|
1
|
Del Rio-Tsonis K and Tsonis PA: Eye
regeneration at the molecular age. Dev Dyn. 226:211–224. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gurdon JB: The developmental capacity of
nuclei taken from intestinal epithelium cells of feeding tadpoles.
J Embryol Exp Morphol. 10:622–640. 1962.PubMed/NCBI
|
|
3
|
Worley MI, Setiawan L and Hariharan IK:
Regeneration and transdetermination in Drosophila imaginal discs.
Annu Rev Genet. 46:289–310. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gurdon JB: Adult frogs derived from the
nuclei of single somatic cells. Dev Biol. 4:256–273. 1962.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Davis RL, Weintraub H and Lassar AB:
Expression of a single transfected cDNA converts fibroblasts to
myoblasts. Cell. 51:987–1000. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yamanaka S and Blau HM: Nuclear
reprogramming to a pluripotent state by three approaches. Nature.
465:704–712. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sisakhtnezhad S and Matin MM:
Transdifferentiation: A cell and molecular reprogramming process.
Cell Tissue Res. 348:379–396. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jopling C, Boue S and Izpisua Belmonte JC:
Dedifferentiation, transdifferentiation and reprogramming: Three
routes to regeneration. Nat Rev Mol Cell Biol. 12:79–89. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yao and Wang C: Dedifferentiation:
Inspiration for devising engineering strategies for regenerative
medicine. NPJ Regen Med. 5:142020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brawley C and Matunis E: Regeneration of
male germline stem cells by spermatogonial dedifferentiation in
vivo. Science. 304:1331–1334. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kai T and Spradling A: Differentiating
germ cells can revert into functional stem cells in Drosophila
melanogaster ovaries. Nature. 428:564–569. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kragl M, Knapp D, Nacu E, Khattak S, Maden
M, Epperlein HH and Tanaka EM: Cells keep a memory of their tissue
origin during axolotl limb regeneration. Nature. 460:60–65. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Blanpain C and Fuchs E: Stem cell
plasticity. Plasticity of epithelial stem cells in tissue
regeneration. Science. 344:12422812014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
van Es JH, Sato T, van de Wetering M,
Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van
den Born M, Korving J, et al: Dll1+ secretory progenitor cells
revert to stem cells upon crypt damage. Nat Cell Biol.
14:1099–1104. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tata PR, Mou H, Pardo-Saganta A, Zhao R,
Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, et al:
Dedifferentiation of committed epithelial cells into stem cells in
vivo. Nature. 503:218–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brockes JP and Kumar A: Plasticity and
reprogramming of differentiated cells in amphibian regeneration.
Nat Rev Mol Cell Biol. 3:566–574. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Donati G, Rognoni E, Hiratsuka T,
Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K,
Mulder KW, et al: Wounding induces dedifferentiation of epidermal
Gata6+ cells and acquisition of stem cell properties.
Nat Cell Biol. 19:603–613. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Stange DE, Koo BK, Huch M, Sibbel G, Basak
O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, et al:
Differentiated Troy+ chief cells act as reserve stem cells to
generate all lineages of the stomach epithelium. Cell. 155:357–368.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Painter MW, Brosius Lutz A, Cheng YC,
Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ, Zhang AX,
Wagers AJ, et al: Diminished Schwann cell repair responses underlie
age-associated impaired axonal regeneration. Neuron. 83:331–343.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Buczacki SJ, Zecchini HI, Nicholson AM,
Russell R, Vermeulen L, Kemp R and Winton DJ: Intestinal
label-retaining cells are secretory precursors expressing Lgr5.
Nature. 495:65–69. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tian H, Biehs B, Warming S, Leong KG,
Rangell L, Klein OD and de Sauvage FJ: A reserve stem cell
population in small intestine renders Lgr5-positive cells
dispensable. Nature. 478:255–259. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Leushacke M, Tan SH, Wong A, Swathi Y,
Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K and
Barker N: Lgr5-expressing chief cells drive epithelial regeneration
and cancer in the oxyntic stomach. Nat Cell Biol. 19:774–786. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tulina N and Matunis E: Control of stem
cell self-renewal in Drosophila spermatogenesis by JAK-STAT
signaling. Science. 294:2546–2549. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kiger AA, Jones DL, Schulz C, Rogers MB
and Fuller MT: Stem cell self-renewal specified by JAK-STAT
activation in response to a support cell cue. Science.
294:2542–2545. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sheng XR, Brawley CM and Matunis EL:
Dedifferentiating spermatogonia outcompete somatic stem cells for
niche occupancy in the Drosophila testis. Cell Stem Cell.
5:191–203. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hameed LS, Berg DA, Belnoue L, Jensen LD,
Cao Y and Simon A: Environmental changes in oxygen tension reveal
ROS-dependent neurogenesis and regeneration in the adult newt
brain. Elife. 4:e084222015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
D'Ignazio L, Batie M and Rocha S: Hypoxia
and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines.
5:212017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mohyeldin A, Garzon-Muvdi T and
Quinones-Hinojosa A: Oxygen in stem cell biology: A critical
component of the stem cell niche. Cell Stem Cell. 7:150–161. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Arthur SA, Blaydes JP and Houghton FD:
Glycolysis regulates human embryonic stem cell self-renewal under
hypoxia through HIF-2α and the glycolytic sensors CTBPs. Stem Cell
Reports. 12:728–742. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Forristal CE, Wright KL, Hanley NA, Oreffo
RO and Houghton FD: Hypoxia inducible factors regulate pluripotency
and proliferation in human embryonic stem cells cultured at reduced
oxygen tensions. Reproduction. 139:85–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yoshida Y, Takahashi K, Okita K, Ichisaka
T and Yamanaka S: Hypoxia enhances the generation of induced
pluripotent stem cells. Cell Stem Cell. 5:237–241. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jopling C, Sune G, Faucherre A, Fabregat C
and Izpisua Belmonte JC: Hypoxia induces myocardial regeneration in
zebrafish. Circulation. 126:3017–3027. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mu X, Xiang G, Rathbone CR, Pan H, Bellayr
IH, Walters TJ and Li Y: Slow-adhering stem cells derived from
injured skeletal muscle have improved regenerative capacity. Am J
Pathol. 179:931–941. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vojnits K, Pan H, Mu X and Li Y:
Characterization of an injury induced population of muscle-derived
stem cell-like cells. Sci Rep. 5:173552015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vojnits K, Pan H, Dai X, Sun H, Tong Q,
Darabi R, Huard J and Li Y: Functional neuronal differentiation of
injury-induced muscle-derived stem cell-like cells with therapeutic
implications. Sci Rep. 7:11772017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tatebayashi K, Tanaka Y, Nakano-Doi A,
Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T,
Yoshimura S, et al: Identification of multipotent stem cells in
human brain tissue following stroke. Stem Cells Dev. 26:787–797.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liao YJ, Gao JH, Jiang P and Lu F: Effect
of hypoxia on dedifferentiation of mature adipocytes: An
experimental study. Nan Fang Yi Ke Da Xue Xue Bao. 28:339–342.
2008.(In Chinese). PubMed/NCBI
|
|
38
|
Schmidt-Ott KM, Xu AD, Tuschick S,
Liefeldt L, Kresse W, Verkhratsky A, Kettenmann H and Paul M:
Hypoxia reverses dibutyryl-cAMP-induced stellation of cultured
astrocytes via activation of the endothelin system. FASEB J.
15:1227–1229. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sahai A, Mei C, Schrier RW and Tannen RL:
Mechanisms of chronic hypoxia-induced renal cell growth. Kidney
Int. 56:1277–1281. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kierans SJ and Taylor CT: Regulation of
glycolysis by the hypoxia-inducible factor (HIF): Implications for
cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kondoh H, Lleonart ME, Nakashima Y, Yokode
M, Tanaka M, Bernard D, Gil J and Beach D: A high glycolytic flux
supports the proliferative potential of murine embryonic stem
cells. Antioxid Redox Signal. 9:293–299. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Folmes CD, Nelson TJ, Martinez-Fernandez
A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C and
Terzic A: Somatic oxidative bioenergetics transitions into
pluripotency-dependent glycolysis to facilitate nuclear
reprogramming. Cell Metab. 14:264–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nombela-Arrieta C, Pivarnik G, Winkel B,
Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A and
Silberstein LE: Quantitative imaging of haematopoietic stem and
progenitor cell localization and hypoxic status in the bone marrow
microenvironment. Nat Cell Biol. 15:533–543. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Takubo K, Nagamatsu G, Kobayashi CI,
Nakamura-Ishizu A, Kobayashi H, Ikeda E, Goda N, Rahimi Y, Johnson
RS, Soga T, et al: Regulation of glycolysis by Pdk functions as a
metabolic checkpoint for cell cycle quiescence in hematopoietic
stem cells. Cell Stem Cell. 12:49–61. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Warr MR and Passegue E: Metabolic makeover
for HSCs. Cell Stem Cell. 12:1–3. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lima A, Burgstaller J, Sanchez-Nieto JM
and Rodriguez TA: The mitochondria and the regulation of cell
fitness during early mammalian development. Curr Top Dev Biol.
128:339–363. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen CT, Shih YR, Kuo TK, Lee OK and Wei
YH: Coordinated changes of mitochondrial biogenesis and antioxidant
enzymes during osteogenic differentiation of human mesenchymal stem
cells. Stem Cells. 26:960–968. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pattappa G, Thorpe SD, Jegard NC, Heywood
HK, de Bruijn JD and Lee DA: Continuous and uninterrupted oxygen
tension influences the colony formation and oxidative metabolism of
human mesenchymal stem cells. Tissue Eng Part C Methods. 19:68–79.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Scott CA, Carney TJ and Amaya E: Aerobic
glycolysis is important for zebrafish larval wound closure and tail
regeneration. Wound Repair Regen. Sep 23–2022.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sinclair JW, Hoying DR, Bresciani E,
Nogare DD, Needle CD, Wu W, Bishop K, Elkahloun AG, Chitnis AB, Liu
PP, et al: A metabolic shift to glycolysis promotes zebrafish tail
regeneration through TGF-β dependent dedifferentiation of notochord
cells to form the blastema. bioRxiv. Mar 20–2020.(Epub ahead of
print). PubMed/NCBI
|
|
51
|
Fukuda R, Marin-Juez R, El-Sammak H,
Beisaw A, Ramadass R, Kuenne C, Guenther S, Konzer A, Bhagwat AM,
Graumann J and Stainier DY: Stimulation of glycolysis promotes
cardiomyocyte proliferation after injury in adult zebrafish. EMBO
Rep. 21:e497522020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Naviaux RK, Le TP, Bedelbaeva K,
Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L and
Heber-Katz E: Retained features of embryonic metabolism in the
adult MRL mouse. Mol Genet Metab. 96:133–144. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sinha KM, Tseng C, Guo P, Lu A, Pan H, Gao
X, Andrews R, Eltzschig H and Huard J: Hypoxia-inducible factor 1α
(HIF-1α) is a major determinant in the enhanced function of
muscle-derived progenitors from MRL/MpJ mice. FASEB J.
33:8321–8334. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang Y, Strehin I, Bedelbaeva K,
Gourevitch D, Clark L, Leferovich J, Messersmith PB and Heber-Katz
E: Drug-induced regeneration in adult mice. Sci Transl Med.
7:290ra2922015. View Article : Google Scholar
|
|
55
|
Pennock R, Bray E, Pryor P, James S,
McKeegan P, Sturmey R and Genever P: Human cell dedifferentiation
in mesenchymal condensates through controlled autophagy. Sci Rep.
5:131132015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Varum S, Rodrigues AS, Moura MB,
Momcilovic O, Easley CA IV, Ramalho-Santos J, Van Houten B and
Schatten G: Energy metabolism in human pluripotent stem cells and
their differentiated counterparts. PLoS One. 6:e209142011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schreml S, Szeimies RM, Prantl L, Karrer
S, Landthaler M and Babilas P: Oxygen in acute and chronic wound
healing. Br J Dermatol. 163:257–268. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hong WX, Hu MS, Esquivel M, Liang GY,
Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP
and Longaker MT: The role of hypoxia-inducible factor in wound
healing. Adv Wound Care (New Rochelle). 3:390–399. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Baatar D, Jones MK, Tsugawa K, Pai R, Moon
WS, Koh GY, Kim I, Kitano S and Tarnawski AS: Esophageal ulceration
triggers expression of hypoxia-inducible factor-1 alpha and
activates vascular endothelial growth factor gene: Implications for
angiogenesis and ulcer healing. Am J Pathol. 161:1449–1457. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Elson DA, Ryan HE, Snow JW, Johnson R and
Arbeit JM: Coordinate up-regulation of hypoxia inducible factor
(HIF)-1alpha and HIF-1 target genes during multi-stage epidermal
carcinogenesis and wound healing. Cancer Res. 60:6189–6195.
2000.PubMed/NCBI
|
|
61
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Muz B, de la Puente P, Azab F and Azab AK:
The role of hypoxia in cancer progression, angiogenesis,
metastasis, and resistance to therapy. Hypoxia (Auckl). 3:83–92.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jiang B: Aerobic glycolysis and high level
of lactate in cancer metabolism and microenvironment. Genes Dis.
4:25–27. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wyld L, Bellantuono I, Tchkonia T, Morgan
J, Turner O, Foss F, George J, Danson S and Kirkland JL: Senescence
and cancer: A review of clinical implications of senescence and
senotherapies. Cancers (Basel). 12:21342020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lasry A and Ben-Neriah Y:
Senescence-associated inflammatory responses: Aging and cancer
perspectives. Trends Immunol. 36:217–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Munoz-Espin D and Serrano M: Cellular
senescence: From physiology to pathology. Nat Rev Mol Cell Biol.
15:482–496. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tchkonia T, Zhu Y, van Deursen J, Campisi
J and Kirkland JL: Cellular senescence and the senescent secretory
phenotype: Therapeutic opportunities. J Clin Invest. 123:966–972.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Watanabe S, Kawamoto S, Ohtani N and Hara
E: Impact of senescence-associated secretory phenotype and its
potential as a therapeutic target for senescence-associated
diseases. Cancer Sci. 108:563–569. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schmitt CA, Fridman JS, Yang M, Lee S,
Baranov E, Hoffman RM and Lowe SW: A senescence program controlled
by p53 and p16INK4a contributes to the outcome of cancer therapy.
Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Coppe JP, Patil CK, Rodier F, Sun Y, Muñoz
DP, Goldstein J, Nelson PS, Desprez PY and Campisi J:
Senescence-associated secretory phenotypes reveal
cell-nonautonomous functions of oncogenic RAS and the p53 tumor
suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Campisi J: Aging, cellular senescence, and
cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chiche A, Le Roux I, von Joest M, Sakai H,
Aguín SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, et al:
Injury-Induced senescence enables in vivo reprogramming in skeletal
muscle. Cell Stem Cell. 20:407–414. e42017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mosteiro L, Pantoja C, Alcazar N, Marión
RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Muñoz-Martin M,
Blanco-Aparicio C, Pastor J, et al: Tissue damage and senescence
provide critical signals for cellular reprogramming in vivo.
Science. 354:aaf44452016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Taguchi J and Yamada Y: Unveiling the role
of senescence-induced cellular plasticity. Cell Stem Cell.
20:293–294. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Feng T, Meng J, Kou S, Jiang Z, Huang X,
Lu Z, Zhao H, Lau LF, Zhou B and Zhang H: CCN1-Induced cellular
senescence promotes heart regeneration. Circulation. 139:2495–2498.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sarig R, Rimmer R, Bassat E, Zhang L,
Umansky KB, Lendengolts D, Perlmoter G, Yaniv K and Tzahor E:
Transient p53-mediated regenerative senescence in the injured
heart. Circulation. 139:2491–2494. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Heinrich C, Spagnoli FM and Berninger B:
In vivo reprogramming for tissue repair. Nat Cell Biol. 17:204–211.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ritschka B, Storer M, Mas A, Heinzmann F,
Ortells MC, Morton JP, Sansom OJ, Zender L and Keyes WM: The
senescence-associated secretory phenotype induces cellular
plasticity and tissue regeneration. Genes Dev. 31:172–183. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Munoz-Espin D, Canamero M, Maraver A,
Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A,
Varela-Nieto I, Ruberte J, Collado M and Serrano M: Programmed cell
senescence during mammalian embryonic development. Cell.
155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Storer M, Mas A, Robert-Moreno A, Pecoraro
M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V,
Sharpe J and Keyes WM: Senescence is a developmental mechanism that
contributes to embryonic growth and patterning. Cell.
155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hanna J, Guerra-Moreno A, Ang J and
Micoogullari Y: Protein degradation and the pathologic basis of
disease. Am J Pathol. 189:94–103. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cooke JP, Sayed N, Lee J and Wong WT:
Innate immunity and epigenetic plasticity in cellular
reprogramming. Curr Opin Genet Dev. 28:89–91. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lee J, Sayed N, Hunter A, Au KF, Wong WH,
Mocarski ES, Pera RR, Yakubov E and Cooke JP: Activation of innate
immunity is required for efficient nuclear reprogramming. Cell.
151:547–558. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
King MW, Neff AW and Mescher AL: The
developing Xenopus limb as a model for studies on the balance
between inflammation and regeneration. Anat Rec (Hoboken).
295:1552–1561. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cavaillon JM: Pro-versus anti-inflammatory
cytokines: Myth or reality. Cell Mol Biol (Noisy-le-grand).
47:695–702. 2001.PubMed/NCBI
|
|
86
|
Lennartsson J and Ronnstrand L: Stem cell
factor receptor/c-Kit: From basic science to clinical implications.
Physiol Rev. 92:1619–1649. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Schmitt M, Schewe M, Sacchetti A, Feijtel
D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen
ME, van de Werken HJG, et al: Paneth cells respond to inflammation
and contribute to tissue regeneration by acquiring stem-like
features through SCF/c-Kit Signaling. Cell Rep. 24:2312–2328.
e72018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Soria-Valles C, Osorio FG,
Gutierrez-Fernandez A, De Los Angeles A, Bueno C, Menéndez P,
Martín-Subero JI, Daley GQ, Freije JM and López-Otín C: NF-κB
activation impairs somatic cell reprogramming in ageing. Nat Cell
Biol. 17:1004–1013. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Soria-Valles C, Osorio FG and Lopez-Otin
C: Reprogramming aging through DOT1L inhibition. Cell Cycle.
14:3345–3346. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gabel S, Koncina E, Dorban G, Heurtaux T,
Birck C, Glaab E, Michelucci A, Heuschling P and Grandbarbe L:
Inflammation promotes a conversion of astrocytes into neural
progenitor cells via NF-κB activation. Mol Neurobiol. 53:5041–5055.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Schwitalla S, Fingerle AA, Cammareri P,
Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ,
Moreaux G, et al: Intestinal tumorigenesis initiated by
dedifferentiation and acquisition of stem-cell-like properties.
Cell. 152:25–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Murtaugh LC and Keefe MD: Regeneration and
repair of the exocrine pancreas. Annu Rev Physiol. 77:229–249.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
O'Neill LA: ‘Transflammation’: When innate
immunity meets induced pluripotency. Cell. 151:471–473. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jiang B and Liao R: The paradoxical role
of inflammation in cardiac repair and regeneration. J Cardiovasc
Transl Res. 3:410–416. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cooke JP: Inflammation and its role in
regeneration and repair. Circ Res. 124:1166–1168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mescher AL, Neff AW and King MW: Changes
in the inflammatory response to injury and its resolution during
the loss of regenerative capacity in developing Xenopus limbs. PLoS
One. 8:e804772013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Pietras EM, Mirantes-Barbeito C, Fong S,
Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP,
Techner JM, Will B, et al: Chronic interleukin-1 exposure drives
haematopoietic stem cells towards precocious myeloid
differentiation at the expense of self-renewal. Nat Cell Biol.
18:607–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ben-Neriah Y and Karin M: Inflammation
meets cancer, with NF-κB as the matchmaker. Nat Immunol.
12:715–723. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Balkwill FR and Mantovani A:
Cancer-related inflammation: Common themes and therapeutic
opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Fedorova E and Zink D: Nuclear
architecture and gene regulation. Biochim Biophys Acta.
1783:2174–2184. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Boland MJ, Nazor KL and Loring JF:
Epigenetic regulation of pluripotency and differentiation. Circ
Res. 115:311–324. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wu H and Sun YE: Epigenetic regulation of
stem cell differentiation. Pediatr Res. 59:21R–25R. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nakamura K, Maki N, Trinh A, Trask HW, Gui
J, Tomlinson CR and Tsonis PA: miRNAs in newt lens regeneration:
Specific control of proliferation and evidence for miRNA
networking. PLoS One. 5:e120582010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Powell C, Grant AR, Cornblath E and
Goldman D: Analysis of DNA methylation reveals a partial
reprogramming of the Muller glia genome during retina regeneration.
Proc Natl Acad Sci USA. 110:19814–19819. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Oliveri RS: Epigenetic dedifferentiation
of somatic cells into pluripotency: Cellular alchemy in the age of
regenerative medicine? Regen Med. 2:795–816. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ramachandran R, Fausett BV and Goldman D:
Ascl1a regulates Muller glia dedifferentiation and retinal
regeneration through a Lin-28-dependent, let-7 microRNA signalling
pathway. Nat Cell Biol. 12:1101–1107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Reyes-Aguirre LI and Lamas M: Oct4
Methylation-Mediated silencing as an epigenetic barrier preventing
muller glia dedifferentiation in a murine model of retinal injury.
Front Neurosci. 10:5232016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jadhav U, Saxena M, O'Neill NK, Saadatpour
A, Yuan GC, Herbert Z, Murata K and Shivdasani RA: Dynamic
reorganization of chromatin accessibility signatures during
dedifferentiation of secretory precursors into Lgr5+ Intestinal
stem cells. Cell Stem Cell. 21:65–77. e52017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li W, Yang L, He Q, Hu C, Zhu L, Ma X, Ma
X, Bao S, Li L, Chen Y, et al: A homeostatic arid1a-dependent
permissive chromatin state licenses hepatocyte responsiveness to
liver-injury-associated YAP signaling. Cell Stem Cell. 25:54–68.
e552019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Adilakshmi T, Sudol I and Tapinos N:
Combinatorial action of miRNAs regulates transcriptional and
post-transcriptional gene silencing following in vivo PNS injury.
PLoS One. 7:e396742012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yun MH, Gates PB and Brockes JP:
Regulation of p53 is critical for vertebrate limb regeneration.
Proc Natl Acad Sci USA. 110:17392–17397. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yi L, Lu C, Hu W, Sun Y and Levine AJ:
Multiple roles of p53-related pathways in somatic cell
reprogramming and stem cell differentiation. Cancer Res.
72:5635–5645. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
He J, Zhou Y, Qian C, Wang D, Yang Z,
Huang Z, Sun J, Ni R, Yang Q, Chen J and Luo L: DNA methylation
maintenance at the p53 locus initiates biliary-mediated liver
regeneration. NPJ Regen Med. 7:212022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Nemenoff RA, Simpson PA, Furgeson SB,
Kaplan-Albuquerque N, Crossno J, Garl PJ, Cooper J and Weiser-Evans
MC: Targeted deletion of PTEN in smooth muscle cells results in
vascular remodeling and recruitment of progenitor cells through
induction of stromal cell-derived factor-1alpha. Circ Res.
102:1036–1045. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Strand KA, Lu S, Mutryn MF, Li L, Zhou Q,
Enyart BT, Jolly AJ, Dubner AM, Moulton KS, Nemenoff RA, et al:
High throughput screen identifies the DNMT1 (DNA
Methyltransferase-1) Inhibitor, 5-Azacytidine, as a potent inducer
of PTEN (Phosphatase and Tensin Homolog): Central role for PTEN in
5-Azacytidine protection against pathological vascular remodeling.
Arterioscler Thromb Vasc Biol. 40:1854–1869. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang S, Zhang C, Hasson D, Desai A,
SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E and
Sadler KC: Epigenetic compensation promotes liver regeneration. Dev
Cell. 50:43–56. e62019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chuong EB, Elde NC and Feschotte C:
Regulatory activities of transposable elements: From conflicts to
benefits. Nat Rev Genet. 18:71–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tosh D and Slack JM: How cells change
their phenotype. Nat Rev Mol Cell Biol. 3:187–194. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Corbett JL and Tosh D: Conversion of one
cell type into another: Implications for understanding organ
development, pathogenesis of cancer and generating cells for
therapy. Biochem Soc Trans. 42:609–616. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Abollo-Jimenez F, Jimenez R and Cobaleda
C: Physiological cellular reprogramming and cancer. Semin Cancer
Biol. 20:98–106. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Villanueva A, Alsinet C, Yanger K, Hoshida
Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Solé M, Thung S,
Stanger BZ and Llovet JM: Notch signaling is activated in human
hepatocellular carcinoma and induces tumor formation in mice.
Gastroenterology. 143:1660–1669. e72012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Fan B, Malato Y, Calvisi DF, Naqvi S,
Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X
and Willenbring H: Cholangiocarcinomas can originate from
hepatocytes in mice. J Clin Invest. 122:2911–2915. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Cobaleda C, Jochum W and Busslinger M:
Conversion of mature B cells into T cells by dedifferentiation to
uncommitted progenitors. Nature. 449:473–477. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Liu C, Sage JC, Miller MR, Verhaak RG,
Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L
and Zong H: Mosaic analysis with double markers reveals tumor cell
of origin in glioma. Cell. 146:209–221. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Friedmann-Morvinski D, Bushong EA, Ke E,
Soda Y, Marumoto T, Singer O, Ellisman MH and Verma IM:
Dedifferentiation of neurons and astrocytes by oncogenes can induce
gliomas in mice. Science. 338:1080–1084. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Yamada Y, Haga H and Yamada Y: Concise
review: Dedifferentiation meets cancer development: Proof of
concept for epigenetic cancer. Stem Cells Transl Med. 3:1182–1187.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Rausch T, Jones DT, Zapatka M, Stütz AM,
Zichner T, Weischenfeldt J, Jäger N, Remke M, Shih D, Northcott PA,
et al: Genome sequencing of pediatric medulloblastoma links
catastrophic DNA rearrangements with TP53 mutations. Cell.
148:59–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Molenaar JJ, Koster J, Zwijnenburg DA, van
Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J,
Westerman BA, van Arkel J, et al: Sequencing of neuroblastoma
identifies chromothripsis and defects in neuritogenesis genes.
Nature. 483:589–593. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lee RS, Stewart C, Carter SL, Ambrogio L,
Cibulskis K, Sougnez C, Lawrence MS, Auclair D, Mora J, Golub TR,
et al: A remarkably simple genome underlies highly malignant
pediatric rhabdoid cancers. J Clin Invest. 122:2983–2988. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yamada Y and Yamada Y: The causal
relationship between epigenetic abnormality and cancer development:
In vivo reprogramming and its future application. Proc Jpn Acad Ser
B Phys Biol Sci. 94:235–247. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Rao CV, Cooma I, Rodriguez JG, Simi B,
El-Bayoumy K and Reddy BS: Chemoprevention of familial adenomatous
polyposis development in the APC(min) mouse model by 1,4-phenylene
bis(methylene)selenocyanate. Carcinogenesis. 21:617–621. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Yamada Y, Hata K, Hirose Y, Hara A, Sugie
S, Kuno T, Yoshimi N, Tanaka T and Mori H: Microadenomatous lesions
involving loss of Apc heterozygosity in the colon of adult
Apc(Min/+) mice. Cancer Res. 62:6367–6370. 2002.PubMed/NCBI
|
|
135
|
Yamada Y and Mori H: Pre-cancerous lesions
for colorectal cancers in rodents: A new concept. Carcinogenesis.
24:1015–1019. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Moser AR, Pitot HC and Dove WF: A dominant
mutation that predisposes to multiple intestinal neoplasia in the
mouse. Science. 247:322–324. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yamada Y, Jackson-Grusby L, Linhart H,
Meissner A, Eden A, Lin H and Jaenisch R: Opposing effects of DNA
hypomethylation on intestinal and liver carcinogenesis. Proc Natl
Acad Sci USA. 102:13580–13585. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lin H, Yamada Y, Nguyen S, Linhart H,
Jackson-Grusby L, Meissner A, Meletis K, Lo G and Jaenisch R:
Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell
Biol. 26:2976–2983. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Linhart HG, Lin H, Yamada Y, Moran E,
Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, et al: Dnmt3b
promotes tumorigenesis in vivo by gene-specific de novo methylation
and transcriptional silencing. Genes Dev. 21:3110–3122. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hatano Y, Semi K, Hashimoto K, Lee MS,
Hirata A, Tomita H, Kuno T, Takamatsu M, Aoki K, Taketo MM, et al:
Reducing DNA methylation suppresses colon carcinogenesis by
inducing tumor cell differentiation. Carcinogenesis. 36:719–729.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Khoshchehreh R, Totonchi M, Carlos Ramirez
J, Torres R, Baharvand H, Aicher A, Ebrahimi M and Heeschen C:
Epigenetic reprogramming of primary pancreatic cancer cells
counteracts their in vivo tumourigenicity. Oncogene. 38:6226–6239.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Rothwell PM, Fowkes FG, Belch JF, Ogawa H,
Warlow CP and Meade TW: Effect of daily aspirin on long-term risk
of death due to cancer: Analysis of individual patient data from
randomised trials. Lancet. 377:31–41. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Fraser DM, Sullivan FM, Thompson AM and
McCowan C: Aspirin use and survival after the diagnosis of breast
cancer: A population-based cohort study. Br J Cancer. 111:623–627.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Streicher SA, Yu H, Lu L, Kidd MS and
Risch HA: Case-control study of aspirin use and risk of pancreatic
cancer. Cancer Epidemiol Biomarkers Prev. 23:1254–1263. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Close JL, Liu J, Gumuscu B and Reh TA:
Epidermal growth factor receptor expression regulates proliferation
in the postnatal rat retina. Glia. 54:94–104. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Karl MO, Hayes S, Nelson BR, Tan K,
Buckingham B and Reh TA: Stimulation of neural regeneration in the
mouse retina. Proc Natl Acad Sci USA. 105:19508–19513. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Takeda M, Takamiya A, Jiao JW, Cho KS,
Trevino SG, Matsuda T and Chen DF: alpha-Aminoadipate induces
progenitor cell properties of Muller glia in adult mice. Invest
Ophthalmol Vis Sci. 49:1142–1150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Osakada F, Ooto S, Akagi T, Mandai M,
Akaike A and Takahashi M: Wnt signaling promotes regeneration in
the retina of adult mammals. J Neurosci. 27:4210–4219. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Zhou Q, Brown J, Kanarek A, Rajagopal J
and Melton DA: In vivo reprogramming of adult pancreatic exocrine
cells to beta-cells. Nature. 455:627–632. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Qian L, Huang Y, Spencer CI, Foley A,
Vedantham V, Liu L, Conway SJ, Fu JD and Srivastava D: In vivo
reprogramming of murine cardiac fibroblasts into induced
cardiomyocytes. Nature. 485:593–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Kurita M, Araoka T, Hishida T, O'Keefe DD,
Takahashi Y, Sakamoto A, Sakurai M, Suzuki K, Wu J, Yamamoto M, et
al: In vivo reprogramming of wound-resident cells generates skin
epithelial tissue. Nature. 561:243–247. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Wang G, Badylak SF, Heber-Katz E, Braunhut
SJ and Gudas LJ: The effects of DNA methyltransferase inhibitors
and histone deacetylase inhibitors on digit regeneration in mice.
Regen Med. 5:201–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Ma X, Kong L and Zhu S: Reprogramming cell
fates by small molecules. Protein Cell. 8:328–348. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Tang Y and Cheng L: Cocktail of chemical
compounds robustly promoting cell reprogramming protects liver
against acute injury. Protein Cell. 8:273–283. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Niu W, Zang T, Zou Y, Fang S, Smith DK,
Bachoo R and Zhang CL: In vivo reprogramming of astrocytes to
neuroblasts in the adult brain. Nat Cell Biol. 15:1164–1175. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Guan J, Wang G, Wang J, Zhang J, Fu Y,
Cheng L, Meng G, Lyu Y, Zhu J, Li Y, et al: Chemical reprogramming
of human somatic cells to pluripotent stem cells. Nature.
605:325–331. 2022. View Article : Google Scholar : PubMed/NCBI
|