. Circ Res. 124:315–327. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jeney V, Balla G and Balla J: Red blood
cell, hemoglobin and heme in the progression of atherosclerosis.
Front Physiol. 5:3792014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Raman SV, Winner MW III, Tran T,
Velayutham M, Simonetti OP, Baker PB, Olesik J, McCarthy B,
Ferketich AK and Zweier JL: In vivo atherosclerotic plaque
characterization using magnetic susceptibility distinguishes
symptom-producing plaques. JACC Cardiovasc Imaging. 1:49–57. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hu H, Chen Y, Jing L, Zhai C and Shen L:
The link between ferroptosis and cardiovascular diseases: A novel
target for treatment. Front Cardiovasc Med. 8:7109632021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Vinchi F, Porto G, Simmelbauer A, Altamura
S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R,
et al: Atherosclerosis is aggravated by iron overload and
ameliorated by dietary and pharmacological iron restriction. Eur
Heart J. 41:2681–2695. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Neven E, De Schutter TM, Behets GJ, Gupta
A and D'Haese PC: Iron and vascular calcification. Is there a link?
Nephrol Dial Transplant. 26:1137–1145. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kempf T and Wollert KC: Iron and
atherosclerosis: Too much of a good thing can be bad. Eur Heart J.
41:2696–2698. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Le Y, Zhang Z, Wang C and Lu D:
Ferroptotic cell death: New regulatory mechanisms for metabolic
diseases. Endocr Metab Immune Disord Drug Targets. 21:785–800.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
He L, Liu YY, Wang K, Li C, Zhang W, Li
ZZ, Huang XZ and Xiong Y: Tanshinone IIA protects human coronary
artery endothelial cells from ferroptosis by activating the NRF2
pathway. Biochem Biophys Res Commun. 575:1–7. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Stadler N, Lindner RA and Davies MJ:
Direct detection and quantification of transition metal ions in
human atherosclerotic plaques: Evidence for the presence of
elevated levels of iron and copper. Arterioscler Thromb Vasc Biol.
24:949–954. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bai T, Li M, Liu Y, Qiao Z and Wang Z:
Inhibition of ferroptosis alleviates atherosclerosis through
attenuating lipid peroxidation and endothelial dysfunction in mouse
aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen Z, Yan Y, Qi C, Liu J, Li L and Wang
J: The role of ferroptosis in cardiovascular disease and its
therapeutic significance. Front Cardiovasc Med. 8:7332292021.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu
P, Zhou P, Lu J and Zheng S: Targeting ferroptosis to treat
cardiovascular diseases: A new continent to be explored. Front Cell
Dev Biol. 9:7379712021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhao J, Wu Y, Liang S and Piao X:
Activation of SSAT1/ALOX15 axis aggravates cerebral
ischemia/reperfusion injury via triggering neuronal ferroptosis.
Neuroscience. 485:78–90. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Selim M: Treatment with the iron chelator,
deferoxamine mesylate, alters serum markers of oxidative stress in
stroke patients. Transl Stroke Res. 1:35–39. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF,
Gao GY and Jiang JY: Inhibition of ferroptosis attenuates tissue
damage and improves long-term outcomes after traumatic brain injury
in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Millan M, DeGregorio-Rocasolano N, Perez
de la Ossa N, Reverté S, Costa J, Giner P, Silva Y, Sobrino T,
Rodríguez-Yáñez M, Nombela F, et al: Targeting pro-oxidant iron
with deferoxamine as a treatment for ischemic stroke: Safety and
optimal dose selection in a randomized clinical trial. Antioxidants
(Basel). 10:12702021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li W, Xiang Z, Xing Y, Li S and Shi S:
Mitochondria bridge HIF signaling and ferroptosis blockage in acute
kidney injury. Cell Death Dis. 13:3082022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bai YT, Xiao FJ, Wang H, Ge RL and Wang
LS: Hypoxia protects H9c2 cells against Ferroptosis through
SENP1-mediated protein DeSUMOylation. Int J Med Sci. 18:1618–1627.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Liu H, Wu X, Luo J, Wang X, Guo H, Feng D,
Zhao L, Bai H, Song M, Liu X, et al: Pterostilbene attenuates
astrocytic inflammation and neuronal oxidative injury after
ischemia-reperfusion by inhibiting NF-kB phosphorylation. Front
Immunol. 10:24082019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang L, Wang H, Yang X, Wu Q, An P, Jin X,
Liu W, Huang X, Li Y, Yan S, et al: Auranofin mitigates systemic
iron overload and induces ferroptosis via distinct mechanisms.
Signal Transduct Target Ther. 5:1382020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Erta M, Quintana A and Hidalgo J:
Interleukin-6, a major cytokine in the central nervous system. Int
J Biol Sci. 8:1254–1266. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nunes C, Teixeira N, Serra D, Freitas V,
Almeida L and Laranjinha J: Red wine polyphenol extract efficiently
protects intestinal epithelial cells from inflammation via opposite
modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb).
5:53–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zuo S, Li Q, Liu X, Feng H and Chen Y: The
potential therapeutic effects of artesunate on stroke and other
central nervous system diseases. Biomed Res Int. 2016:14890502016.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Khoshnam SE, Winlow W, Farzaneh M, Farbood
Y and Moghaddam HF: Pathogenic mechanisms following ischemic
stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Iadecola C, Buckwalter MS and Anrather J:
Immune responses to stroke: Mechanisms, modulation, and therapeutic
potential. J Clin Invest. 130:2777–2788. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang Y, Xin L, Xiang M, Shang C, Wang Y,
Wang Y, Cui X and Lu Y: The molecular mechanisms of ferroptosis and
its role in cardiovascular disease. Biomed Pharmacother.
145:1124232022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G,
Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death
connecting oxidative stress, inflammation and cardiovascular
diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yan HF, Tuo QZ, Yin QZ and Lei P: The
pathological role of ferroptosis in ischemia/reperfusion-related
injury. Zool Res. 41:220–230. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Derry PJ, Hegde ML, Jackson GR, Kayed R,
Tour JM, Tsai AL and Kent TA: Revisiting the intersection of
amyloid, pathologically modified tau and iron in Alzheimer's
disease from a ferroptosis perspective. Prog Neurobiol.
184:1017162020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H,
Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al:
Tau-mediated iron export prevents ferroptotic damage after ischemic
stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lu J, Xu F and Lu H: LncRNA PVT1 regulates
ferroptosis through miR-214-mediated TFR1 and p53. Life Sci.
260:1183052020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao
Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator
4-mediated ferritinophagy contributes to cerebral ischemia-induced
ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Chen J, Yang L, Geng L, He J, Chen L, Sun
Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain
family member 4 facilitates neurological recovery after stroke by
regulation ferroptosis. Front Cell Neurosci. 15:6323542021.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lu H, Wang B, Cui N and Zhang Y:
Artesunate suppresses oxidative and inflammatory processes by
activating Nrf2 and ROSdependent p38 MAPK and protects against
cerebral ischemia-reperfusion injury. Mol Med Rep. 17:6639–6646.
2018.PubMed/NCBI
|
|
129
|
Liu Z, Lv X, Song E and Song Y: Fostered
Nrf2 expression antagonizes iron overload and glutathione depletion
to promote resistance of neuron-like cells to ferroptosis. Toxicol
Appl Pharmacol. 407:1152412020. View Article : Google Scholar : PubMed/NCBI
|