|
1
|
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H,
Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of
critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China:
A single-centered, retrospective, observational study. Lancet
Respir Med. 8:475–481. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zoumpourlis V, Goulielmaki M, Rizos E,
Baliou S and Spandidos DA: [Comment] The COVID-19 pandemic as a
scientific and social challenge in the 21st century. Mol Med Rep.
22:3035–3048. 2020.PubMed/NCBI
|
|
3
|
Magro C, Mulvey JJ, Berlin D, Nuovo G,
Salvatore S, Harp J, Baxter-Stoltzfus A and Laurence J: Complement
associated microvascular injury and thrombosis in the pathogenesis
of severe COVID-19 infection: A report of five cases. Transl Res.
220:1–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Amraei R and Rahimi N: COVID-19,
renin-angiotensin system and endothelial dysfunction. Cells.
9:16522020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Libby P and Lüscher T: COVID-19 is, in the
end, an endothelial disease. Eur Heart J. 41:3038–3044. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wan Y, Shang J, Graham R, Baric RS and Li
F: Receptor recognition by the novel coronavirus from Wuhan: An
analysis based on decade-long structural studies of SARS
coronavirus. J Virol. 94:e00127–e00120. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brassington K, Selemidis S, Bozinovski S
and Vlahos R: Chronic obstructive pulmonary disease and
atherosclerosis: Common mechanisms and novel therapeutics. Clin Sci
(Lond). 136:405–423. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Somlyo AV: New roads leading to Ca2+
sensitization. Circ Res. 91:83–84. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kostov K: The causal relationship between
endothelin-1 and hypertension: Focusing on endothelial dysfunction,
arterial stiffness, vascular remodeling, and blood pressure
regulation. Life (Basel). 11:9862021.PubMed/NCBI
|
|
10
|
Kumar A, Choudhury M, Batra SD, Sikri K
and Gupta A: In vivo assessment of a single adenine mutation in
5′UTR of endothelin-1 gene in paediatric cases with severe
pulmonary hypertension: An observational study. BMC Res Notes.
14:1942021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hasegawa H, Hiki K, Sawamura T, Aoyama T,
Okamoto Y, Miwa S, Shimohama S, Kimura J and Masaki T: Purification
of a novel endothelin-converting enzyme specific for big
endothelin-3. FEBS Lett. 428:304–308. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
D'Orléans-Juste P, Plante M, Honoré JC,
Carrier E and Labonté J: Synthesis and degradation of endothelin-1.
Can J Physiol Pharmacol. 81:503–510. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yoshida T, Matsuura K, Goya S, Ma D,
Shimada K, Kitpipatkun P, Namiki R, Uemura A, Suzuki K and Tanaka
R: Metformin prevents the development of monocrotaline-induced
pulmonary hypertension by decreasing serum levels of big
endothelin-1. Exp Ther Med. 20:1492020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wagner OF, Christ G, Wojta J, Vierhapper
H, Parzer S, Nowotny PJ, Schneider B, Waldhäusl W and Binder BR:
Polar secretion of endothelin-1 by cultured endothelial cells. J
Biol Chem. 267:16066–16068. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Watts SW: Endothelin receptors: What's new
and what do we need to know? Am J Physiol Regul Integr Comp
Physiol. 298:R254–R260. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang L, Wang L and Yan F: Understanding
the molecular mechanism of endothelin ETA receptor selecting
isopeptides endothelin-1 and −3. Biophys J. 121:2490–2502. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ergul A: Endothelin-1 and endothelin
receptor antagonists as potential cardiovascular therapeutic
agents. Pharmacotherapy. 22:54–65. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ruetten H and Thiemermann C: Endothelin-1
stimulates the biosynthesis of tumour necrosis factor in
macrophages: ET-receptors, signal transduction and inhibition by
dexamethasone. J Physiol Pharmacol. 48:675–688. 1997.PubMed/NCBI
|
|
19
|
Stencel MG, VerMeer M, Giles J and Tran
QK: Endothelial regulation of calmodulin expression and
eNOS-calmodulin interaction in vascular smooth muscle. Mol Cell
Biochem. 477:1489–1498. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barinda AJ, Arozal W, Sandhiutami NMD,
Louisa M, Arfian N, Sandora N and Yusuf M: Curcumin prevents
epithelial-to mesenchymal transition-mediated ovarian cancer
progression through NRF2/ETBR/ET-1 axis and preserves mitochondria
biogenesis in kidney after cisplatin administration. Adv Pharm
Bull. 12:128–141. 2022.PubMed/NCBI
|
|
21
|
Nabeh OA, Matter LM, Khattab MA and
Menshawey E: The possible implication of endothelin in the
pathology of COVID-19-induced pulmonary hypertension. Pulm
Pharmacol Ther. 71:1020822021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chow JH, Mazzeffi MA and McCurdy MT:
Angiotensin II for the treatment of COVID-19-related vasodilatory
shock. Anesth Analg. 131:102–105. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Deshotels MR, Xia H, Sriramula S,
Lazartigues E and Filipeanu CM: Angiotensin II mediates angiotensin
converting enzyme type 2 internalization and degradation through an
angiotensin II type I receptor-dependent mechanism. Hypertension.
64:1368–1375. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rahman MM, Hasan M and Ahmed A: Potential
detrimental role of soluble ACE2 in severe COVID-19 comorbid
patients. Rev Med Virol. 31:e22132021. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Henry BM, Vikse J, Benoit S, Favaloro EJ
and Lippi G: Hyperinflammation and derangement of
renin-angiotensin-aldosterone system in COVID-19: A novel
hypothesis for clinically suspected hypercoagulopathy and
microvascular immunothrombosis. Clin Chim Acta. 507:167–173. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Konrath EL, Berger M, Lopes da Rosa R and
Beys-da-Silva WO: Acmella oleracea is a medicinal plant that
decreases chymase activity, oxidative stress, and inflammation:
Possible role in the adjuvant treatment of COVID-19. J Med Food.
24:1243–1244. 2021.PubMed/NCBI
|
|
28
|
Gómez J, Albaiceta GM, García-Clemente M,
López-Larrea C, Amado-Rodríguez L, Lopez-Alonso I, Hermida T,
Enriquez AI, Herrero P, Melón S, et al: Angiotensin-converting
enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene.
762:1451022020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Carà GA, Pasin L, Alborino E, Zarbock A,
Bellomo R and Landoni G: Angiotensin II - A brief review and role
in severe SARS-COV-2 sepsis. J Cardiothorac Vasc Anesth [Internet].
2022 Jul 22;[cited 2022 Sep 16]; Available from:. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304073/
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ravarotto V, Bertoldi G, Stefanelli LF,
Nalesso F and Calò LA: Gitelman's and Bartter's Syndromes: From
genetics to the molecular basis of hypertension and more. Kidney
Blood Press Res. 20:1–9. 2022.PubMed/NCBI
|
|
31
|
Kuba K, Imai Y, Rao S, Jiang C and
Penninger JM: Lessons from SARS: Control of acute lung failure by
the SARS receptor ACE2. J Mol Med (Berl). 84:814–820. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Steardo L, Steardo L and Verkhratsky A:
Psychiatric face of COVID-19. Transl Psychiatry. 10:2612020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Giannopoulou I, Galinaki S, Kollintza E,
Adamaki M, Kympouropoulos S, Alevyzakis E, Tsamakis K, Tsangaris I,
Spandidos DA, Siafakas N, et al: COVID-19 and post-traumatic stress
disorder: The perfect ‘storm’ for mental health (Review). Exp Ther
Med. 22:11622021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu Y, Yang Y, Zhang C, Huang F, Wang F,
Yuan J, Wang Z, Li J, Li J, Feng C, et al: Clinical and biochemical
indexes from 2019-nCoV infected patients linked to viral loads and
lung injury. Sci China Life Sci. 63:364–374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Seo JW, Kim DY, Yun N and Kim DM:
Coronavirus disease 2019-associated coagulopathy. Microorganisms.
10:15562022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kwaan HC and Lindholm PF: The central role
of fibrinolytic response in COVID-19-a hematologist's perspective.
Int J Mol Sci. 22:12832021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ferrario CM, Jessup J, Chappell MC,
Averill DB, Brosnihan KB, Tallant EA, Diz DI and Gallagher PE:
Effect of angiotensin-converting enzyme inhibition and angiotensin
II receptor blockers on cardiac angiotensin-converting enzyme 2.
Circulation. 111:2605–2610. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shyh GI, Nawarskas JJ and Cheng-Lai A:
Angiotensin-converting enzyme inhibitors and angiotensin receptor
blockers in patients with coronavirus disease 2019: Friend or foe?
Cardiol Rev. 28:213–216. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Batlle D, Wysocki J and Satchell K:
Soluble angiotensin-converting enzyme 2: A potential approach for
coronavirus infection therapy? Clin Sci (Lond). 134:543–545. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang H, Penninger JM, Li Y, Zhong N and
Slutsky AS: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2
receptor: Molecular mechanisms and potential therapeutic target.
Intensive Care Med. 46:586–590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhou MS, Schulman IH and Raij L: Nitric
oxide, angiotensin II, and hypertension. Semin Nephrol. 24:366–378.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Raij L: Nitric oxide, salt sensitivity,
and cardiorenal injury in hypertension. Semin Nephrol. 19:296–303.
1999.PubMed/NCBI
|
|
43
|
Li H, Brodsky S, Basco M, Romanov V, De
Angelis DA and Goligorsky MS: Nitric oxide attenuates signal
transduction: Possible role in dissociating caveolin-1 scaffold.
Circ Res. 88:229–236. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Massberg S, Sausbier M, Klatt P, Bauer M,
Pfeifer A, Siess W, Fässler R, Ruth P, Krombach F and Hofmann F:
Increased adhesion and aggregation of platelets lacking cyclic
guanosine 3′,5′-monophosphate kinase I. J Exp Med. 189:1255–1264.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Takemoto M, Egashira K, Usui M, Numaguchi
K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K and Takeshita A:
Important role of tissue angiotensin-converting enzyme activity in
the pathogenesis of coronary vascular and myocardial structural
changes induced by long-term blockade of nitric oxide synthesis in
rats. J Clin Invest. 99:278–287. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Katoh M, Egashira K, Usui M, Ichiki T,
Tomita H, Shimokawa H, Rakugi H and Takeshita A: Cardiac
angiotensin II receptors are upregulated by long-term inhibition of
nitric oxide synthesis in rats. Circ Res. 83:743–751. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hati S and Bhattacharyya S: Impact of
thiol-disulfide balance on the binding of covid-19 spike protein
with angiotensin-converting enzyme 2 receptor. ACS Omega.
5:16292–16298. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sasser JM, Pollock JS and Pollock DM:
Renal endothelin in chronic angiotensin II hypertension. Am J
Physiol Regul Integr Comp Physiol. 283:R243–R248. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ortiz MC, Sanabria E, Manriquez MC, Romero
JC and Juncos LA: Role of endothelin and isoprostanes in slow
pressor responses to angiotensin II. Hypertension. 37((2 Pt 2)):
505–510. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Boulanger CM and Lüscher TF: Differential
effect of cyclic GMP on the release of endothelin-1 from cultured
endothelial cells and intact porcine aorta. J Cardiovasc Pharmacol.
17 (Suppl 7):S264–S266. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Montiel V, Lobysheva I, Gérard L,
Vermeersch M, Perez-Morga D, Castelein T, Mesland JB, Hantson P,
Collienne C, Gruson D, et al: Oxidative stress-induced endothelial
dysfunction and decreased vascular nitric oxide in COVID-19
patients. EBioMedicine. 77:1038932022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mehta PK and Griendling KK: Angiotensin II
cell signaling: Physiological and pathological effects in the
cardiovascular system. Am J Physiol Cell Physiol. 292:C82–C97.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Vanhoutte PM: Endothelium and control of
vascular function. State of the Art lecture. Hypertension.
13:658–667. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Philogene MC, Johnson T, Vaught AJ,
Zakaria S and Fedarko N: Antibodies against angiotensin II type 1
and endothelin A receptors: Relevance and pathogenicity. Hum
Immunol. 80:561–567. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lukitsch I, Kehr J, Chaykovska L, Wallukat
G, Nieminen-Kelhä M, Batuman V, Dragun D and Gollasch M: Renal
ischemia and transplantation predispose to vascular constriction
mediated by angiotensin II type 1 receptor-activating antibodies.
Transplantation. 94:8–13. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang S, Zheng R, Yang L, Zhang X, Zuo L,
Yang X, Bai K, Song L, Tian J, Yang J and Liu H: Angiotensin type 1
receptor autoantibody from preeclamptic patients induces human
fetoplacental vasoconstriction. J Cell Physiol. 228:142–148. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Papola F, Biancofiore V, Angeletti C,
Grimaldi A, Carucci AC, Cofini V, Necozione S, Rosciano A,
Marinangeli F and Cervelli C: Anti-AT1R autoantibodies and
prediction of the severity of Covid-19. Human Immunol. 83:130–133.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ohe H, Uchida Y, Yoshizawa A, Hirao H,
Taniguchi M, Maruya E, Yurugi K, Hishida R, Maekawa T, Uemoto S and
Terasaki PI: Association of anti-human leukocyte antigen and
anti-angiotensin II type 1 receptor antibodies with liver allograft
fibrosis after immunosuppression withdrawal. Transplantation.
98:1105–1111. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
O'Leary JG, Demetris AJ, Philippe A,
Freeman R, Cai J, Heidecke H, Smith C, Hart B, Jennings LW, Catar
R, et al: Non-HLA antibodies impact on C4d staining, stellate cell
activation and fibrosis in liver allografts. Transplantation.
101:2399–2409. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Budding K, van de Graaf EA, Hoefnagel T,
Kwakkel-van Erp JM, van Kessel DA, Dragun D, Hack CE and Otten HG:
Anti-ETAR and anti-AT1R autoantibodies are elevated in patients
with endstage cystic fibrosis. J Cyst Fibros. 14:42–45. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cabral-Marques O, Halpert G, Schimke LF,
Ostrinski Y, Vojdani A, Baiocchi GC, Freire PP, Filgueiras IS,
Zyskind I, Lattin MT, et al: Autoantibodies targeting GPCRs and
RAS-related molecules associate with COVID-19 severity. Nat Commun.
13:12202022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Abadir PM, Jain A, Powell LJ, Xue QL, Tian
J, Hamilton RG, Bennett DA, Finucane T, Walston JD and Fedarko NS:
Discovery and validation of agonistic angiotensin receptor
autoantibodies as biomarkers of adverse outcomes. Circulation.
135:449–459. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang Q and Reed EF: The importance of
non-HLA antibodies in transplantation. Nat Rev Nephrol. 12:484–495.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Saavedra JM: Angiotensin receptor blockers
and COVID-19. Pharmacol Res. 156:1048322020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chung MK, Karnik S, Saef J, Bergmann C,
Barnard J, Lederman MM, Tilton J, Cheng F, Harding CV, Young JB, et
al: SARS-CoV-2 and ACE2: The biology and clinical data settling the
ARB and ACEI controversy. EBioMedicine. 58:1029072020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jia H: Pulmonary angiotensin-converting
enzyme 2 (ACE2) and inflammatory lung disease. Shock. 46:239–248.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gurwitz D: Angiotensin receptor blockers
as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 81:537–540.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Fedson DS: Treating the host response to
emerging virus diseases: Lessons learned from sepsis, pneumonia,
influenza and Ebola. Ann Transl Med. 4:4212016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fang L, Karakiulakis G and Roth M: Are
patients with hypertension and diabetes mellitus at increased risk
for COVID-19 infection? Lancet Respir Med. 8:e212020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Diaz JH: Hypothesis:
Angiotensin-converting enzyme inhibitors and angiotensin receptor
blockers may increase the risk of severe COVID-19. J Travel Med.
27:taaa0412020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Matsuzawa Y, Kimura K, Ogawa H and Tamura
K: Impact of renin-angiotensin-aldosterone system inhibitors on
COVID-19. Hypertens Res. 45:1147–1153. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Martel J, Ko YF, Young JD and Ojcius DM:
Could nasal nitric oxide help to mitigate the severity of COVID-19?
Microbes Infect. 22:168–171. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lundberg JO, Weitzberg E and Gladwin MT:
The nitrate-nitrite-nitric oxide pathway in physiology and
therapeutics. Nat Rev Drug Discov. 7:156–167. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lundberg JO, Carlström M and Weitzberg E:
Metabolic effects of dietary nitrate in health and disease. Cell
Metabolism. 28:9–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen L, Liu P, Gao H, Sun B, Chao D, Wang
F, Zhu Y, Hedenstierna G and Wang CG: Inhalation of nitric oxide in
the treatment of severe acute respiratory syndrome: A rescue trial
in Beijing. Clin Infect Dis. 39:1531–1535. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lundberg JO, Farkas-Szallasi T, Weitzberg
E, Rinder J, Lidholm J, Anggåard A, Hökfelt T, Lundberg JM and
Alving K: High nitric oxide production in human paranasal sinuses.
Nat Med. 1:370–373. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Runer T, Cervin E, Lindberg S and Uddman
R: Nitric oxide is a regulator of mucociliary activity in the upper
respiratory tract. Otolaryngol Head Neck Surg. 119:278–287. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nagaki M, Shimura S, Irokawa T, Sasaki T
and Shirato K: Nitric oxide regulation of glycoconjugate secretion
from feline and human airways in vitro. Respir Physiol. 102:89–95.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu W, Zheng S, Dweik RA and Erzurum SC:
Role of epithelial nitric oxide in airway viral infection. Free
Radic Biol Med. 41:19–28. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Keyaerts E, Vijgen L, Chen L, Maes P,
Hedenstierna G and Van Ranst M: Inhibition of SARS-coronavirus
infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric
oxide donor compound. Int J Infect Dis. 8:223–226. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Åkerström S, Gunalan V, Keng CT, Tan YJ
and Mirazimi A: Dual effect of nitric oxide on SARS-CoV
replication: Viral RNA production and palmitoylation of the S
protein are affected. Virology. 395:1–9. 2009. View Article : Google Scholar : PubMed/NCBI
|