Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2022 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of glucose metabolism in ocular angiogenesis (Review)

  • Authors:
    • Qing Li
    • Xiao Gui
    • Haorui Zhang
    • Weiye Zhu
    • Rui Zhang
    • Wei Shen
    • Hongyuan Song
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 363
    |
    Published online on: October 21, 2022
       https://doi.org/10.3892/mmr.2022.12880
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glucose metabolism, the major source of energy, plays a crucial role in physiological cell function and the maintenance of homeostasis. Glucose acts as the predominant source of metabolic fuel in the generation of ATP and is involved in biosynthesis and epigenetics. Thus, glucose metabolism maintains a key role in cell function, homeostasis, energy generation, biosynthesis and epigenetics. An increasing number of studies have revealed that glucose metabolism is intricately involved in angiogenesis, with the disruption of angiogenesis contributing to several vascular diseases. Ocular vascular diseases are common ophthalmological disorders, and the prevalence of these disorders is increasing annually. Ocular vascular diseases largely occur from abnormal congenital development or acquired disturbances to the vasculature. Thus, identifying the process of occurrence and development of physiological and pathological angiogenesis is of utmost importance, and this involves understanding the inseparable role of intercellular communications between vascular cells. Although vascular endothelial growth factor (VEGF) is a well‑recognized therapeutic target for the management of ocular vascular diseases, VEGF‑based therapy fails to achieve the desired therapeutic effects in several cases, partly due to drug resistance and non‑compliance. In the present review, current knowledge on the processes and roles of glucose metabolism in governing both physiological and pathological ocular angiogenesis are summarized, highlighting vascular glucose metabolism as a promising strategy for maintaining or restoring the physiological functions of the vasculature, thus potentially ameliorating ocular vascular diseases.
View Figures

Figure 1

Figure 2

View References

1 

Adamis AP, Aiello LP and D'Amato RA: Angiogenesis and ophthalmic disease. Angiogenesis. 3:9–14. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Sun Y and Smith LEH: Retinal vasculature in development and diseases. Annu Rev Vis Sci. 4:101–122. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Selvam S, Kumar T and Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res. 63:1–19. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Theodorou K and Boon RA: Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 6:822018. View Article : Google Scholar : PubMed/NCBI

5 

Geudens I and Gerhardt H: Coordinating cell behaviour during blood vessel formation. Development. 138:4569–4583. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Ebos JM and Kerbel RS: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 8:210–221. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Li X and Carmeliet P: Targeting angiogenic metabolism in disease. Science. 359:1335–1336. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Du W, Ren L, Hamblin MH and Fan Y: Endothelial cell glucose metabolism and angiogenesis. Biomedicines. 9:1472021. View Article : Google Scholar : PubMed/NCBI

9 

Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, Chen W, Zeiher AM, Potente M, Dimmeler S and Boon RA: Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 35:137–145. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Eelen G, de Zeeuw P, Simons M and Carmeliet P: Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 116:1231–1244. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, et al: Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. 12:eaay13712020. View Article : Google Scholar : PubMed/NCBI

12 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, et al: Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 154:651–663. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Krützfeldt A: Metabolism of exogenous substrates by coronary endothelial cells in culture. Journal of Molecular and Cellular Cardiology. 22:1393–1404. 1990. View Article : Google Scholar : PubMed/NCBI

14 

Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger T, et al: FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 529:216–220. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Vizan P, Sanchez-Tena S, Alcarraz-Vizan G, Soler M, Messeguer R, Pujol MD, Lee WN and Cascante M: Characterization of the metabolic changes underlying growth factor angiogenic activation: Identification of new potential therapeutic targets. Carcinogenesis. 30:946–952. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC, Fang JS, Xie Y, Zhu J, Chen Z, De Smet F, et al: FGF-dependent metabolic control of vascular development. Nature. 545:224–228. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW and Carmeliet P: Endothelial Cell Metabolism. Physiol Rev. 98:3–58. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Zhang J, Guo Y, Ge W, Zhou X and Pan M: High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med. 18:621–629. 2019.PubMed/NCBI

19 

Bouche C, Serdy S, Kahn CR and Goldfine AB: The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 25:807–830. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ and Harris WA: Metabolic differentiation in the embryonic retina. Nat Cell Biol. 14:859–864. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Romano AH and Conway T: Evolution of carbohydrate metabolic pathways. Res Microbiol. 147:448–455. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Fan T, Sun G, Sun X, Zhao L, Zhong R and Peng Y: Tumor energy metabolism and potential of 3-Bromopyruvate as an inhibitor of aerobic glycolysis: Implications in tumor treatment. Cancers (Basel). 11:3172019. View Article : Google Scholar : PubMed/NCBI

24 

Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI

25 

DeBerardinis RJ and Cheng T: Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Li X, Kumar A and Carmeliet P: Metabolic pathways fueling the endothelial cell drive. Annu Rev Physiol. 81:483–503. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Groschner LN, Waldeck-Weiermair M, Malli R and Graier WF: Endothelial mitochondria-less respiration, more integration. Pflugers Arch. 464:63–76. 2012. View Article : Google Scholar : PubMed/NCBI

28 

De Bock K, Georgiadou M and Carmeliet P: Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18:634–647. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Wong BW, Marsch E, Treps L, Baes M and Carmeliet P: Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 36:2187–2203. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Guan C, Cen HF, Cui X, Tian DY, Tadesse D and Zhang YW: Proline improves switchgrass growth and development by reduced lignin biosynthesis. Sci Rep. 9:201172019. View Article : Google Scholar : PubMed/NCBI

31 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Thakur C and Chen F: Connections between metabolism and epigenetics in cancers. Semin Cancer Biol. 57:52–58. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Hassell KN: Histone deacetylases and their inhibitors in cancer epigenetics. Diseases. 7:572019. View Article : Google Scholar : PubMed/NCBI

34 

Sharma U and Rando OJ: Metabolic inputs into the epigenome. Cell Metab. 25:544–558. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Racey LA and Byvoet P: Histone acetyltransferase in chromatin. Evidence for in vitro enzymatic transfer of acetate from acetyl-coenzyme A to histones. Exp Cell Res. 64:366–370. 1971. View Article : Google Scholar : PubMed/NCBI

36 

McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW, Li K, Hong CS, Christofk HR, Vogelauer M, Seligson DB and Kurdistani SK: Histone acetylation regulates intracellular pH. Mol Cell. 49:310–321. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Goel A, Mathupala SP and Pedersen PL: Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem. 278:15333–15340. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Provis J: Development of the primate retinal vasculature. Prog Retin Eye Res. 20:799–821. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Gariano R: Cellular mechanisms in retinal vascular development. Prog Retin Eye Res. 22:295–306. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Kolb H, Fernandez E and Nelson R: Webvision: The Organization of the Retina and Visual System [Internet]. University of Utah Health Sciences Center Copyright; Salt Lake City, UT: 1995

41 

Chase J: The evolution of retinal vascularization in mammals. Ophthalmology. 89:1518–1525. 1982. View Article : Google Scholar : PubMed/NCBI

42 

Baba T, McLeod DS, Edwards MM, Merges C, Sen T, Sinha D and Lutty GA: VEGF 165 b in the developing vasculatures of the fetal human eye. Dev Dyn. 241:595–607. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Saint-Geniez M and D'Amore PA: Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 48:1045–1058. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM and Penfold PL: The human hyaloid system: Cell death and vascular regression. Exp Eye Res. 70:767–776. 2000. View Article : Google Scholar : PubMed/NCBI

45 

Gariano RF and Gardner TW: Retinal angiogenesis in development and disease. Nature. 438:960–966. 2005. View Article : Google Scholar : PubMed/NCBI

46 

West H, Richardson WD and Fruttiger M: Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development. 132:1855–1862. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X and Li L: The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 13:291–301. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D and Betsholtz C: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 161:1163–1177. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A and Eichmann A: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 104:3225–3230. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Potente M, Gerhardt H and Carmeliet P: Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Fraisl P, Mazzone M, Schmidt T and Carmeliet P: Regulation of angiogenesis by oxygen and metabolism. Dev Cell. 16:167–179. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, et al: Brain and retinal pericytes: Origin, function and role. Front Cell Neurosci. 10:202016. View Article : Google Scholar : PubMed/NCBI

55 

Gerhardt H and Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314:15–23. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Lindahl P, Johansson BR, Leveen P and Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 277:242–245. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Hellstrom M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H and Betsholtz C: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 153:543–553. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen LA, et al: Inhibition of the Glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 30:968–985. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Rangasamy S, Monickaraj F, Legendre C, Cabrera AP, Llaci L, Bilagody C, McGuire P and Das A: Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy. Exp Eye Res. 195:1080432020. View Article : Google Scholar : PubMed/NCBI

60 

Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB and Bollinger KE: Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci. 55:3375–3384. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Langston PK, Shibata M and Horng T: Metabolism supports macrophage activation. Front Immunol. 8:612017. View Article : Google Scholar : PubMed/NCBI

62 

Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, et al: M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 56:4767–4777. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I and McLeod DS: Development of the human choriocapillaris. Eye (Lond). 24:408–415. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Hasegawa T, McLeod DS, Bhutto IA, Prow T, Merges CA, Grebe R and Lutty GA: The embryonic human choriocapillaris develops by hemo-vasculogenesis. Dev Dyn. 236:2089–2100. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Baba T, Grebe R, Hasegawa T, Bhutto I, Merges C, McLeod DS and Lutty GA: Maturation of the fetal human choriocapillaris. Invest Ophthalmol Vis Sci. 50:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Vitale G, Cozzolino A, Malandrino P, Minotta R, Puliani G, Saronni D, Faggiano A and Colao A: Role of FGF system in neuroendocrine neoplasms: Potential therapeutic applications. Front Endocrinol (Lausanne). 12:6656312021. View Article : Google Scholar : PubMed/NCBI

67 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Van Schaftingen E, Lederer B, Bartrons R and Hers HG: A kinetic study of pyrophosphate: Fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 129:191–195. 1982. View Article : Google Scholar : PubMed/NCBI

69 

Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquière B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J, et al: Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:37–48. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ and Berliner JA: Role of phospholipid oxidation products in atherosclerosis. Circ Res. 111:778–799. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Jyrkkanen HK, Kansanen E, Inkala M, Kivelä AM, Hurttila H, Heinonen SE, Goldsteins G, Jauhiainen S, Tiainen S, Makkonen H, et al: Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ Res. 103:e1–e9. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, et al: NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 46:1124–1138. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R and Mannini L: Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214:249–256. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Guo FX, Hu YW, Zheng L and Wang Q: Shear stress in autophagy and its possible mechanisms in the process of atherosclerosis. DNA Cell Biol. 36:335–346. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Gomez-Escudero J, Clemente C, Garcia-Weber D, Acín-Pérez R, Millán J, Enríquez JA, Bentley K, Carmeliet P and Arroyo AG: PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep. 9:150222019. View Article : Google Scholar : PubMed/NCBI

76 

Kim B, Jang C, Dharaneeswaran H, Li J, Bhide M, Yang S, Li K and Arany Z: Endothelial pyruvate kinase M2 maintains vascular integrity. J Clin Invest. 128:4543–4556. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI

78 

Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al: Role of the GLUT1 glucose transporter in postnatal cns angiogenesis and blood-brain barrier integrity. Circ Res. 127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Yeh WL, Lin CJ and Fu WM: Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol. 73:170–177. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Hellström A, Smith LEH and Dammann O: Retinopathy of prematurity. Lancet. 382:1445–1457. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Hartnett ME and Penn JS: Mechanisms and management of retinopathy of prematurity. N Engl J Med. 367:2515–2526. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Pierce EA, Foley ED and Smith LE: Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol. 114:1219–1228. 1996. View Article : Google Scholar : PubMed/NCBI

84 

Hoppe G, Yoon S, Gopalan B, Savage AR, Brown R, Case K, Vasanji A, Chan ER, Silver RB and Sears JE: Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity. Proc Natl Acad Sci USA. 113:E2516–E2525. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE and Makaroff LE: IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 128:40–50. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Antonetti DA, Klein R and Gardner TW: Diabetic retinopathy. N Engl J Med. 366:1227–1239. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R and D'Amore PA: Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 35:101–111. 1994.PubMed/NCBI

88 

Bai Y, Bai X, Wang Z, Zhang X, Ruan C and Miao J: MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol. 91:471–477. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Xia F, Sun JJ, Jiang YQ and Li CF: MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J Cell Physiol. 234:721–730. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Schoors S, Cantelmo AR, Georgiadou M, Stapor P, Wang X, Quaegebeur A, Cauwenberghs S, Wong BW, Bifari F, Decimo I, et al: Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy? Cell Cycle. 13:16–22. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y, et al: YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 127:3441–3461. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Feng Y, Zou R, Zhang X, Shen M, Chen X, Wang J, Niu W, Yuan Y and Yuan F: YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis. Angiogenesis. 24:489–504. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Chen JF, Eltzschig HK and Fredholm BB: Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov. 12:265–286. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Lutty GA, Merges C and McLeod DS: 5′nucleotidase and adenosine during retinal vasculogenesis and oxygen-induced retinopathy. Investigative Ophthalmol Visual Sci. 41:218–229. 2000.PubMed/NCBI

97 

Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, Gu X, et al: Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun. 8:5842017. View Article : Google Scholar : PubMed/NCBI

98 

Drake CJ and Fleming PA: Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood. 95:1671–1679. 2000. View Article : Google Scholar : PubMed/NCBI

99 

van Lookeren Campagne M, LeCouter J, Yaspan BL and Ye W: Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 232:151–164. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I, Sounni NE, Rozet E, de Tullio P, Foidart JM, et al: Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc. 8:2197–2211. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Draoui N and Feron O: Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. Dis Model Mech. 4:727–732. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Song J, Lee K, Park SW, Chung H, Jung D, Na YR, Quan H, Cho CS, Che JH, Kim JH, et al: Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization. Invest Ophthalmol Vis Sci. 59:3747–3754. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Lambert V, Hansen S, Schoumacher M, Lecomte J, Leenders J, Hubert P, Herfs M, Blacher S, Carnet O, Yip C, et al: Pyruvate dehydrogenase kinase/lactate axis: A therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J Mol Med (Berl). 98:1737–1751. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci. 62:368–379. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A and Matsubara M: Glycolysis in patients with age-related macular degeneration. Open Ophthalmol J. 8:39–47. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Han G, Wei P, He M and Teng H: Glucose metabolic characterization of human aqueous humor in relation to wet age-related macular degeneration. Invest Ophthalmol Vis Sci. 61:492020. View Article : Google Scholar : PubMed/NCBI

107 

Joyal JS, Gantner ML and Smith LEH: Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res. 64:131–156. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Vidal E, Lalarme E, Maire MA, Febvret V, Grégoire S, Gambert S, Acar N and Bretillon L: Early impairments in the retina of rats fed with high fructose/high fat diet are associated with glucose metabolism deregulation but not dyslipidaemia. Sci Rep. 9:59972019. View Article : Google Scholar : PubMed/NCBI

109 

Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhon Y, Zeng J, Zhu L, Du S, Wang Z, et al: Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res. 213:1088232021. View Article : Google Scholar : PubMed/NCBI

110 

Nicholas MP and Mysore N: Corneal neovascularization. Exp Eye Res. 202:1083632021. View Article : Google Scholar : PubMed/NCBI

111 

Clements JL and Dana R: Inflammatory corneal neovascularization: Etiopathogenesis. Semin Ophthalmol. 26:235–245. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Yang W, Yang Y, Wan S, Xu Y, Li J, Zhang L, Guo W, Zheng Y, Xiang Y and Xing Y: Exploring the mechanism of the miRNA-145/paxillin axis in cell metabolism during VEGF-A-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 62:252021. View Article : Google Scholar

113 

Liu G, Chen L, Cai Q, Wu H, Chen Z, Zhang X and Lu P: Streptozotocin induced diabetic mice exhibit reduced experimental choroidal neovascularization but not corneal neovascularization. Mol Med Rep. 18:4388–4398. 2018.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Q, Gui X, Zhang H, Zhu W, Zhang R, Shen W and Song H: Role of glucose metabolism in ocular angiogenesis (Review). Mol Med Rep 26: 363, 2022.
APA
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., & Song, H. (2022). Role of glucose metabolism in ocular angiogenesis (Review). Molecular Medicine Reports, 26, 363. https://doi.org/10.3892/mmr.2022.12880
MLA
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., Song, H."Role of glucose metabolism in ocular angiogenesis (Review)". Molecular Medicine Reports 26.6 (2022): 363.
Chicago
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., Song, H."Role of glucose metabolism in ocular angiogenesis (Review)". Molecular Medicine Reports 26, no. 6 (2022): 363. https://doi.org/10.3892/mmr.2022.12880
Copy and paste a formatted citation
x
Spandidos Publications style
Li Q, Gui X, Zhang H, Zhu W, Zhang R, Shen W and Song H: Role of glucose metabolism in ocular angiogenesis (Review). Mol Med Rep 26: 363, 2022.
APA
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., & Song, H. (2022). Role of glucose metabolism in ocular angiogenesis (Review). Molecular Medicine Reports, 26, 363. https://doi.org/10.3892/mmr.2022.12880
MLA
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., Song, H."Role of glucose metabolism in ocular angiogenesis (Review)". Molecular Medicine Reports 26.6 (2022): 363.
Chicago
Li, Q., Gui, X., Zhang, H., Zhu, W., Zhang, R., Shen, W., Song, H."Role of glucose metabolism in ocular angiogenesis (Review)". Molecular Medicine Reports 26, no. 6 (2022): 363. https://doi.org/10.3892/mmr.2022.12880
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team