Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2022 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review)

  • Authors:
    • Yanjie Guo
    • Weini Wu
    • Xueyi Yang
    • Xiaobing Fu
  • View Affiliations / Copyright

    Affiliations: Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China, Research Center for Tissue Repair and Regeneration Affiliated to The Medical Innovation Research Department, PLA General Hospital, Beijing 100048, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 369
    |
    Published online on: October 31, 2022
       https://doi.org/10.3892/mmr.2022.12886
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Accumulating evidence has shown that cell dedifferentiation or reprogramming is a pivotal procedure for animals to deal with injury and promote endogenous tissue repair. Tissue damage is a critical factor that triggers cell dedifferentiation or reprogramming in vivo. By contrast, microenvironmental changes, including the loss of stem cells, hypoxia, cell senescence, inflammation and immunity, caused by tissue damage can return cells to an unstable state. If the wound persists in the long‑term due to chronic damage, then dedifferentiation or reprogramming of the surrounding cells may lead to carcinogenesis. In recent years, extensive research has been performed investigating cell dedifferentiation or reprogramming in vivo, which can have significant implications for wound repair, treatment and prevention of cancer in the future. The current review summarizes the molecular events that are known to drive cell dedifferentiation directly following tissue injury and the effects of epigenetic modification on dedifferentiation or reprogramming in vivo. In addition, the present review explores the intracellular mechanism of endogenous tissue repair and its relationship with cancer, which is essential for balancing the risk between tissue repair and malignant transformation after injury.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Del Rio-Tsonis K and Tsonis PA: Eye regeneration at the molecular age. Dev Dyn. 226:211–224. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Gurdon JB: The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 10:622–640. 1962.PubMed/NCBI

3 

Worley MI, Setiawan L and Hariharan IK: Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet. 46:289–310. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Gurdon JB: Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 4:256–273. 1962. View Article : Google Scholar : PubMed/NCBI

5 

Davis RL, Weintraub H and Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 51:987–1000. 1987. View Article : Google Scholar : PubMed/NCBI

6 

Yamanaka S and Blau HM: Nuclear reprogramming to a pluripotent state by three approaches. Nature. 465:704–712. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Sisakhtnezhad S and Matin MM: Transdifferentiation: A cell and molecular reprogramming process. Cell Tissue Res. 348:379–396. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Jopling C, Boue S and Izpisua Belmonte JC: Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol. 12:79–89. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Yao and Wang C: Dedifferentiation: Inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med. 5:142020. View Article : Google Scholar : PubMed/NCBI

10 

Brawley C and Matunis E: Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 304:1331–1334. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Kai T and Spradling A: Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature. 428:564–569. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH and Tanaka EM: Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 460:60–65. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Blanpain C and Fuchs E: Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 344:12422812014. View Article : Google Scholar : PubMed/NCBI

14 

van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, et al: Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 503:218–223. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Brockes JP and Kumar A: Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 3:566–574. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, et al: Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat Cell Biol. 19:603–613. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Stange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, et al: Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 155:357–368. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Painter MW, Brosius Lutz A, Cheng YC, Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ, Zhang AX, Wagers AJ, et al: Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron. 83:331–343. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R and Winton DJ: Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 495:65–69. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD and de Sauvage FJ: A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 478:255–259. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K and Barker N: Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat Cell Biol. 19:774–786. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Tulina N and Matunis E: Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science. 294:2546–2549. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Kiger AA, Jones DL, Schulz C, Rogers MB and Fuller MT: Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science. 294:2542–2545. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Sheng XR, Brawley CM and Matunis EL: Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell. 5:191–203. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Hameed LS, Berg DA, Belnoue L, Jensen LD, Cao Y and Simon A: Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. Elife. 4:e084222015. View Article : Google Scholar : PubMed/NCBI

27 

D'Ignazio L, Batie M and Rocha S: Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 5:212017. View Article : Google Scholar : PubMed/NCBI

28 

Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A: Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell. 7:150–161. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Arthur SA, Blaydes JP and Houghton FD: Glycolysis regulates human embryonic stem cell self-renewal under hypoxia through HIF-2α and the glycolytic sensors CTBPs. Stem Cell Reports. 12:728–742. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Forristal CE, Wright KL, Hanley NA, Oreffo RO and Houghton FD: Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 139:85–97. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Yoshida Y, Takahashi K, Okita K, Ichisaka T and Yamanaka S: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 5:237–241. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Jopling C, Sune G, Faucherre A, Fabregat C and Izpisua Belmonte JC: Hypoxia induces myocardial regeneration in zebrafish. Circulation. 126:3017–3027. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ and Li Y: Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. Am J Pathol. 179:931–941. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Vojnits K, Pan H, Mu X and Li Y: Characterization of an injury induced population of muscle-derived stem cell-like cells. Sci Rep. 5:173552015. View Article : Google Scholar : PubMed/NCBI

35 

Vojnits K, Pan H, Dai X, Sun H, Tong Q, Darabi R, Huard J and Li Y: Functional neuronal differentiation of injury-induced muscle-derived stem cell-like cells with therapeutic implications. Sci Rep. 7:11772017. View Article : Google Scholar : PubMed/NCBI

36 

Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T, Yoshimura S, et al: Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells Dev. 26:787–797. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Liao YJ, Gao JH, Jiang P and Lu F: Effect of hypoxia on dedifferentiation of mature adipocytes: An experimental study. Nan Fang Yi Ke Da Xue Xue Bao. 28:339–342. 2008.(In Chinese). PubMed/NCBI

38 

Schmidt-Ott KM, Xu AD, Tuschick S, Liefeldt L, Kresse W, Verkhratsky A, Kettenmann H and Paul M: Hypoxia reverses dibutyryl-cAMP-induced stellation of cultured astrocytes via activation of the endothelin system. FASEB J. 15:1227–1229. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Sahai A, Mei C, Schrier RW and Tannen RL: Mechanisms of chronic hypoxia-induced renal cell growth. Kidney Int. 56:1277–1281. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Kierans SJ and Taylor CT: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J and Beach D: A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal. 9:293–299. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C and Terzic A: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14:264–271. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A and Silberstein LE: Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 15:533–543. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, Goda N, Rahimi Y, Johnson RS, Soga T, et al: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 12:49–61. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Warr MR and Passegue E: Metabolic makeover for HSCs. Cell Stem Cell. 12:1–3. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Lima A, Burgstaller J, Sanchez-Nieto JM and Rodriguez TA: The mitochondria and the regulation of cell fitness during early mammalian development. Curr Top Dev Biol. 128:339–363. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Chen CT, Shih YR, Kuo TK, Lee OK and Wei YH: Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 26:960–968. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Pattappa G, Thorpe SD, Jegard NC, Heywood HK, de Bruijn JD and Lee DA: Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng Part C Methods. 19:68–79. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Scott CA, Carney TJ and Amaya E: Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen. Sep 23–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

50 

Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Wu W, Bishop K, Elkahloun AG, Chitnis AB, Liu PP, et al: A metabolic shift to glycolysis promotes zebrafish tail regeneration through TGF-β dependent dedifferentiation of notochord cells to form the blastema. bioRxiv. Mar 20–2020.(Epub ahead of print). PubMed/NCBI

51 

Fukuda R, Marin-Juez R, El-Sammak H, Beisaw A, Ramadass R, Kuenne C, Guenther S, Konzer A, Bhagwat AM, Graumann J and Stainier DY: Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO Rep. 21:e497522020. View Article : Google Scholar : PubMed/NCBI

52 

Naviaux RK, Le TP, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L and Heber-Katz E: Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab. 96:133–144. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Sinha KM, Tseng C, Guo P, Lu A, Pan H, Gao X, Andrews R, Eltzschig H and Huard J: Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice. FASEB J. 33:8321–8334. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Zhang Y, Strehin I, Bedelbaeva K, Gourevitch D, Clark L, Leferovich J, Messersmith PB and Heber-Katz E: Drug-induced regeneration in adult mice. Sci Transl Med. 7:290ra2922015. View Article : Google Scholar

55 

Pennock R, Bray E, Pryor P, James S, McKeegan P, Sturmey R and Genever P: Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Sci Rep. 5:131132015. View Article : Google Scholar : PubMed/NCBI

56 

Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA IV, Ramalho-Santos J, Van Houten B and Schatten G: Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 6:e209142011. View Article : Google Scholar : PubMed/NCBI

57 

Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M and Babilas P: Oxygen in acute and chronic wound healing. Br J Dermatol. 163:257–268. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP and Longaker MT: The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle). 3:390–399. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Baatar D, Jones MK, Tsugawa K, Pai R, Moon WS, Koh GY, Kim I, Kitano S and Tarnawski AS: Esophageal ulceration triggers expression of hypoxia-inducible factor-1 alpha and activates vascular endothelial growth factor gene: Implications for angiogenesis and ulcer healing. Am J Pathol. 161:1449–1457. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Elson DA, Ryan HE, Snow JW, Johnson R and Arbeit JM: Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60:6189–6195. 2000.PubMed/NCBI

61 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Muz B, de la Puente P, Azab F and Azab AK: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 3:83–92. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Jiang B: Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 4:25–27. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S and Kirkland JL: Senescence and cancer: A review of clinical implications of senescence and senotherapies. Cancers (Basel). 12:21342020. View Article : Google Scholar : PubMed/NCBI

65 

Lasry A and Ben-Neriah Y: Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends Immunol. 36:217–228. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Munoz-Espin D and Serrano M: Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Tchkonia T, Zhu Y, van Deursen J, Campisi J and Kirkland JL: Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J Clin Invest. 123:966–972. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Watanabe S, Kawamoto S, Ohtani N and Hara E: Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 108:563–569. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Coppe JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Chiche A, Le Roux I, von Joest M, Sakai H, Aguín SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, et al: Injury-Induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell. 20:407–414. e42017. View Article : Google Scholar : PubMed/NCBI

73 

Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Muñoz-Martin M, Blanco-Aparicio C, Pastor J, et al: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 354:aaf44452016. View Article : Google Scholar : PubMed/NCBI

74 

Taguchi J and Yamada Y: Unveiling the role of senescence-induced cellular plasticity. Cell Stem Cell. 20:293–294. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Feng T, Meng J, Kou S, Jiang Z, Huang X, Lu Z, Zhao H, Lau LF, Zhou B and Zhang H: CCN1-Induced cellular senescence promotes heart regeneration. Circulation. 139:2495–2498. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Sarig R, Rimmer R, Bassat E, Zhang L, Umansky KB, Lendengolts D, Perlmoter G, Yaniv K and Tzahor E: Transient p53-mediated regenerative senescence in the injured heart. Circulation. 139:2491–2494. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Heinrich C, Spagnoli FM and Berninger B: In vivo reprogramming for tissue repair. Nat Cell Biol. 17:204–211. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L and Keyes WM: The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31:172–183. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Munoz-Espin D, Canamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M and Serrano M: Programmed cell senescence during mammalian embryonic development. Cell. 155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J and Keyes WM: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Hanna J, Guerra-Moreno A, Ang J and Micoogullari Y: Protein degradation and the pathologic basis of disease. Am J Pathol. 189:94–103. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Cooke JP, Sayed N, Lee J and Wong WT: Innate immunity and epigenetic plasticity in cellular reprogramming. Curr Opin Genet Dev. 28:89–91. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E and Cooke JP: Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 151:547–558. 2012. View Article : Google Scholar : PubMed/NCBI

84 

King MW, Neff AW and Mescher AL: The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec (Hoboken). 295:1552–1561. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Cavaillon JM: Pro-versus anti-inflammatory cytokines: Myth or reality. Cell Mol Biol (Noisy-le-grand). 47:695–702. 2001.PubMed/NCBI

86 

Lennartsson J and Ronnstrand L: Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiol Rev. 92:1619–1649. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Schmitt M, Schewe M, Sacchetti A, Feijtel D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen ME, van de Werken HJG, et al: Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit Signaling. Cell Rep. 24:2312–2328. e72018. View Article : Google Scholar : PubMed/NCBI

88 

Soria-Valles C, Osorio FG, Gutierrez-Fernandez A, De Los Angeles A, Bueno C, Menéndez P, Martín-Subero JI, Daley GQ, Freije JM and López-Otín C: NF-κB activation impairs somatic cell reprogramming in ageing. Nat Cell Biol. 17:1004–1013. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Soria-Valles C, Osorio FG and Lopez-Otin C: Reprogramming aging through DOT1L inhibition. Cell Cycle. 14:3345–3346. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Gabel S, Koncina E, Dorban G, Heurtaux T, Birck C, Glaab E, Michelucci A, Heuschling P and Grandbarbe L: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-κB activation. Mol Neurobiol. 53:5041–5055. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, et al: Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 152:25–38. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Murtaugh LC and Keefe MD: Regeneration and repair of the exocrine pancreas. Annu Rev Physiol. 77:229–249. 2015. View Article : Google Scholar : PubMed/NCBI

93 

O'Neill LA: ‘Transflammation’: When innate immunity meets induced pluripotency. Cell. 151:471–473. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Jiang B and Liao R: The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 3:410–416. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Cooke JP: Inflammation and its role in regeneration and repair. Circ Res. 124:1166–1168. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Mescher AL, Neff AW and King MW: Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One. 8:e804772013. View Article : Google Scholar : PubMed/NCBI

97 

Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, et al: Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 18:607–618. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Ben-Neriah Y and Karin M: Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 12:715–723. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Balkwill FR and Mantovani A: Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Fedorova E and Zink D: Nuclear architecture and gene regulation. Biochim Biophys Acta. 1783:2174–2184. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Boland MJ, Nazor KL and Loring JF: Epigenetic regulation of pluripotency and differentiation. Circ Res. 115:311–324. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Wu H and Sun YE: Epigenetic regulation of stem cell differentiation. Pediatr Res. 59:21R–25R. 2006. View Article : Google Scholar : PubMed/NCBI

104 

Nakamura K, Maki N, Trinh A, Trask HW, Gui J, Tomlinson CR and Tsonis PA: miRNAs in newt lens regeneration: Specific control of proliferation and evidence for miRNA networking. PLoS One. 5:e120582010. View Article : Google Scholar : PubMed/NCBI

105 

Powell C, Grant AR, Cornblath E and Goldman D: Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci USA. 110:19814–19819. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Oliveri RS: Epigenetic dedifferentiation of somatic cells into pluripotency: Cellular alchemy in the age of regenerative medicine? Regen Med. 2:795–816. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Ramachandran R, Fausett BV and Goldman D: Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol. 12:1101–1107. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Reyes-Aguirre LI and Lamas M: Oct4 Methylation-Mediated silencing as an epigenetic barrier preventing muller glia dedifferentiation in a murine model of retinal injury. Front Neurosci. 10:5232016. View Article : Google Scholar : PubMed/NCBI

109 

Jadhav U, Saxena M, O'Neill NK, Saadatpour A, Yuan GC, Herbert Z, Murata K and Shivdasani RA: Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ Intestinal stem cells. Cell Stem Cell. 21:65–77. e52017. View Article : Google Scholar : PubMed/NCBI

110 

Li W, Yang L, He Q, Hu C, Zhu L, Ma X, Ma X, Bao S, Li L, Chen Y, et al: A homeostatic arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell. 25:54–68. e552019. View Article : Google Scholar : PubMed/NCBI

111 

Adilakshmi T, Sudol I and Tapinos N: Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One. 7:e396742012. View Article : Google Scholar : PubMed/NCBI

112 

Yun MH, Gates PB and Brockes JP: Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci USA. 110:17392–17397. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Yi L, Lu C, Hu W, Sun Y and Levine AJ: Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 72:5635–5645. 2012. View Article : Google Scholar : PubMed/NCBI

114 

He J, Zhou Y, Qian C, Wang D, Yang Z, Huang Z, Sun J, Ni R, Yang Q, Chen J and Luo L: DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med. 7:212022. View Article : Google Scholar : PubMed/NCBI

115 

Nemenoff RA, Simpson PA, Furgeson SB, Kaplan-Albuquerque N, Crossno J, Garl PJ, Cooper J and Weiser-Evans MC: Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived factor-1alpha. Circ Res. 102:1036–1045. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Strand KA, Lu S, Mutryn MF, Li L, Zhou Q, Enyart BT, Jolly AJ, Dubner AM, Moulton KS, Nemenoff RA, et al: High throughput screen identifies the DNMT1 (DNA Methyltransferase-1) Inhibitor, 5-Azacytidine, as a potent inducer of PTEN (Phosphatase and Tensin Homolog): Central role for PTEN in 5-Azacytidine protection against pathological vascular remodeling. Arterioscler Thromb Vasc Biol. 40:1854–1869. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E and Sadler KC: Epigenetic compensation promotes liver regeneration. Dev Cell. 50:43–56. e62019. View Article : Google Scholar : PubMed/NCBI

118 

Chuong EB, Elde NC and Feschotte C: Regulatory activities of transposable elements: From conflicts to benefits. Nat Rev Genet. 18:71–86. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Tosh D and Slack JM: How cells change their phenotype. Nat Rev Mol Cell Biol. 3:187–194. 2002. View Article : Google Scholar : PubMed/NCBI

120 

Corbett JL and Tosh D: Conversion of one cell type into another: Implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans. 42:609–616. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Abollo-Jimenez F, Jimenez R and Cobaleda C: Physiological cellular reprogramming and cancer. Semin Cancer Biol. 20:98–106. 2010. View Article : Google Scholar : PubMed/NCBI

122 

Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Solé M, Thung S, Stanger BZ and Llovet JM: Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 143:1660–1669. e72012. View Article : Google Scholar : PubMed/NCBI

123 

Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X and Willenbring H: Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 122:2911–2915. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Cobaleda C, Jochum W and Busslinger M: Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 449:473–477. 2007. View Article : Google Scholar : PubMed/NCBI

125 

Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L and Zong H: Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 146:209–221. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH and Verma IM: Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 338:1080–1084. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Yamada Y, Haga H and Yamada Y: Concise review: Dedifferentiation meets cancer development: Proof of concept for epigenetic cancer. Stem Cells Transl Med. 3:1182–1187. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Rausch T, Jones DT, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, Jäger N, Remke M, Shih D, Northcott PA, et al: Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 148:59–71. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J, Westerman BA, van Arkel J, et al: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 483:589–593. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, Lawrence MS, Auclair D, Mora J, Golub TR, et al: A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 122:2983–2988. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Yamada Y and Yamada Y: The causal relationship between epigenetic abnormality and cancer development: In vivo reprogramming and its future application. Proc Jpn Acad Ser B Phys Biol Sci. 94:235–247. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Rao CV, Cooma I, Rodriguez JG, Simi B, El-Bayoumy K and Reddy BS: Chemoprevention of familial adenomatous polyposis development in the APC(min) mouse model by 1,4-phenylene bis(methylene)selenocyanate. Carcinogenesis. 21:617–621. 2000. View Article : Google Scholar : PubMed/NCBI

134 

Yamada Y, Hata K, Hirose Y, Hara A, Sugie S, Kuno T, Yoshimi N, Tanaka T and Mori H: Microadenomatous lesions involving loss of Apc heterozygosity in the colon of adult Apc(Min/+) mice. Cancer Res. 62:6367–6370. 2002.PubMed/NCBI

135 

Yamada Y and Mori H: Pre-cancerous lesions for colorectal cancers in rodents: A new concept. Carcinogenesis. 24:1015–1019. 2003. View Article : Google Scholar : PubMed/NCBI

136 

Moser AR, Pitot HC and Dove WF: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 247:322–324. 1990. View Article : Google Scholar : PubMed/NCBI

137 

Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H and Jaenisch R: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA. 102:13580–13585. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Lin H, Yamada Y, Nguyen S, Linhart H, Jackson-Grusby L, Meissner A, Meletis K, Lo G and Jaenisch R: Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol. 26:2976–2983. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, et al: Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 21:3110–3122. 2007. View Article : Google Scholar : PubMed/NCBI

140 

Hatano Y, Semi K, Hashimoto K, Lee MS, Hirata A, Tomita H, Kuno T, Takamatsu M, Aoki K, Taketo MM, et al: Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation. Carcinogenesis. 36:719–729. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Khoshchehreh R, Totonchi M, Carlos Ramirez J, Torres R, Baharvand H, Aicher A, Ebrahimi M and Heeschen C: Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo tumourigenicity. Oncogene. 38:6226–6239. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP and Meade TW: Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 377:31–41. 2011. View Article : Google Scholar : PubMed/NCBI

143 

Fraser DM, Sullivan FM, Thompson AM and McCowan C: Aspirin use and survival after the diagnosis of breast cancer: A population-based cohort study. Br J Cancer. 111:623–627. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Streicher SA, Yu H, Lu L, Kidd MS and Risch HA: Case-control study of aspirin use and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 23:1254–1263. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Close JL, Liu J, Gumuscu B and Reh TA: Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia. 54:94–104. 2006. View Article : Google Scholar : PubMed/NCBI

146 

Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B and Reh TA: Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA. 105:19508–19513. 2008. View Article : Google Scholar : PubMed/NCBI

147 

Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T and Chen DF: alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice. Invest Ophthalmol Vis Sci. 49:1142–1150. 2008. View Article : Google Scholar : PubMed/NCBI

148 

Osakada F, Ooto S, Akagi T, Mandai M, Akaike A and Takahashi M: Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 27:4210–4219. 2007. View Article : Google Scholar : PubMed/NCBI

149 

Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455:627–632. 2008. View Article : Google Scholar : PubMed/NCBI

150 

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD and Srivastava D: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 485:593–598. 2012. View Article : Google Scholar : PubMed/NCBI

151 

Kurita M, Araoka T, Hishida T, O'Keefe DD, Takahashi Y, Sakamoto A, Sakurai M, Suzuki K, Wu J, Yamamoto M, et al: In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature. 561:243–247. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Wang G, Badylak SF, Heber-Katz E, Braunhut SJ and Gudas LJ: The effects of DNA methyltransferase inhibitors and histone deacetylase inhibitors on digit regeneration in mice. Regen Med. 5:201–220. 2010. View Article : Google Scholar : PubMed/NCBI

153 

Ma X, Kong L and Zhu S: Reprogramming cell fates by small molecules. Protein Cell. 8:328–348. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Tang Y and Cheng L: Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein Cell. 8:273–283. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R and Zhang CL: In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 15:1164–1175. 2013. View Article : Google Scholar : PubMed/NCBI

156 

Guan J, Wang G, Wang J, Zhang J, Fu Y, Cheng L, Meng G, Lyu Y, Zhu J, Li Y, et al: Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. 605:325–331. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo Y, Wu W, Yang X and Fu X: Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review). Mol Med Rep 26: 369, 2022.
APA
Guo, Y., Wu, W., Yang, X., & Fu, X. (2022). Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review). Molecular Medicine Reports, 26, 369. https://doi.org/10.3892/mmr.2022.12886
MLA
Guo, Y., Wu, W., Yang, X., Fu, X."Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review)". Molecular Medicine Reports 26.6 (2022): 369.
Chicago
Guo, Y., Wu, W., Yang, X., Fu, X."Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review)". Molecular Medicine Reports 26, no. 6 (2022): 369. https://doi.org/10.3892/mmr.2022.12886
Copy and paste a formatted citation
x
Spandidos Publications style
Guo Y, Wu W, Yang X and Fu X: Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review). Mol Med Rep 26: 369, 2022.
APA
Guo, Y., Wu, W., Yang, X., & Fu, X. (2022). Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review). Molecular Medicine Reports, 26, 369. https://doi.org/10.3892/mmr.2022.12886
MLA
Guo, Y., Wu, W., Yang, X., Fu, X."Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review)". Molecular Medicine Reports 26.6 (2022): 369.
Chicago
Guo, Y., Wu, W., Yang, X., Fu, X."Dedifferentiation and <em>in vivo</em> reprogramming of committed cells in wound repair (Review)". Molecular Medicine Reports 26, no. 6 (2022): 369. https://doi.org/10.3892/mmr.2022.12886
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team