|
1
|
Zhang S, Lin H, Kong S, Wang S, Wang H,
Wang H and Armant DR: Physiological and molecular determinants of
embryo implantation. Mol Aspects Med. 34:939–980. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhan X, Long Y and Lu M: Exploration of
variations in proteome and metabolome for predictive diagnostics
and personalized treatment algorithms: Innovative approach and
examples for potential clinical application. J Proteomics.
188:30–40. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Handelman SK, Romero R, Tarca AL, Pacora
P, Ingram B, Maymon E, Chaiworapongsa T, Hassan SS and Erez O: The
plasma metabolome of women in early pregnancy differs from that of
non-pregnant women. PLoS One. 14:e02246822019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lain KY and Catalano PM: Metabolic changes
in pregnancy. Clin Obstet Gynecol. 50:938–948. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zeng Z, Liu F and Li S: Metabolic
adaptations in pregnancy: A review. Ann Nutr Metab. 70:59–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Herrera E and Desoye G: Maternal and fetal
lipid metabolism under normal and gestational diabetic conditions.
Horm Mol Biol Clin Investig. 26:109–127. 2016.PubMed/NCBI
|
|
7
|
McLachlan KA, O'Neal D, Jenkins A and
Alford FP: Do adiponectin, TNFα, leptin and CRP relate to insulin
resistance in pregnancy? Studies in women with and without
gestational diabetes, during and after pregnancy. Diabet Metab Res
Rev. 22:131–138. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Catalano PM, Roman-Drago NM, Amini SB and
Sims EAH: Longitudinal changes in body composition and energy
balance in lean women with normal and abnormal glucose tolerance
during pregnancy. Am J Obstetr Gynecol. 179:156. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jauniaux E, Hempstock J, Teng C, Battaglia
FC and Burton GJ: Polyol concentrations in the fluid compartments
of the human concentrations in the fluid compartments of the human
conceptus during the first trimester of pregnancy: Maintenance of
redox potential in a low oxygen environment. J Clin Endocrinol
Metab. 90:1171–1175. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Murgia F, Iuculano A, Peddes C, Santoru
ML, Tronci L, Deiana M, Atzori L and Monni G: Metabolic
fingerprinting of chorionic villous samples in normal pregnancy and
chromosomal disorders. Prenat Diagn. 39:848–858. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jauniaux E, Cindrova-Davies T, Johns J,
Dunster C, Hempstock J, Kelly FJ and Burton GJ: Distribution and
transfer pathways of antioxidant molecules inside the first
trimester human gestational sac. J Clin Endocrinol Metab.
89:1452–1458. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Burton GJ, Watson AL, Hempstock J, Skepper
JN and Jauniaux E: Uterine glands provide histiotrophic nutrition
for the human fetus during the first trimester of pregnancy. J Clin
Endocrinol Metab. 87:2954–2959. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jauniaux E, Watson AL, Hempstock J, Bao
YP, Skepper JN and Burton GJ: Onset of maternal arterial blood flow
and placental oxidative stress: A possible factor in human early
pregnancy failure. Am J Pathol. 157:2111–2122. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Burton GJ and Jauniaux E: Placental
oxidative stress: From miscarriage to preeclampsia. Reprod Sci.
11:342–352. 2004.
|
|
15
|
King VJ, Bennet L, Stone PR, Clark A, Gunn
AJ and Dhillon SK: Fetal growth restriction and stillbirth:
Biomarkers for identifying at risk fetuses. Front Physiol.
13:9597502022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nardozza LM, Caetano AC, Zamarian AC,
Mazzola JB, Silva CP, Marçal VM, Lobo TF, Peixoto AB and Araujo
Júnior E: Fetal growth restriction: Current knowledge. Arch Gynecol
Obstet. 295:1061–1077. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Visentin S, Grumolato F, Nardelli GB, Di
Camillo B, Grisan E and Cosmi E: Early origins of adult disease:
Low birth weight and vascular remodeling. Atherosclerosis.
237:391–399. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yzydorczyk C, Armengaud JB, Peyter AC,
Chehade H, Cachat F, Juvet C, Siddeek B, Simoncini S, Sabatier F,
Dignat-George F, et al: Endothelial dysfunction in individuals born
after fetal growth restriction: Cardiovascular and renal
consequences and preventive approaches. J Dev Orig Health Dis.
8:448–464. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kalanithi LE, Illuzzi JL, Nossov VB,
Frisbaek Y, Abdel-Razeq S, Copel JA and Norwitz ER: Intrauterine
growth restriction and placental location. J Ultrasound Med.
26:1481–1489. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Unterscheider J, Daly S, Geary MP,
Kennelly MM, McAuliffe FM, O'Donoghue K, Hunter A, Morrison JJ,
Burke G, Dicker P, et al: Optimizing the definition of intrauterine
growth restriction: The multicenter prospective PORTO Study. Am J
Obstet Gynecol. 208:290.e1–e6. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gordijn SJ, Beune IM, Thilaganathan B,
Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K and
Ganzevoort W: Consensus definition of fetal growth restriction: A
Delphi procedure. Ultrasound Obstet Gynecol. 48:333–339. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baschat AA: Late onset FGR is generally
linked with milder placental insufficiency than early-onset FGR,
but the risk of stillbirth is high due to wors fetal hemodynamic
adaptation. Planning management and delivery of the
growth-restricted fetus. Best Pract Res Clin Obstet Gynaecol.
49:53–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zeitlin J, Ancel PY, Saurel-Cubizolles MJ
and Papiernik E: The relationship between intrauterine growth
restriction and preterm delivery: An empirical approach using data
from a European case-control study. BJOG. 107:750–758. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Parker SE and Werler MM: Epidemiology of
ischemic placental disease: A focus on preterm gestations. Semin
Perinatol. 38:133–138. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Figueras F and Gratacós E: Update on the
diagnosis and classification of fetal growth restriction and
proposal of a stage-based management protocol. Fetal Diagn Ther.
36:86–98. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Monteith C, Flood K, Pinnamaneni R, Levine
TA, Alderdice FA, Unterscheider J, McAuliffe FM, Dicker P, Tully
EC, Malone FD and Foran A: An abnormal cerebroplacental ratio (CPR)
is predictive of early childhood delayed neurodevelopment in the
setting of fetal growth restriction. Am J Obstet Gynecol.
221:273.e1–273.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Khalil A, Morales-Roselló J, Townsend R,
Morlando M, Papageorghiou A, Bhide A and Thilaganathan B: Value of
third-trimester cerebroplacental ratio and uterine artery Doppler
indices as predictors of stillbirth and perinatal loss. Ultrasound
Obstet Gynecol. 47:74–80. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mecacci F, Avagliano L, Lisi S, Clemenza
S, Serena C, Vannuccini S, Rambaldi MP, Simeone S, Ottanelli S and
Petragli F: Fetal growth restriction: Does an integrated maternal
hemodynamic-placental model fit better? Rep Sci. 28:2422–2435.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Leite DFB, Morillon AC, Melo Júnior EF,
Souza RT, McCarthy FP, Khashan A, Baker P, Kenny LC and Cecatti JG:
Examining the predictive accuracy of metabolomics for
small-for-gestational-age babies: A systematic review. BMJ Open.
9:e0312382019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Law KP, Han TL, Tong C and Baker PN: Mass
spectrometry-based proteomics for pre-eclampsia and preterm birth.
Int J Mol Sci. 16:10952–10985. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nguyen TPH, Patrick CJ, Parry LJ and
Familari M: Using proteomics to advance the search for potential
biomarkers for preeclampsia: A systematic review and meta-analysis.
PLoS One. 14:e02146712019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dahabiyeh LA: The discovery of protein
biomarkers in pre-eclampsia: The promising role of mass
spectrometry. Biomarkers. 23:609–621. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Paules C, Youssef L, Miranda J, Crovetto
F, Estanyol JM, Fernandez G, Crispi F and Gratacós E: Maternal
proteomic profiling reveals alterations in lipid metabolism in
late-onset fetal growth restriction. Sci Rep. 10:210332020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Conrad MS, Gardner ML, Miguel C, Freitas
MA, Rood KM and Ma'ayeh M: Proteomic analysis of the umbilical cord
in fetal growth restriction and preeclampsia. PLoS One.
17:e02620412022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hadlock FP, Harrist RB, Sharman RS, Deter
RL and Park SK: Estimation of fetal weight with the use of head,
body and femur measurements-a prospective study. Am J Obstet
Gynecol. 151:333–337. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ebbing C, Rasmussen S and Kiserud T:
Middle cerebral artery blood flow velocities and pulsatility index
and the cerebroplacental pulsatility ratio: Longitudinal reference
ranges and terms for serial measurements. Ultrasound Obstet
Gynecol. 30:287–296. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jugović D, Tumbri J, Medić M, Jukić MK,
Kurjak A, Arbeille P and Salihagić-Kadić A: New Doppler index for
prediction of perinatal brain damage in growth-restricted and
hypoxic fetuses. Ultrasound Obstet Gynecol. 30:303–311. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Neuhoff V, Arold N, Taube D and Ehrhardt
W: Improved staining of proteins in polyacrylamide gels including
isoelectric focusing gels with a clear background at nanogram
sensitivity using Coomassie Brilliant Blue G-250 and R250.
Electrophoresis. 9:255–262. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ishihama Y, Oda Y, Tabata T, Sato T,
Nagasu T, Rappsilber J and Mann M: Exponentially modified protein
abundance index (emPAI) for estimation of absolute protein amount
in proteomics by the number of sequenced peptides per protein. Mol
Cell Proteomics. 4:1265–1272. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bahado-Singh RO, Turkoglu O, Yilmaz A,
Kumar P, Zeb A, Konda S, Sherman E, Kirma J, Allos M, Odibo A, et
al: Metabolomic identification of placental alterations in fetal
growth restriction. J Mater Fetal Neonatal Med. 35:447–456. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Youssef L, Simões RV, Miranda J,
García-Martín ML, Paules C, Crovetto F, Amigó N, Cañellas N,
Gratacos E and Crispi F: Paired maternal and fetal metabolomics
reveal a differential fingerprint in preeclampsia versus fetal
growth restriction. Sci Rep. 11:144222021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Heazell AE, Brown M, Dunn WB, Worton SA,
Crocker IP, Baker PN and Kell DB: Analysis of the metabolic
footprint and tissue metabolome of placental villous explants
cultured at different oxygen tensions reveals novel redox
biomarkers. Placenta. 29:691–698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Arimura Y, Ikura M, Fujita R, Noda M,
Kobayashi W, Horikoshi N, Sun J, Shi L and Kusakabe M:
Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1
affect the structure and stability of the nucleosome. Nucleic Acids
Res. 46:10007–10018. 2018.PubMed/NCBI
|
|
45
|
Patel D, McAllister SL and Teckman JH:
Alpha-1 antitrypsin deficiency liver disease. Transl Gastroenterol
Hepatol. 6:232021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xi Y, Rong Y and Wang Y: Roles of Annexin
A protein family in autophagy regulation and therapy. Biomed
Pharmacother. 130:1105912020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
D'Acquisto F, Perretti M and Flower RJ:
Annexin-A1: A pivotal regulator of the innate and adaptive immune
systems. J Pharmacol. 155:152–169. 2008.
|
|
48
|
Peng W, Liu Y, Qi H and Li Q:
Alpha-actinin-4 is essential for maintaining normal trophoblast
proliferation and differentiation during early pregnancy. Rep Biol
Endoc. 19:482021. View Article : Google Scholar
|
|
49
|
Mangaraj M, Nanda R and Panda S:
Apolipoprotein A-I: A molecule of diverse function. Indian J Clin
Biochem. 31:253–259. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pennington KL, Chan TY, Torres MP and
Andersen IJ: The dynamic and stress-adaptive signaling hub of
14-3-3: Emerging mechanisms of regulation and context-dependent
protein-protein interactions. Oncogene. 37:5587–5604. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wierenga RK, Kapetaniou EG and Venkatesan
R: Triosephosphate isomerase: A highly evolved biocatalyst. Cell
Mol Life Sci. 67:3961–3982. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fu W, Wang W, Hao J, Zhu X and Sun M:
Purification and characterization of catalase from marine bacterium
Acinetobacter sp. YS0810. Biomed Res Int. 2014:4096262014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Poillerat V, Gentinetta T, Leon J, Wassmer
A, Edler M, Torset C, Luo D, Tuffin G and Roumenina LT: Hemopexin
as an inhibitor of hemolysis-induced complement activation. Front
Immunol. 11:16842020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Varricchio L, Falchi M, Dall'Ora M, De
Benediyyis C, Ruggeri A, Uversky VN and Migliaccio AR:
Calreticulin: Challenges posed by the intrinsically disordered
nature of calreticulin to the study of its function. Front Cell Dev
Biol. 6:962017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Khan HA and Mutus B: Protein disulfide
isomerase a multifunctional protein with multiple physiological
roles. Front Chem. 2:702014.PubMed/NCBI
|
|
56
|
Karvar S, Ansa-Addo SA, Suda J, Singh S,
Zhu L, Li Z and Dony DC: Moesin, an Ezrin/Radixin/Moesin family
member, regulates hepatic fibrosis. Hepatology. 72:1073–1084. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sizemore ST, Zhang M, Cho JH, Sizemore GM,
Hurwitz B, Kaur B, Lehman NL, Ostrowski MC, Robe PA, Miao W, et al:
Pyruvate kinase M2 regulates homologous recombinationmediated DNA
double-strand break repair. Cell Res. 28:1090–1102. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wilkinson HC and Dalby PA: The Two-species
model of transketolase explains donor substrate-binding, inhibition
and heat-activation. Sci Rep. 10:41482020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bernard JY, Tint MT, Aris IM, Chenc LW,
Quaha PL, Tand KH, Yeo GS, Fortier MV, Yap F, Shek L, et al:
Maternal plasma phosphatidylcholine polyunsaturated fatty acids
during pregnancy and offspring growth and adiposity. Prostaglandins
Leukot Essent Fatty Acids. 121:21–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Visentin S, Crotti S, Donazzolo E,
D'Aronco S, Nitti D, Cosmi E and Agostini M: Medium chain fatty
acids in intrauterine growth restricted and small for gestational
age pregnancies. Metabolomics. 13:542017. View Article : Google Scholar
|
|
61
|
Clinton CM, Bain JR, Muehlbauer MJ, Li YY,
Li L, O'Neal SK and Ferguson KK: Non-targeted urinary metabolomics
in pregnancy and associations with fetal growth restriction. Sci
Rep. 10:53072020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dessì A, Atzori L, Noto A, Visser GH,
Gazzolo D, Zanardo V, Barberini L, Puddu M, Ottonello G, Atzei A,
et al: Metabolomics in newborns with intrauterine growth
retardation (IUGR): Urine reveals markers of metabolic syndrome. J
Mater Fetal Neonat Med. 24 (Suppl 2):S35–S39. 2011. View Article : Google Scholar
|
|
63
|
Raff H, Bruder ED, Jankowski BM and
Goodfriend TL: Neonatal hypoxic hyperlipidemia in the rat: Effects
on aldosterone and corticosterone synthesis in vitro. Am J Physiol
Regul Integr Comp Physiol. 278:R663–R668. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jiang F, Zhang Y and Dusting GJ: NADPH
oxidase-mediated redox signaling: Roles in cellular stress
response, stress tolerance and tissue repair. Pharmacol Rev.
63:218–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sena LA and Chandel NS: Physiological
roles of mitochondrial reactive oxygen species. Mol Cell.
48:158–167. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Schieber M and Chandel NS: ROS function in
redox signaling and oxidative stress. Curr Biol. 24:R453–R462.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gretes MC, Poole LB and Karplus PA:
Peroxiredoxins in parasites. Antioxid Redox Signal. 17:608–633.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sun HN, Kim SU, Huang SM, Kim JM, Park YH,
Kim SH, Yang HY, Chung KJ, Lee TH, Choi HS, et al: Microglial
peroxiredoxin V acts as an inducible anti-inflammatory antioxidant
through cooperation with redox signaling cascades. J Neurochem.
114:39–50. 2010.PubMed/NCBI
|
|
69
|
Diet A, Abbas K, Bouton C, Guillon B,
Tomasello F, Fourquet S, Toledano MB and Drapier JC: Regulation of
peroxiredoxins by nitric oxide in immunostimulated macrophages. J
Biol Chem. 282:36199–36205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Vinchi F, Costa da Silva M, Ingoglia G,
Petrillo S, Brinkman N, Zuercher A, Cerwenka A, Tolosano E and
Muckenthaler MU: Hemopexin therapy reverts heme-induced
pro-inflammatory phenotypic switching of macrophages in a mouse
model of sickle cell disease. Blood. 127:473–486. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li R, Saleem S, Zhen G, Cao W, Zhuang H,
Lee J, Smith A, Altruda F, Tolosano E and Doré S: Heme-hemopexin
complex attenuates neuronal cell death and stroke damage. J Cereb
Blood Flow Metab. 29:953–964. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Y, Dong B, Lu J, Wang G and Yu Y:
Hemopexin reduces blood-brain barrier injury and protects synaptic
plasticity in cerebral ischemic rats by promoting EPCs through the
HO-1 pathway. Brain Res. 1699:177–185. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Belkacemi L, Bédard I, Simoneau L and
Lafond J: Calcium channels, transporters and exchangers in
placenta: A review. Cell Calcium. 37:1–8. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Michalak M, Groenendyk J, Szabo E, Gold LI
and Opas M: Calreticulin, a multi-process calcium-buffering
chaperone of the endoplasmic reticulum. Biochem J. 417:651–666.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yamamoto M, Ikezaki M, Toujima S, Iwahashi
N, Mizoguchi M, Nanjo S, Minami S, Ihara Y and Ino K: Calreticulin
is involved in invasion of human extravillous trophoblasts through
functional regulation of integrin beta1. Endocrinology.
158:3874–3889. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Iwahashi N, Ikezaki M, Matsuzaki I,
Yamamoto M, Toujima S, Murata SI, Ihara Y and Ino K: Calreticulin
regulates syncytialization through control of the synthesis and
transportation of E-cadherin in BeWo cells. Endocrinology.
160:359–374. 2019.PubMed/NCBI
|
|
77
|
Gold LI, Eggleton P, Sweetwyne MT, Van
Duyn LB, Greives MR, Naylor SM and Murphy-Ullrich JE: Calreticulin:
Non-endoplasmic reticulum functions in physiology and disease.
FASEB J. 24:665–683. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shi Z, Hou W, Hua X, Zhang X, Liu X and
Wang X and Wang X: Overexpression of calreticulin in pre-eclamptic
placentas: Effect on apoptosis, cell invasion and severity of
pre-eclampsia. Cell Biochem Biophys. 63:183–189. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gu VY, Wong MH, Stevenson JL, Crawford KE,
Brennecke SP and Gude NM: Calreticulin in human pregnancy and
pre-eclampsia. Mol Hum Reprod. 14:309–315. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Iwahashi N, Ikezaki M, Nishitsuji K,
Yamamoto M, Matsuzaki I, Kato N, Takaoka N, Taniguchi M, Murata SI,
Ino K and Ihara Y: Extracellularly released calreticulin induced by
endoplasmic reticulum stress impairs syncytialization of
cytotrophoblast model BeWo cells. Cells. 10:13052021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mo HQ, Tian FJ, Ma XL, Zhang YC, Zhang CX,
Zeng WH, Zhang Y and Lin Y: PDIA3 regulates trophoblast apoptosis
and proliferation in preeclampsia via the MDM2/p53 pathway.
Reproduction. 160:293–305. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Foote M and Zhou Y: 14-3-3 proteins in
neurological disorders. Int J Biochem Mol Biol. 3:152–164.
2012.PubMed/NCBI
|
|
83
|
Muslin AJ and Xing H: 14-3-3 proteins:
Regulation of subcellular localization by molecular interference.
Cell Signal. 12:703–709. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mackintosh C: Dynamic interactions between
14-3-3 proteins and phosphoproteins regulate diverse cellular
processes. Biochem J. 381:329–342. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kaplan A, Morquette B, Kroner A, Leong SY,
Madwar C, Sanz R, Benerjee SL, Antel J, Bisson N, David S and
Fournier AE: Small-molecule stabilization of 14-3-3 Protein-protein
interactions stimulates axon regeneration. Neuron. 93:1082–1093.e5.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kwon OK, Lee W, Kim SJ, Lee YM, Lee JY,
Kim JY, Bae JS and Lee S: In-depth proteomics approach of secretome
to identify novel biomarker for sepsis in LPS-stimulated
endothelial cells. Electrophoresis. 36:2851–2858. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lee W, Kwon OK, Han MS, Lee YM, Kim SW,
Kim KM, Lee T, Lee S and Bae JS: Role of moesin in HMGB1-stimulated
severe inflammatory responses. Thromb Haemost. 114:350–363. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen Y, Wang J, Zhang L, Zhu J, Zeng Y and
Huang JA: Moesin is a novel biomarker of endothelial injury in
sepsis. J Immunol Res. 2021:66956792021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Satooka H, Matsui M, Ichioka S, Nakamura Y
and Hirata T: The ERM protein moesin regulates natural killer cell
homeostasis in vivo. Cell Immunol. 371:1044562022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hasan D, Gamen E, Tarboush NA, Ismail Y,
Pak O and Azab B: PKM2 and HIF1α regulation in prostate cancer cell
lines. PLoS One. 13:e02037452018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li Z, Yang P and Li Z: The multifaceted
regulation and functions of PKM2 in tumor progression. Biochim
Biophys Acta Rev Cancer. 1846:285–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li L, Zhang Y, Qiao J, Yang JJ and Liu ZR:
Pyruvate kinase M2 in blood circulation facilitates tumor growth by
promoting angiogenesis. J Biol Chem. 289:25812–25821. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X,
You Y, Lu Z, Peiper SC, Shu Y and Jiang BH: Regulatory circuit of
PKM2/NFκB/miR-148a/152-modulated tumor angiogenesis and cancer
progression. Oncogene. 34:5482–5493. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Azoitei N, Becher A, Steinestel K, Rouhi
A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes
tumor angiogenesis by regulating HIF-1α through NF-κB activation.
Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen Y, Zhang T, Zeng S, Xu R, Jin K,
Coorey NJ, Wang Y, Wang K, Lee SR, Yam M, et al: Transketolase in
human Müller cells is critical to resist light stress through the
pentose phosphate and NRF2 pathways. Redox Biol. 54:1023792022.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jiang P, Du W and Yang X: A critical role
of glucose-6-phosphate dehydrogenase in TAp73-mediated cell
proliferation. Cell Cycle. 12:3720–3726. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Krockenberger M, Engel JB, Schmidt M,
Kohrenhagen N, Häusler SF, Dombrowski Y, Kapp M, Dietl J and Honig
A: Expression of transketolase-like 1 protein (TKTL1) in human
endometrial cancer. Anticancer Res. 30:1653–1659. 2010.PubMed/NCBI
|
|
98
|
Staiger WI, Coy JF, Grobholz R, Hofheinz
RD, Lukan N, Post S, Schwarzbach MH and Willeke F: Expression of
the mutated transketolase TKTL1, a molecular marker in gastric
cancer. Oncol Rep. 16:657–661. 2006.PubMed/NCBI
|
|
99
|
Hertl M and Cosimi AB: Liver
transplantation for malignancy. Oncologist. 10:269–281. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sun J, Hoshino H, Takaku K, Nakajima O,
Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, et
al: Hemoprotein Bach1 regulates enhancer availability of heme
oxygenase-1 gene. EMBO J. 21:5216–5224. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mitsuishi Y, Taguchi K, Kawatani Y,
Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2
redirects glucose and glutamine into anabolic pathways in metabolic
reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sjoblom B, Salmazo A and Djinovic-Carugo
K: Alpha-actinin structure and regulation. Cell Mol Life Sci.
65:2688–2701. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mills M, Yang N, Weinberger R, Vander
Woude DL, Beggs AH, Easteal S and North K: Differential expression
of the actin-binding proteins, alpha-actinin-2 and −3, in different
species: Implications for the evolution of functional redundancy.
Hum Mol Genet. 10:1335–1346. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hamill KJ, Hopkinson SB, Skalli O and
Jones JC: Actinin-4 in keratinocytes regulates motility via an
effect on lamellipodia stability and matrix adhesions. FASEB J.
27:546–556. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bridger PS, Haupt S, Leiser R, Johnson GA,
Burghardt RC, Tinneberg HR and Pfarrer C: Integrin activation in
bovine placentomes and in caruncular epithelial cells isolated from
pregnant cows. Biol Reprod. 79:274–282. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang YY, Tabataba H, Liu XY, Wang JY, Yan
XG, Farrelly M, Jiang CC, Guo ST, Liu T, Kao HY, et al: ACTN4
regulates the stability of RIPK1 in melanoma. Oncogene.
37:4033–4045. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pollheimer J, Vondra S, Baltayeva J,
Beristain AG and Knöfler M: Regulation of placental extravillous
trophoblasts by the maternal uterine environment. Front Immunol.
9:25972018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kennedy DJ, Fan Y, Wu Y, Pepoy M, Hazen SL
and Tang WH: Plasma ceruloplasmin, a regulator of nitric oxide
activity and incident cardiovascular risk in patients with CKD.
Clin J Am Soc Nephrol. 9:462–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Göçmen AY, Sahin E, Semiz E and Gümuşlü S:
Is elevated serum ceruloplasmin level associated with increased
risk of coronary artery disease? Can J Cardiol. 24:209–212. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ziakas A, Gavrilidis S, Souliou E,
Giannoglou G, Stiliadis I, Karvounis H, Efthimiadis G, Mochlas S,
Vayona MA, Hatzitolios A, et al: Ceruloplasmin is a better
predictor of the long-term prognosis compared with fibrinogen, CRP,
and IL-6 in patients with severe unstable angina. Angiology.
60:50–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hammadah M, Fan Y, Wu Y, Hazen SL and Tang
WH: Prognostic value of elevated serum ceruloplasmin levels in
patients with heart failure. J Card Fail. 20:946–952. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Guller S, Buhimschi CS, Ma YY, Huang ST,
Yang L, Kuczynski E, Zambrano E, Lockwood CJ and Buhimschi IA:
Placental expression of ceruloplasmin in pregnancies complicated by
severe preeclampsia. Lab Invest. 88:1057–1067. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bellos I, Papantoniou N and Pergialiotis
V: Serum ceruloplasmin levels in preeclampsia: A meta-analysis. J
Matern Fetal Neonatal Med. 31:2342–2348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Surekha MV, Sujatha T, Gadhiraju S, Kumar
PU, Kotturu SK, Sharada K and Bhaskar V: Impact of maternal iron
deficiency anaemia on the expression of the newly discovered
multi-copper ferroxidase, Zyklopen, in term placentas. J Obstet
Gynaecol. 42:74–82. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ozgu-Erdinc AS, Cavkaytar S, Aktulay A,
Buyukkagnici U, Erkaya S and Danisman N: Mid-trimester maternal
serum and amniotic fluid biomarkers for the prediction of preterm
delivery and intrauterine growth retardation. J Obstet Gynaecol
Res. 40:1540–1546. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Pogorelova TN, Linde VA, Gunko VO and
Selyutina SN: The imbalance of metal-containing proteins and free
metal ions in the amniotic fluid during fetal growth. Biomed Khim.
62:69–72. 2016.(In Russian). View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ayala R, Shu T and Tsai LH: Trekking
across the brain: The journey of neuronal migration. Cell.
128:29–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tischfield MA and Engle EC: Distinct
alpha- and beta-tubulin isotypes are required for the positioning,
differentiation and survival of neurons: New support for the
‘multi-tubulin’ hypothesis. Biosci Rep. 30:319–330. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Bahi-Buisson N, Poirier K, Fourniol F,
Saillour Y, Valence S, Lebrun N, Hully M, Bianco CF, Boddaert N,
Elie C, et al: The wide spectrum of tubulinopathies: What are the
key features for the diagnosis? Brain. 137:1676–1700. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hebebrand M, Hüffmeier U, Trollmann R,
Hehr U, Uebe S, Ekici AB, Kraus C, Krumbiegel M, Reis A, Thiel CT
and Popp B: The mutational and phenotypic spectrum of
TUBA1A-associated tubulinopathy. Orphanet J Rare Dis. 14:382019.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Romaniello R, Zucca C, Arrigoni F, Bonanni
P, Panzeri E, Bassi MT and Borgatti R: Epilepsy in tubulinopathy:
Personal series and literature review. Cells. 8:6692019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang X, Zhang J, Zhou L, Xu B, Ren X, He
K, Nie L, Li X, Liu J, Yang X and Yuan J: Long-term iron exposure
causes widespread molecular alterations associated with memory
impairment in mice. Food Chem Toxicol. 130:242–252. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Monceau V, Belikova Y, Kratassiouk G,
Charue D, Camors E, Communal C, Trouvé P, Russo-Marie F and
Charlemagne D: Externalization of endogenous annexin A5
participates in apoptosis of rat cardiomyocytes. Cardiovass Res.
64:496–506. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li A, Su X, Tian Y, Song G, Zan L and Wang
H: Effect of actin alpha cardiac Muscle 1 on the proliferation and
differentiation of bovine myoblasts and preadipocytes. Animals
(Basel). 11:34682021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Yuan SM and Wu N: Aortic α-smooth muscle
actin expressions in aortic disorders and coronary artery disease:
An immunohistochemical study. Anatol J Cardiol. 19:11–16.
2018.PubMed/NCBI
|
|
126
|
Jonckheere A, Smeitink JM and Rodenburg
RJT: Mitochondrial ATP synthase: Architecture, function and
pathology. J Inherit Metab Dis. 35:211–225. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Männik J, Vaas P, Rull K, Teesalu P and
Laan M: Differential placental expression profile of human Growth
Hormone/Chorionic Somatomammotropin genes in pregnancies with
pre-eclampsia and gestational diabetes mellitus. Mol Cell
Endocrinol. 355:180–187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Bays JL and DeMali KA: Vinculin in
cell-cell and cell-matrix adhesions. Cell Mol Life Sci.
74:2999–3009. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Patino MG, Neiders MS, Mirdza E,
Sebastiano A, Noble B and Cohen RE: Collagen: An overview. Implant
Dent. 11:280–285. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sudo H, Tsuji AB, Sugyo A, Abe M, Hino O
and Saga T: AHNAK is highly expressed and plays a key role in cell
migration and invasion in mesothelioma. Inter J Oncol. 20:530–538.
2013.
|
|
131
|
Sun H, Zhao A, Li M, Dong H, Sun Y, Zhang
X, Zhu Q, Bukhari AA, Cao CH, Su D, et al: Interaction of calcium
binding protein S100A16 with myosin-9 promotes cytoskeleton
reorganization in renal tubulointerstitial fibrosis. Cell Death
Dis. 11:1462020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Su W, Mruk DD and Cheng CY: Filamin A: A
regulator of blood-testis barrier assembly during post-natal
development. Spermatogenesis. 2:73–78. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Burrudge K: Talin: A protein designed for
mechanotransduction. Emerg Top Life Sci. 2:673–675. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Duan T, Fan K, Chen S, Yao O, Zeng R, Hong
Z, Peng L, Shao Y and Yao B: Role of peroxiredoxin 2 in H2O2
induced oxidative stress of primary Leydig cells. Molec Med Rep.
13:4807–4813. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Stockley RA: The multiple facets of
alpha-1-antitrypsin. Ann Transl Med. 3:1302015.PubMed/NCBI
|
|
136
|
Feng D, Notbohm J, Benjamin A, He S, Wang
M, Ang LH, Bantawa M, Bouzid M, Del Gado E, Krishnan R and Pollak
MR: Disease-causing mutation in α-actinin-4 promotes podocyte
detachment through maladaptation to periodic stretch. Proc Natl
Acad Sci USA. 115:1517–1522. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zanardi A, Conti MA, Cremones P, D'Adamo
E, Gilberti P, Apostoli C, Cannistraci A, Piperno S, David S and
Alessio M: Ceruloplasmin replacement therapy ameliorates
neurological symptoms in a preclinical model of aceruloplasminemia.
EMBO Mol Med. 10:91–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lehmann SG, Bourgoin-Voillard S, Seve M
and Rachidi W: Tubulin beta-3 chain as a new candidate protein
biomarker of human skin aging: A preliminary study. Oxid Med Cell
Longev. 2017:51403602017. View Article : Google Scholar : PubMed/NCBI
|